Exploring scheduling solutions for Federated Learning training

Laércio Lima Pilla (he/him) laercio.lima-pilla@labri.fr

... but before we start discussing the topic

Who am I? 🔯 🚺

- CNRS research scientist (2018-)
- Aim to make parallel applications more efficient* through better scheduling
 - * faster, more energy efficient, using less or older resources, ...

<u>website</u>

... but before we start discussing the topic

Who am I? 🔯 🚺

- CNRS research scientist (2018-)
- Aim to make parallel applications more efficient* through better scheduling
 - * faster, more energy efficient, using less or older resources, ...

website

Acknowledgements

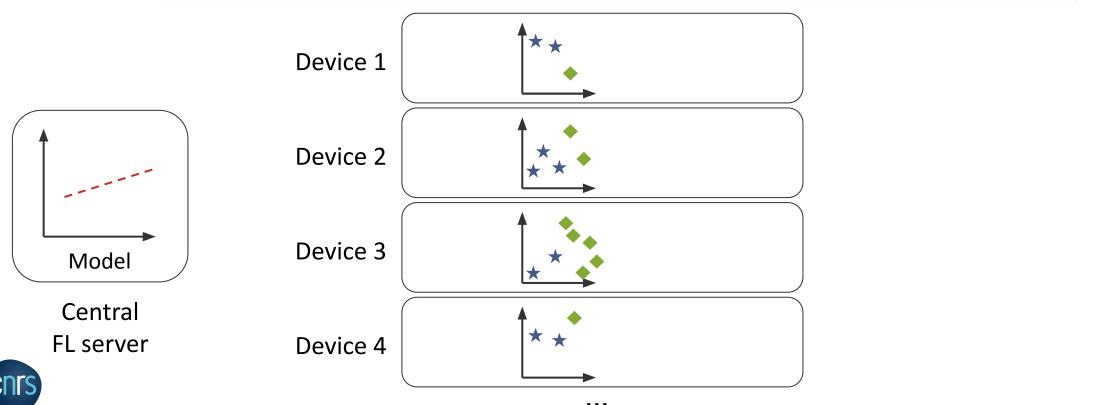
- PhD student
 - Alan Lira Nunes
- Co-advisors
 - Cristina Boeres
 - Lúcia M. A. Drummond

DecoHPC joint team

What is Federated Learning?

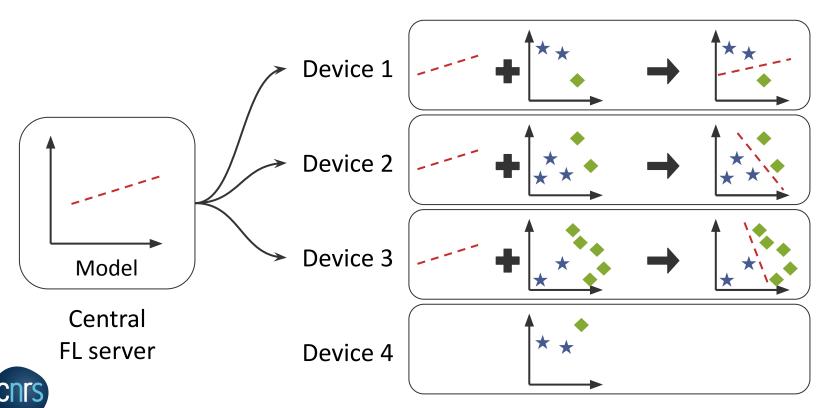
distributed learning + local data is never shared

Communication-Efficient Learning of Deep Networks from Decentralized Data



What is Federated Learning?

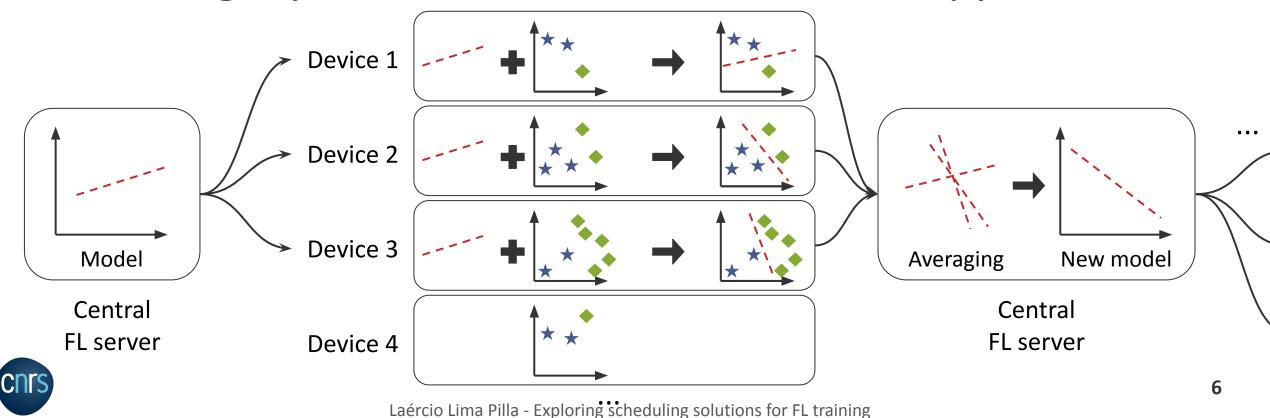
distributed learning + local data is never shared



What is Federated Learning?

distributed learning + local data is never shared

Applications: next-word prediction, on-device item ranking, cyberattack detection, medical applications



Why do we care (about optimizing it)?

Why do we care (about optimizing it)?

18th Scheduling for large-scale systems workshop

École de Technologie Supérieure, Montréal, Québec, Canada, July 8-10, 2025

[...] this year edition will be focused around "Scheduling and AI" [...]

Why do we care (about optimizing it)?

Characteristics of cross-device FL

device and data heterogeneity

Issues

duration of training
energy costs and emissions of ML*
battery or energy available
convincing people to participate in training

*Qiu, Xinchi, et al. "A first look into the carbon footprint of federated learning." Journal of Machine Learning Research 24.129 (2023): 1-23.

What the problems look like?

For a training round, given

- some heterogeneous clients
- amount of data to be used for training

try to optimize

- the time
- the energy (or the emissions)
- both

it takes by

 defining how much data each client should use locally

What the problems look like?

For a training round, given

- some heterogeneous clients
- amount of data to be used for training

try to optimize

- the time
- the energy (or the emissions)
- both

it takes by

 defining how much data each client should use locally

Requires estimations of

- the amount of local data*
- functions of
 - time per data unit
 - energy per data unit

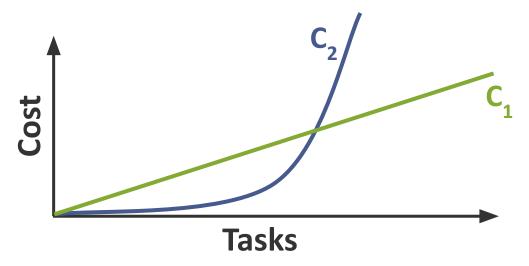
per client

*or upper and lower limits

Optimizing time (2021)

Problem: given **T tasks** and **n resources** with different cost
functions C, find an assignment that
minimizes the **maximal cost** C_{max}.

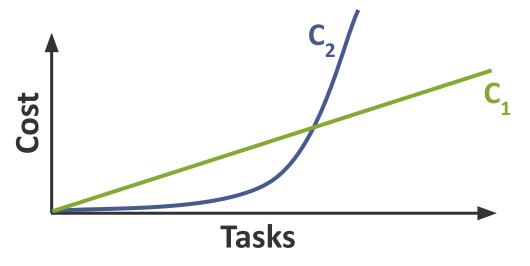
Assumption: all cost functions are monotonically increasing and known



Optimizing time (2021)

Problem: given **T tasks** and **n** resources with different cost functions C, find an assignment that minimizes the maximal cost C_{max}.

Assumption: all cost functions are monotonically increasing and known



Find a task assignment $A_i \subseteq \mathbb{N}$ to each resource $i \in R$ that minimizes the makespan C_{max} while assigning all tasks among the resources and respecting their lower and upper limits.

$$C_{max} = max_{i \in R} C_{i}(A_{i})$$

$$\sum_{i \in R} A_i = T$$

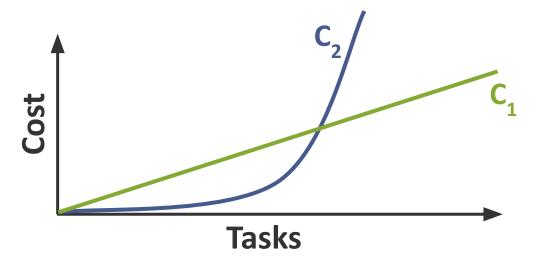
$$L_i \leq A_i \leq U_i$$
, $\forall i \in R$

<u>Pilla, Laércio Lima.</u> "Optimal task assignment for heterogeneous federated learning devices." 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021.

Optimizing time (2021)

Problem: given **T tasks** and **n resources** with different cost
functions C, find an assignment that
minimizes the **maximal cost** C_{max}.

Assumption: all cost functions are monotonically increasing and known



Solution in O(T log n): assign the **next task** to one of the resources that increases the execution time the

least.

```
Algorithm 1: OLAR
  Data: Tasks T, Resources \mathcal{R}, Cost functions C_i(\cdot),
          Lower and Upper limits L_i and U_i (i \in \mathcal{R})
   Result: Assignment of tasks to resources A_i (i \in \mathcal{R})
1 h \leftarrow min-heap()
                                         > Heap sorted by cost
2 for i \in \mathcal{R} do
                    > Resources start at their lower limit
       D Checks if the resource can receive more tasks
       if A_i < U_i then

ightharpoonup Inserts the cost of the next task on i
           h.push(C_i(A_i+1),i)
       end
7 end
   ▶ Main loop
8 for t from l+1 to T do

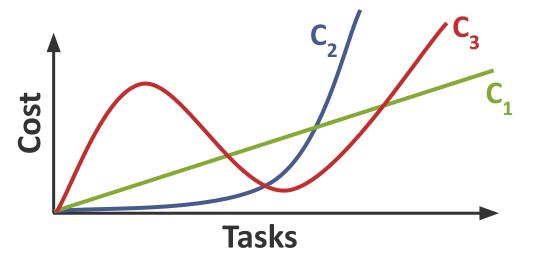
    ▷ Extracts the next optimal assignment (Eq. (9))

       (c, j) \leftarrow h.pop()
       A_i \leftarrow A_i + 1
                                               \triangleright Assigns t to j
        D Checks if the resource can receive more tasks
       if A_i < U_i then
           \triangleright Inserts the cost of the next task on j
           h.push(C_i(A_i+1),j)
13
       end
14 end
```


Optimizing time (2022)

Problem: given **T tasks** and **n** resources with different cost functions C, find an assignment that minimizes the maximal cost C_{max}.

Assumption: all cost functions are monotonically increasing and known



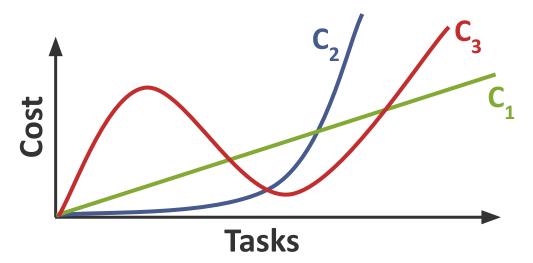
Solution in O(T²n): a bit more complex

- Dynamic programming solution
- (to be shown soon);)
- SotA was O(T³n³)

<u>Pilla, Laércio Lima</u>. Optimal workload scheduling algorithm for data-parallel applications on heterogeneous platforms based on dynamic programming. Diss. CNRS; LaBRI; Inria; Université de Bordeaux; Bordeaux INP, 2022.

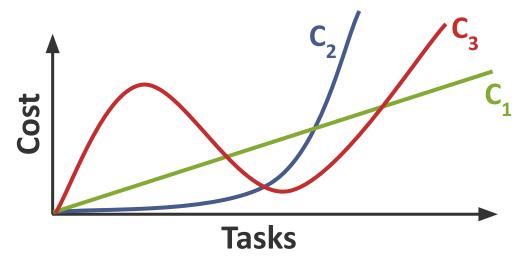
Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

Assumption: all cost functions are known



Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

Assumption: all cost functions are known



Find a task assignment $A_i \subseteq \mathbb{N}$ to each resource $i \in R$ that minimizes the total cost ΣE while assigning all tasks among the resources and respecting their lower and upper limits.

$$\Sigma E = \sum_{i \in R} C_i(A_i)$$

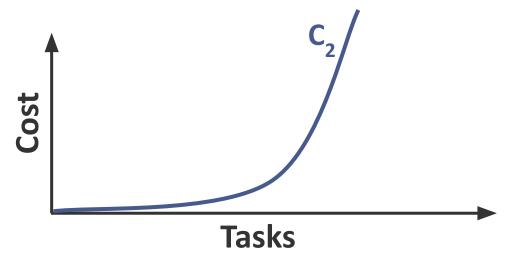
$$\sum_{i \in R} A_i = T$$

$$L_i \leq A_i \leq U_i$$
, $\forall i \in R$

<u>Pilla, Laércio Lima</u>. "Scheduling algorithms for federated learning with minimal energy consumption." IEEE Transactions on Parallel and Distributed Systems 34.4 (2023): 1215-1226.

Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

Assumption: all cost functions are known **and superlinear**



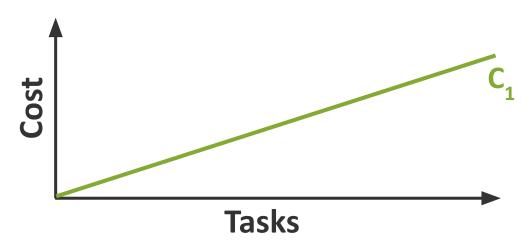
Solution in O(T log n): assign the **next task** to one of the resources that increases the total cost the least.

similar to OLAR

Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

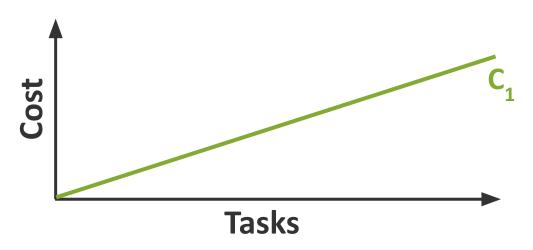
Assumption: all cost functions are

known and linear



Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

Assumption: all cost functions are known and linear



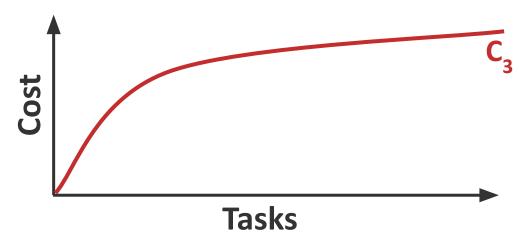
Solution in O(n log n): assign the **most tasks possible** to one of the resources with the least cost per task.

```
Algorithm 3: MarCo.Input: Set of resources \mathcal{R}, number of tasks to schedule T, set of upper limits \mathcal{U}, set of cost functions \mathcal{C}.Output: Optimal schedule X.1: for all i \in \mathcal{R} do2: x_i \leftarrow 0 \Rightarrow All resources start without any tasks.3: end for4: t \leftarrow 05: while t < T do6: k \leftarrow \arg\min_{i \in \mathcal{R}, x_i \neq U_i} M_i(1)7: x_k \leftarrow \min(U_k, T - t) \Rightarrow Assigns the most tasks possible.8: t \leftarrow t + x_k9: end while10: return X
```


Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

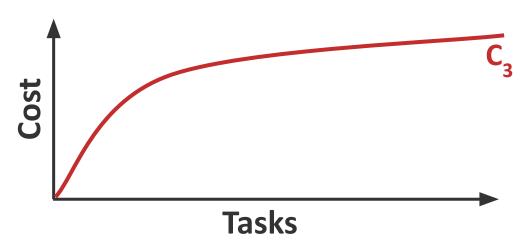
Assumption: all cost functions are

known and sublinear

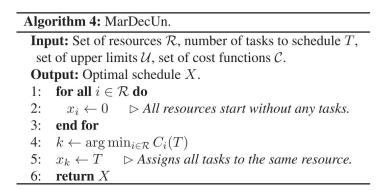


Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

Assumption: all cost functions are known and sublinear



Solution without upper limits in O(n): assign **all tasks** to one of the resources with the least total cost.

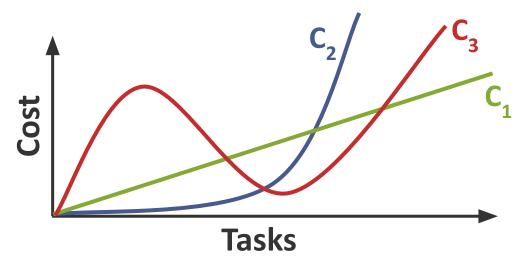


Solution with upper limits in O(Tn²)

 More complex (and related to our previous mystery);)

Problem: given T tasks and n resources with different cost functions C, find an assignment that minimizes the total cost ΣΕ.

Assumption: all cost functions are known



Solution in O(T²n): **(MC)**²MKP - Knapsack w/ DP implementation

- Multiple-choice
 - One item per group (resource)
- Minimum-cost
 - Minimizes cost (instead of maximizing profit)
- Maximum Knapsack Packing
 - Fills the knapsack as much as possible

Problems: given T tasks and n resources with different cost functions P and E, find an assignment that

- Minimal Makespan and Energy Consumption (MEC)
- or vice-versa within a deadline D
 - Minimal Energy Consumption and Makespan under Time Constraint (ECMTC)

$$C_{\max} := \max_{i \in \mathcal{R}} P_i(x_i) \quad (1)$$

$$\Sigma E \coloneqq \sum_{i \in \mathcal{R}} E_i(x_i) \qquad (2)$$

lex min_X
$$C_{\text{max}}$$
, ΣE (3a)
subject to $\sum_{i \in \mathcal{R}} x_i = T$, (3b)

$$x_i \in A_i, \ \forall i \in \mathcal{R}$$
 (3c)

$$\lim_{X} \Sigma E, C_{\max} \qquad (4a)$$

subject to
$$\sum_{i \in \mathcal{R}} x_i = T$$
, (4b)

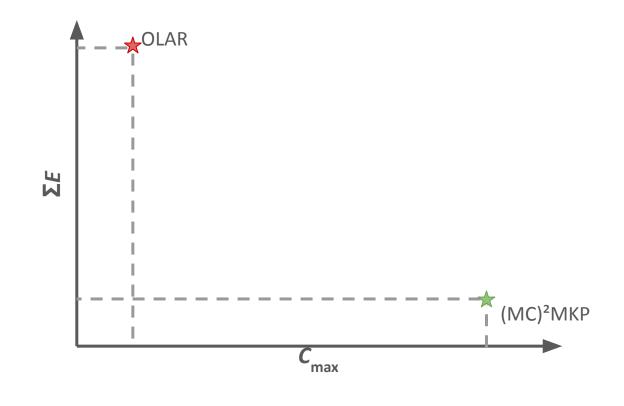
$$C_{\text{max}} \leq D$$
, (4c)

$$x_i \in A_i, \ \forall i \in \mathcal{R}$$

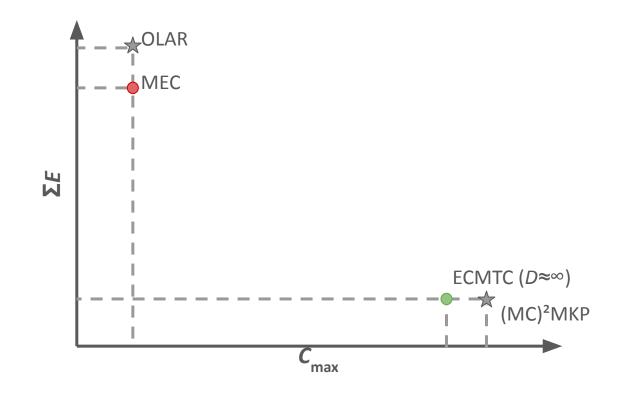
(4d)

Nunes, Alan L., et al. "Optimal time and energy-aware client selection algorithms for federated learning on heterogeneous resources." 2024 IEEE 36th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE, 2024.

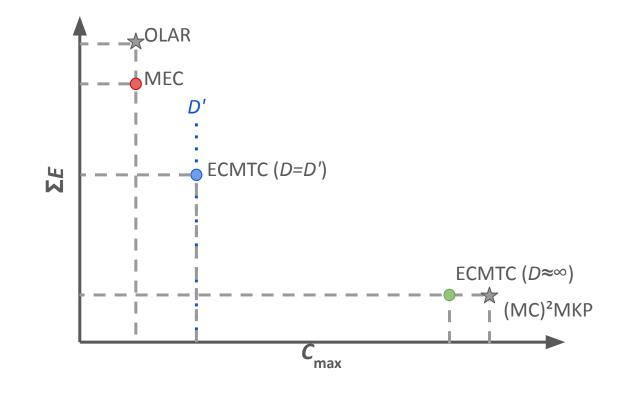
- minimizes the maximal cost C_{max}
 and then total cost ΣΕ
 - Minimal Makespan and Energy Consumption (MEC)
- or vice-versa within a deadline D
 - Minimal Energy Consumption and Makespan under Time Constraint (ECMTC)



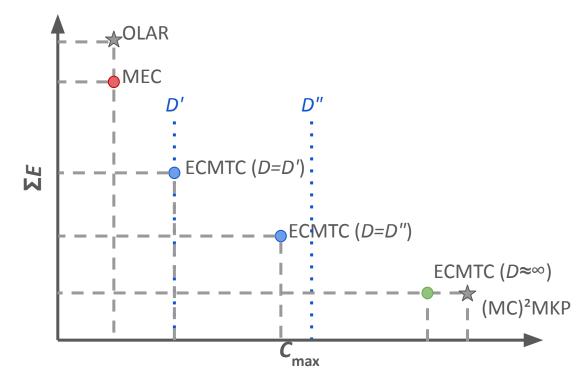
- minimizes the maximal cost C_{max}
 and then total cost ΣΕ
 - Minimal Makespan and Energy Consumption (MEC)
- or vice-versa within a deadline D
 - Minimal Energy Consumption and Makespan under Time Constraint (ECMTC)



- minimizes the maximal cost C_{max}
 and then total cost ΣΕ
 - Minimal Makespan and Energy Consumption (MEC)
- or vice-versa within a deadline D
 - Minimal Energy Consumption and Makespan under Time Constraint (ECMTC)



- minimizes the maximal cost C_{max} and then total cost ΣE
 - Minimal Makespan and Energy Consumption (MEC)
- or vice-versa within a deadline D
 - Minimal Energy Consumption and Makespan under Time Constraint (ECMTC)



All solutions are Pareto optimal!

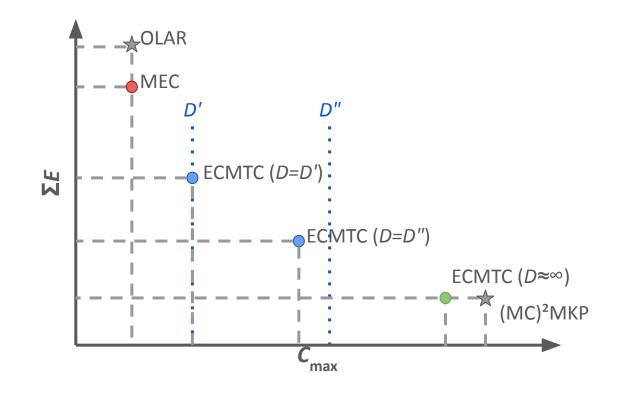
Solutions in O(T²n) based on (MC)²MKP

MEC

- Find minimal makespan, set it as deadline
- Filter assignments based on deadline
- (MC)²MKP

ECMTC

- Filter assignments based on deadline
- As (MC)²MKP, but solve ties for the minimal total time



General problem:

- 1. get an optimal schedule
- 2. reuse it over multiple rounds
- 3. only see "the same" data
- 4. the model requires more rounds to converge/achieve a given accuracy
- 5. total time and energy increase

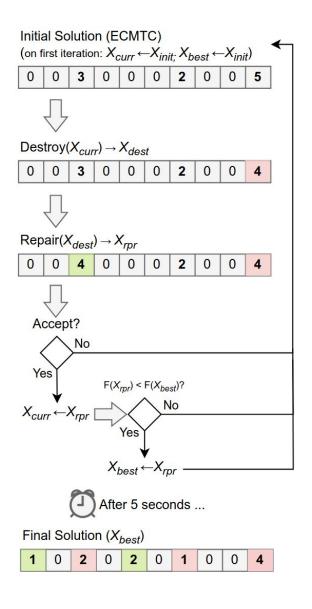
General problem:

- 1. get an optimal schedule
- 2. reuse it over multiple rounds
- 3. only see "the same" data
- 4. the model requires more rounds to converge/achieve a given accuracy
- 5. total time and energy increase

Possible approaches:

- Select a random subset of resources before computing each schedule
- Change a schedule to add diversity
 - Large Neighborhood Search
- etc

Nunes, Alan L., et al. "MetaCS-FL: A Metaheuristic-Based Framework for Client Selection in Federated Learning Systems." to be submitted.



Possible approaches:

- Select a random subset of resources before computing each schedule
- Change a schedule to add diversity
 - Large Neighborhood Search
- etc

Nunes, Alan L., et al. "MetaCS-FL: A Metaheuristic-Based Framework for Client Selection in Federated Learning Systems." to be submitted.

Preliminary results: $M_{total} = time$; $\Sigma_{total} = energy$; $S_{fair} = Jain's$ Fairness Index; figures -> rounds to accuracy

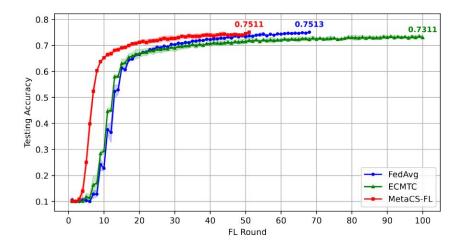
TABLE VI: Performances for CIFAR-10 IID. NaN means the method did not achieve the target testing accuracy.

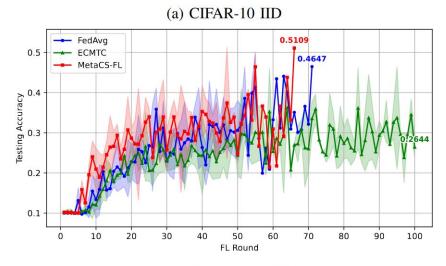
CS Approach	M_{total}	$\Sigma_{ m total}$	$S_{ ext{fair}}$	RoA@0.75
FedAvg (Baseline)	10,696.79	2,077,926.08	0.98	62 ± 5.4
ECMTC	8,615.93 (-19.45%)	2,019,645.24 (-2.8%)	0.45 (-53.85%)	NaN
MetaCS-FL	3,762.31 (-64.83%)	897,893.30 (-56.79%)	0.67 (-31.54%)	46 ± 3.6

Units: M_{total} in seconds; Σ_{total} in joules.

TABLE VII: Performances for CIFAR-10 non-IID. NaN means the method did not achieve the target testing accuracy.

M_{total}	$\Sigma_{ m total}$	$S_{ ext{fair}}$	RoA@0.45
10,010.54	1,976,410.31	0.98	59 ± 8.3
		0.46 (-53.12%)	NaN
		0.71 (-27.76%)	56 ± 7.8
	10,010.54 8,389.58 (-16.19%) 5,106.6	10,010.54 1,976,410.31 8,389.58 1,822,920.56 (-16.19%) (-7.77%) 5,106.6 1,151,546.44	10,010.54 1,976,410.31 0.98 8,389.58 1,822,920.56 0.46 (-16.19%) (-7.77%) (-53.12%)





(b) CIFAR-10 non-IID

Concluding remarks

We take FL and optimize its performance and/or energy consumption by controlling how much work each device should do.

Advantages of our approaches

- ★ Given the required information, we can find optimal solutions
 - Time, energy, both
- ★ It should be easier to control how much work to give to a resource than to control other aspects of the resources
 - o e.g. DVFS

Limitations

- We require more information from the resources
- Optimizing for one objective can lead to worse outcomes for other objectives

Concluding remarks

We take FL and optimize its performance and/or energy consumption by controlling how much work each device should do.

- Can we get energy or carbon-equivalent emissions information?
 - Should we? (privacy issues)
 - Can we trust this information?
- How far from the best performance (%) do I accept to be if it improves my energy consumption (and vice-versa)?
- How to optimize considering more options (e.g., edge device offloading)?
- White whales
 - Optimize energy if monotonically increasing [faster than O(T²n)]?
 - Optimize time given an energy budget in O(T²n) or less?

