
Deadline-Aware Scheduling
of Mixed-Criticality Tasks

Maxime Gonthier

Kyle Chard

Ian Foster

Loris Marchal

Frédéric Vivien

1

Table of contents
1. Which problem are we trying to solve?

2. Theoretical lower bound

3. Approximation & proposed heuristic

4. State-of-the-art competitors

5. Evaluation

2

Plasma simulation
(IonOrb) from DIII-D
National Fusion Facility:
must be computed within
15 minutes

Clusters & cloud support the execution of workloads
that differ in criticality (= time sensitivity)

Lake Michigan water level
forecast: must be
computed within a few
hours

GEMM for a performance
benchmark: no deadline

3

Critical

I live here
and don’t
want to be
flooded :D

Simplest approach: static provisioning

1

2

3 4

5

● Statically reserve a portion of
computing resources for
critical tasks

● Often over provision for
safety

→ performance degradation for
low-criticality tasks

6

4

Hybrid approach: shared resources with preemption

5

1

2

3

4

5

r=1 d=12 r=7 d=12
t=1 t=7

1

2

3

4

t=12

5

2

3

r=1 d=∅

→ wasted
resources

Goal:

Maximize # of critical
task completed in

time

&

 minimize Fmax of
non-critical tasks

Problem: How can we use a shared pool of resources
for mixed-criticality tasks without preemption?

Independent, exclusive and single node
tasks:

○ r: release time (both offline and
online)

○ p: processing time
○ d: deadline or ∅

No preemption, checkpointing or migration

6

1

2

Homogeneous
processors

Table of contents
1. Which problem are we trying to solve?

2. Theoretical lower bound

3. Approximation & proposed heuristic

4. State-of-the-art competitors

5. Evaluation

7

Theoretical lower bound through binary search &
linear programming
● Lower bound exist for 1|online-r;restarts|∑F and P|online-r;preemption|∑1-U
● Not for mixed-criticality

● → allow preemption and migration:1

○ Time sharing
○ Fix a target flow Ftarget → gives a deadline to all non-critical tasks → r + Ftarget
○ Create sorted list of intervals using release times and deadlines

● For each consecutive pair in the list, xi,k is the time assigned to Ti in interval [tk,tk+1] on
any processor

● Build a linear program with xi,k. If solution, resulting time allocations is a feasible
schedule with Ftarget → binary search on Ftarget

8

1Similar to “Minimizing the Stretch When Scheduling Flows of Divisible Requests” Legrand et al. Journal of Scheduling (2008)

Table of contents
1. Which problem are we trying to solve?

2. Theoretical lower bound

3. Approximation & proposed heuristic

4. State-of-the-art competitors

5. Evaluation

9

A ½-approximation from the Group Interval
Scheduling Maximization Problem (GISMP)

GISMP: finding largest set of non-overlapping intervals

Interval: task’s possible time frames in which it can be executed

Goal: execute as many different tasks as possible

A ½ -approximation exist for 1 processor: it always schedules
at least half as many tasks as an optimal algorithm:

1. Allocates tasks 1 by 1 so that the next selected interval is
the one with the earliest finish time

2. Remove intervals of tasks intersecting with selected interval

10

1
1
1
1

2
2

2

3
3

3

4
4

4
4

4

5
5

5

4
4

1

3

4

A ½-approximation from the Group Interval
Scheduling Maximization Problem (GISMP)

GISMP: finding largest set of non-overlapping intervals

Interval: task’s possible time frames in which it can be executed

Goal: execute as many different tasks as possible

A ½ -approximation exist for 1 processor: it always schedules
at least half as many tasks as an optimal algorithm:

1. Allocates tasks 1 by 1 so that the next selected interval is
the one with the earliest finish time

2. Remove intervals of tasks intersecting with selected interval

11

1
1
1
1

2
2

2

3
3

3

4
4

4
4

4

5
5

5

4
4

1

3

General case approximation: Greedy

We adapt the approximation to l processors and
prove (read the paper for more details :D) that there is a polynomial ½
-approximation algorithm:

1. Consider processors 1 by 1
2. Allocates tasks 1 by 1 so that the next selected

interval is the one with the earliest finish time
3. Remove intervals of tasks intersecting with

selected interval
4. Once no more tasks can be scheduled on a

processor, continue with the next processor

12

1
1
1
1

2
2

2

3
3

3

4
4

4
4

4

5
5

4
4

1

3

4

Only for 1
processor

Issue: Offline algorithms can defer urgent tasks: a
newly submitted short-deadline task with late finish
times may be scheduled last

4

D

D

D

D

D

0 1 2 3 4 5 6 7 8

Developed into a slack-focused heuristic:
Greedy-Slack

• Sort tasks by
deadline slack:
“amount of time a
task can remain in
queue before it
must be
immediately
processed in order
to meet its
deadline”

13

1

2

3

4

5

Slack of T1

EDF order: 1,2,3,4,5 / Greedy-Slack order: 4,2,1,3,5

Developed into a slack-focused heuristic:
Greedy-Slack

• Schedule tasks by
order of deadline
slack

• Keep intuition from
approximation:
schedule
processor by
processor &

14

Binary
search on
Ftarget

Table of contents
1. Which problem are we trying to solve?

2. Theoretical lower bound

3. Approximation & proposed heuristic

4. State-of-the-art competitors

5. Evaluation

15

State of the art competitor 1: static provisioning

Min number of nodes required
Provisioned offline w/ binary search

1

2

3 4

5

6

16

FIFO optimal to minimize
Fmax with 1 processor
→ use FIFO to schedule
non-critical task

State of the art competitor 2: combination of
optimal algorithms for subproblems

● EDF optimal in the sense that “if a
valid schedule exists, it will be found in
an online single processor setting” &
“if processors are (2-1)/m faster, it will
find a solution in a preemptive case
with m processors”
→ EDF is a reasonable approach

● FIFO optimal to minimize Fmax with 1
processor

→ first use EDF for critical tasks then use
FIFO for non-critical tasks

1

2

3

4

5

6

17

Table of contents
1. Which problem are we trying to solve?

2. Theoretical lower bound

3. Approximation & proposed heuristic

4. State-of-the-art competitors

5. Evaluation

18

Goal:

Complete ALL
critical task in time

&

 minimize Fmax of
non-critical tasks

Geometric mean of ratio between Fmax and
lower bound - offline

19

Lower
better

● 1 → lower bound
● 30 random instances

● shift → temporal shifting,
i.e. “a critical task may be
postponed as long as its
deadline is met”

● Greedy performs worse
than Split-Offline

● Greedy-Slack with
temporal shifting matches
lower bound

20

EDF+FIFO

Greedy-Slack

● Some heuristics
unable to find solution
for some instances →
only compare results in
instances where all
heuristics reach a valid
schedule (= all
deadline satisfied)

● Greedy-Slack still
close to lower bound

● Scheduling overhead
of Greedy-Slack: 36ms
per task

21

Lower
better

still offline

Geometric mean of ratio between Fmax and
lower bound - online

● Represent average delay
● Not our main goal, service quality

metric

Absolute values of mean flow w/ 8 processors

22

● Offline: many tasks available at once
→ Greedy-slack will slow down all
tasks to minimize Fmax

● Online: limited amount of tasks at
once
→ Greedy-slack schedules
non-critical tasks earlier

Lower
better

Proportion of successful instances (out of 30)
under various workload constraints - online

Higher
better

23

Offline provisioning → will
get the most valid
schedule

More valid schedule under
constrained workloads at
the cost of higher Fmax

→ Derived a ½-approximation algorithm and a lower bound
→ Designed a slack-focused heuristic from the approximation
→ Reduces online max flow by:

→ 14% vs. static provisioning
→ 13% vs. EDF+FIFO

→ Near theoretical lower bound (offline & online)
→ Similar on real-world traces

Next:
● Task failures
● Parallel tasks

Conclusion on mixed-criticality scheduling of
non-preemptive tasks on homogeneous processors

24

