Deadline-Aware Scheduling
of Mixed-Ciriticality Tasks

Maxime Gonthier
Kyle Chard

lan Foster

Loris Marchal

Frédéric Vivien

Table of contents

1. Which problem are we trying to solve?

Clusters & cloud support the execution of workloads
that differ in criticality (= time sensitivity)

Critical

| live here
and don’t
want to be ofi SIS
flooded :D

5 S b B 58 T
NN
=
]

[[T T
3 .
.

x
=
>
m |
Il
3

GEMM for a performance

Plasma simulation Lake Michigan water level benchmark: no deadline
(lonOrb) from DIII-D forecast: must be

National Fusion Facility: computed within a few

must be computed within hours

Qminutes /

® CHICAGO — AR

ENS DE LYON

Simplest approach: static provisioning

e Statically reserve a portion of
computing resources for
critical tasks

e Often over provision for
safety

— performance degradation for
low-criticality tasks

Hybrid approach: shared resources with preemption

r=7 d=12

— wasted
resources

Problem: How can we use a shared pool of resources
ity tasks without preemption?

for mixed-critica

Mo~ 1]

i

Independent, exclusive and single node

tasks:

o r: release time (both offline and
online)

o p: processing time

o d:deadline or @

No preemption, checkpointing or migration

p Homogeneous
processors

Goal:

Maximize # of critical
task completed in
time

&

minimize F___ of
. max
non-critical tasks

Table of contents

2. Theoretical lower bound

Theoretical lower bound through binary search &
linear programming

e Lower bound exist for 7|online-r;restarts|) F and P|online-r;preemption|) 1-U
e Not for mixed-criticality

— allow preemption and migration:’
o Time sharing

o Fixatargetflow F, — gives a deadline to all non-critical tasks —r+F,_

o Create sorted list of intervals using release times and deadlines

e [or each consecutive pair in the list, X, is the time assigned to T, in interval [tk,tk+,] on

any processor
e Build a linear program with X, o If solution, resulting time allocations is a feasible

schedule with Ftarg — binary search on F,

et target

TSimilar to “Minimizing the Stretch When Scheduling Flows of Divisible Requests” Legrand et al. Journal of Scheduling (2008)

® CHICACO —HH— Argonne &5

ENS DE LYON NATIONAL LABORATORY

Table of contents

3. Approximation & proposed heuristic

A Y2-approximation from the Group Interval
Scheduling Maximization Problem (GISMP)

GISMP: finding largest set of non-overlapping intervals

Interval: task’s possible time frames in which it can be executed
Goal: execute as many different tasks as possible

A 2 -approximation exist for 1 processor: it always schedules
at least half as many tasks as an optimal algorithm:

1. Allocates tasks 1 by 1 so that the next selected interval is
the one with the earliest finish time
2. Remove intervals of tasks intersecting with selected interval

E THE UNIVERSITY OF [T ey]

% CHICAGO —_—

ENS DE LYON

A Y2-approximation from the Group Interval
Scheduling Maximization Problem (GISMP)

GISMP: finding largest set of non-overlapping intervals

Interval: task’s possible time frames in which it can be executed
Goal: execute as many different tasks as possible

A 2 -approximation exist for 1 processor: it always schedules
at least half as many tasks as an optimal algorithm:

1. Allocates tasks 1 by 1 so that the next selected interval is
the one with the earliest finish time
2. Remove intervals of tasks intersecting with selected interval

6 THE UNIVERSITY OF [T ey]

ENS DE LYON

General case approximation: Greedy

We adapt the approximation to ¢ processors and — Lo
[PrOVeE€ (read the paper for more details :D) that there is a pOlynomial Vo . .
-approximation algorithm: P
1. Consider processors 1 by 1
2. Allocates tasks 1 by 1 so that the next selected
interval is the one with the earliest finish time :
3. Remove intervals of tasks intersecting with . 3 |
selected interval Only for 1 : :
4. Once no more tasks can be scheduled on a processory B
processor, continue with the next processor ; Do
; Do .
. 4
i 4|
Issue: Offline algorithms can defer urgent tasks: a : : f
newly submitted short-deadline task with late finish : A R
times may be scheduled last : D\
: AN 5

SRR —- —— Argonne &5

ENS DE LYON NATIONAL LABORATORY

Developed into a slack-focused heuristic:
Greedy-Slack

Slack of T1

« Sort tasks by
deadline slack:
“amount of time a
task can remain in
queue before it
must be
immediately
processed in order
to meet its
deadline”

EDF order: 1,2,3,45 / Greedy-Slack order: 4,2,1,3,5

THE UNIVERSITY OF [T ey]

CHICAGO e

ENS DE LYON

Developed into a slack-focused heuristic:

Greedy-Slack

Assign a deadline to non-critical tasks as rj + Figrget
Sort T by decreasing value of deadline slack

for each P; € P do |

B E R R g s N =

t < current_time

foreach T; € T do
EST < max(t,rj)

if EST+pj < d; then
Schedule T,‘ on Pi Binary

t < EST +pj search on
F

target

Schedule tasks by
order of deadline
slack

Keep intuition from
approximation:
schedule
processor by
processor &

Table of contents

4. State-of-the-art competitors

State of the art competitor 1: static provisioning

Min number of nodes required
Provisioned offline w/ binary search

FIFO optimal to minimize
F . with 1 processor

— use FIFO to schedule
non-critical task

ENS DE LYON

State of the art competitor 2: combination of
optimal algorithms for subproblems

e EDF optimal in the sense that “if a
valid schedule exists, it will be found in
an online single processor setting” &
“if processors are (2-1)/m faster, it will
find a solution in a preemptive case
with m processors”

— EDF is a reasonable approach

e FIFO optimal to minimize F__ with 1
processor

— first use EDF for critical tasks then use
FIFO for non-critical tasks

{2} |{eF ({af ({2t (1o {2k [

—RititoNels Argonne &5

ENS DE LYON NATIONAL LABORATORY

Table of contents

Goal:

Complete ALL
critical task in time

&

5. Evaluation minimize Fmax of
non-critical tasks

Geometric mean of ratio between F Xand Lower

better

lower bound - offline

@
(an)
T

e 30 random instances

H FDF4FIFO
L

ro 1 — lower bound]
EDF-shift+FIFO]

Bl Split-Offline

BN Greedy

BN Greedy-Slack
Greedy-Slack-shift

i
a
T

shift — temporal shifting,

i.e. “a critical task may be
postponed as long as its

deadline is met”

e
ot

Greedy performs worse \
than Split-Offline

Geometric Mean of F,,. ratios
[\
o
T

Greedy-Slack with
temporal shifting matches
Load (%) _ lowerbound)

@ CHICAGO —— Argonne &5

ENS DE LYON NATIONAL LABORATORY

Processor
N w ES

[

o

v

| N A .
M I3 313
1
{1 B R S
2
b4
8
4 o
IR I A | e -
5'0 160 1%0 2(‘)0 250 360
|
EDF+FIFO
1.
0.

THE UNIVERSITY OF

Y CHICAGO — I — Argonne

ENS DE LYON NATIONAL LABORATORY

Geometric mean of ratio between Fmax and Lower

better

ower bound - online

' e Some heuristics
I EDF-shift+FIFO unable to find solution

(B Split-Offline }— still offline for some instances —

_ e P only compare results in
B Greedy-Slack-shift, i instances where all

heuristics reach a valid

-
N

—_
w

Geometric Mean of F),, ratios

1.9+ . schedule (= all
deadline satisfied)
1.1F g
| I .
e Greedy-Slack still
LOf- - - - - - - ~ close to lower bound
£ N Y N N N 2 A e Scheduling overhead
& D ™) I3 o) Q \o)
o NG - Y o N - Y o N - & o NS of Greedy-Slack: 36ms
el - S &V & A N per task

@8 THE UNIVERSITY OF pr————— //\/_/\’\\
@ CHICAGO == Argonne &5

ENS DE LYON NATIONAL LABORATORY

Lower

Absolute values of mean flow w/ 8 processors beter

a9 Offline

50 f e f—'—f\i”’f 1 e Represent average delay

e Not our main goal, service quality

Mean flow
=

metric
Y —— | | | | . |
75.0 775 0.0 825 85.0 87.5 90.0 e Offline: many tasks available at once
b. Online — Greedy-slack will slow down all
' tasks to minimize F
max
_ 3
=
30 e Online: limited amount of tasks at
=
once
— —
o5 A — Greedy-slack schedules
0 s 80.0 Loii?(y) 8.0 875 90.0 non-critical tasks earlier
0
—8— EDF-shift+FIFO =@— Greedy-Slack-shift (offline)
== Split-Offline =@— Greedy-Slack-shift* (online)

@8 THE UNIVERSITY OF

—_— — /X
% CHICAGO —_— Argonne ¢y =

ENS DE LYON NATIONAL LABORATORY

Proportion of successful instances (out of 30)
under various workload constraints - online

EDF-sHIFT+FIFO SPLIT-OFFLINE GREEDY-SLACK-SHIFT*

=g 0 | (010 0] 0| 0 FeEEEIRNEN6T 33 | 27 I R N R
<= -100 N BRGNS IEEREEE | - 100 100 100 100 IVEROVE Y 70 | 70 | 50 | 37 | 37 | 17 | 13
Z-100 90 93 87 93 |87 [83:[-100 100 100 100 100 100 100-| 90 97 93 83" 87 [E0 [N

-100 | 97 100 193 97 100 100-|-100 100 100 100 100 100 100-]1-100 100 97 97 93 |93 e
-100 100 100 97 100 100 100-}-100 100 100 100 100 100 100-1-100 100 100 93 100 100 100 -
-100 100 100 97 100 100 100-{-100 100 100 100 100 100 100-]-100 10() 100 100 100 100 97 -

o

75.0 77.5 80.0 82.5 85.0 87.5 90.0 | 75.0 77.5 80.0 82.5 85.0 87.5 90.0 | 750 775 800 825 850 875 90.0

Deadline slg

10.0 8.0 6.0

~ Load (%) Load (%) Load (%)
More valid schedule under Offline provisioning — will
constrained workloads at get the most valid

the cost of higher F__ \schedule /

® CHICAGO — Argonne &5 -

ENS DE LYON NATIONAL LABORATORY

Conclusion on mixed-criticality scheduling of
non-preemptive tasks on homogeneous processors

— Derived a Y2-approximation algorithm and a lower bound
— Designed a slack-focused heuristic from the approximation
— Reduces online max flow by:

— 14% vs. static provisioning

— 13% vs. EDF+FIFO
— Near theoretical lower bound (offline & online)
— Similar on real-world traces

Next:

e Task failures
e Parallel tasks

E THE UNIVERSITY OF [T ey]

% CHICAGO —_—

ENS DE LYON

