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Model Sizes Growing Exponentially
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Datasets Growing Exponentially
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Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

oana.balmau@mcgill.ca



Data pipeline in ML: Training
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Data preprocessing

Disk System CPUs
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PyTorch Data Loader: Low GPU Use

. —— CPU (avqg: 9.8%)
| —— GPU (avg: 57.4%)
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Data preprocessing

« Large time variability in sample preprocessing.
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Data preprocessing
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Data preprocessing
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» Dataset quality can slow down training.
« Deduplication helps with training but is slow and memory intensive.
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SpeedyLoader: Efficient Pipelining of Data
Preprocessing and Machine Learning Training

Rahma Nouaji', Stella Bitchebe’, Ricardo Macedo?, Oana Balmau’

1. McGill 2. INESC-TEC
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Why do we care about data preprocessing?

 Data sample quality is crucial for prediction accuracy.
* Data preprocessing is often overlooked.

* Many workloads are randomly augmented for each batch

* Need online data preprocessing.
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Why do we care about data preprocessing?

 Data sample quality is crucial for prediction accuracy.
* Data preprocessing is often overlooked.

* Many workloads are randomly augmented for each batch

* Need online data preprocessing.

- Used out-of-the-box, default data loaders do not efficiently
pipeline CPU preprocessing with GPU training.
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SpeedylLoader Key Insight

Large variability in the preprocessing time of different samples

leads to head-of-line blocking.

oana.balmau@mcgill.ca
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Head-of-line blocking caused by:

« Randomness in sample size,
 Information “richness”,
« Randomness inside preprocessing ops,

« Randomness in the op choice.

17



Example: 3D-Unet

* The KiTS19 dataset 1;;3
» with 210 samples. gZ

« 3D-UNet model. % .

8 data preprocessing steps. I*é’

» Dataset size: 29GB. 0

oana.balmau@mcgill.ca
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PyTorch Data Loader: Head-of-line Blocking
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PyTorch Data Loader: Head-of-line Blocking
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SpeedylLoader Design
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SpeedylLoader Mitigates Head-of-Line Blocking
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GPU Use Improvement for 3D-Unet

4 x A100 GPU system
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Throughput Improvement for 3D-Unet
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Key Takeaways

« Data preprocessing IS iImportant for Thanks to my postdoc and PhD students!
efficient ML training. * Dr. Stella Bitchebe
 Rahma Nouaiji OfL=:10)
: . Nelson Bore -
* Preprocessing sample time can have Jiaxuan Chen ;

order-of-magnitude variability. © Shubham Vashisth [l¥a=r

EEE;? G?sar\?’a https://discslab.cs.mcgill.ca

SpeedylLoader assesses fast and slow

. . . - . I
samples to avoid head-of-line blocking. |  Thanks to MLPerf Storage co-chairs:

Curtis Anderson, Hammerspace
Dr. Huihuo Zheng, Argonne National Labs

* (Talk to me about MLPerf Storage!) * Johnu George, Nutanix
MI_ https://github.com/mlcommons/stor
Commons
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