Data Pre-processing Challenges
In ML Pipelines

Oana Balmau, McGill University

18th Scheduling for Large-Scale Systems Workshop
ETS Montréal, Jul 8 2025

: ML
F McGill Commons

Model Sizes Growing Exponentially

Number of parameters

1 trillion C'I.%Witch DeepSeek-R1®
- Mistral Large 2
100 billion & 1RM-2020 € ©
10 billion
DALLE 2
1 billion
Transformer.(2017) @W ave2vec 2.0 LARGE
® GPT-1
100 million ®
C.I}esNeXt-SO
10 million If we include training checkpoints, optimizer states,
and multiple precision versions, the full footprint of
1 million these models, including all stages of development, can
easily reach 10-100+ TB in storage.
100,000
Feb 6, 2015 Apr 26,2017 Sep 88,2018 Jan 21,2020 Jun4,2021 Octl17,2022 Feb 29,2024

Source: https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems 5

https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems

Datasets Growing Exponentially

Training datapoints (datapoints) Llama3 - 70B

- ® @
10 trillion @9PT'4 DeepSeek-V3

1 trillion

LongT5
100 billion ©

10 billion
ar (20
N C_')I'ransformGPT_.117)
1 billion ®
QII,)MphaFoId

100 million

10 million

Data needs and will need to be

SSD served from persistent storage
100,000 ®

1 million

10,000
Feb 25, 2015 Apr26,2017 Sep8,2018 Jan 21,2020 Jun4,2021 Oct17,2022 Feb29,2024 Jan22,2025

Source: https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems

https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems

Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

oana.balmau@mcgill.ca

Data pipeline in ML: Training

Storage resources Compute resources
Disk System CPUs Accelerators
(local storage, cloud storage, Memory (DRAM) (GPU, ASIC)
distributed storage, streaming) -
Dataset g s » Data
9 S T fi Preprocessing,
ensor ow batch construction
PYTORCH ~
(Train
load data . Cache Read data . @ e del
in batches

Data pipeline in ML: Training

Storage resources Compute resources
Disk System CPUs Accelerators
(local storage, cloud storage, Memory (DRAM) (GPU, ASIC)
distributed storage, streaming) -
Dataset g s » Data
= = Te Fi Preprocessing,
N ensor ow batch construction
PYTORCH ~
(Train
load data R Cache Read data . @ e del
in batches
. J
: Y
v |

Write: Model checkpointing

Data preprocessing

Disk System CPUs

(local storage, cloud storage, Memory (DRAM)
distributed storage, streaming)

(

.I .:I »| Data
= T 1 T = Preprocessing,
| ensor oW batch construction
PYTSRCH \
Data Loader
load data Cache Train
- Read data S % model

S~— . in batchy
—

oana.balmau@mcgill.ca

PyTorch Data Loader: Low GPU Use

. —— CPU (avqg: 9.8%)
| —— GPU (avg: 57.4%)

O 15 30 45 60 75 90
Time (s)

oana.balmau@mcgill.ca

Data preprocessing

« Large time variability in sample preprocessing.

Disk
(local storage, ¢ « Difference up to an order of magnitude - head-of-line blocking
distributed stordgeyeweermmsy —— a
- { pata
= g - Fi Preprocessing,
ensorriow batch construction

PYTSRCH N

Data Loader

load data Cache Read data

@ Train
S~ 'L . in batchy] model

oana.balmau@mcgill.ca

Data preprocessing

Disk

« Large time variability in sample preprocessing.

(local storage, ¢
distributed storz

(L
{(

« Difference up to an order of magnitude - head-of-line blocking

m,) z
» Data
_ Preprocessing,
I TensorFlow b J

PYTSRCH

batch construction
_

« Data loaders are oblivious to tiered storage.

.w

»
»

\

[ader

Train
data S %
in batchy [model]

oana.balmau@mcgill.ca

10

Data preprocessing

« Large time variability in sample preprocessing.

Disk
(local storage, ¢ « Difference up to an order of magnitude - head-of-line blocking.
distributed stordgemesreemmmrsy S >
= » Data
g g 1 TensorFlow Preprocessing,

! | batch construction
PYTHLRCH -
. _ ader
« Data loaders are oblivious to tiered storage. \ o
rain
| mw N oS data > @
S~— in batchy model
_ Y,

» Dataset quality can slow down training.
« Deduplication helps with training but is slow and memory intensive.

oana.balmau@mcgill.ca 11

Data preprocessing

« Large time variability in sample preprocessing.

Disk
(local storage, « « Difference up to an order of magnitude - head-of-line blocking.
distributed storéa

~—K— Data

9 S Preprocessing,

1F Ten§orFIOw batch construction
PYTHLRCH N

ader
« Data loaders are oblivious to tiered storage.

I et @ Train
“““““ \ > N\Cdlu >
S~—_ in batchy model
\§ J

» Dataset quality can slow down training.
» Deduplication helps with training but is slow and memory intensive.

oana.balmau@mcgill.ca 12

SpeedyLoader: Efficient Pipelining of Data
Preprocessing and Machine Learning Training

Rahma Nouaji', Stella Bitchebe’, Ricardo Macedo?, Oana Balmau’

1. McGill 2. INESC-TEC

13

Why do we care about data preprocessing?

 Data sample quality is crucial for prediction accuracy.
* Data preprocessing is often overlooked.

* Many workloads are randomly augmented for each batch

* Need online data preprocessing.

14

Why do we care about data preprocessing?

 Data sample quality is crucial for prediction accuracy.
* Data preprocessing is often overlooked.

* Many workloads are randomly augmented for each batch

* Need online data preprocessing.

- Used out-of-the-box, default data loaders do not efficiently
pipeline CPU preprocessing with GPU training.

oana.balmau@mcgill.ca 15

SpeedylLoader Key Insight

Large variability in the preprocessing time of different samples

leads to head-of-line blocking.

oana.balmau@mcgill.ca

16

Head-of-line blocking caused by:

« Randomness in sample size,
 Information “richness”,
« Randomness inside preprocessing ops,

« Randomness in the op choice.

17

Example: 3D-Unet

* The KiTS19 dataset 1;;3
» with 210 samples. gZ

« 3D-UNet model. % .

8 data preprocessing steps. I*é’

» Dataset size: 29GB. 0

oana.balmau@mcgill.ca

0 10 20
Sample index

18

PyTorch Data Loader: Head-of-line Blocking

GPU

= Worker,
o

QO WurkerE

Training
IDLE 11,421 IEI 7.3.51 X [0.11.6]
| TEatch r:reaﬂanT_ B T
! 1 4 20 [3 5 i[211 §
A T I A
[TJI? B: ' ‘ 6 |8
2 319 1 10 12]
Pre-processing
__|Fast sample| Slow sample Pre-processad batch

Batch size =3 #worker threads =2

19

PyTorch Data Loader: Head-of-line Blocking

| —— CPU (avg: 9.8%)
| —— GPU (avg: 57.4%)

O 15 30 45 60 75 90
Time (s)

oana.balmau@mcgill.ca 20

SpeedylLoader Design

Original samples Em:hgrnund pmpm:nssing Preprocessed samples
Data Loading | | Preprocessing (CPU) | | Batch Construction
- T 6 Sample- Fast gueue
— ﬁ —» |@aware load @.
Storage] balancer g
backend|—» 2 I b 4
— Q! v @ Batch
.| queue
Fmﬁllng } Temp queue Slow queue

oana.balmau@mcgill.ca 21

SpeedylLoader Mitigates Head-of-Line Blocking

> Training

o
D I (1.4.3] [(7.9.11] | [2,6.8]

L Eatr.h::reatmn 1
Bo ;. 14317911 [26,8):
TRt tt 4 T
(i
- AN NN I Y B [# l A I
e — B S i 10
I O It
Worker; | 1 | 4|7 5 : 6 |8
Workers 2 3/9 (11 10 JE
Preprocessing
| |Ff.|5t sample Slow sample Freprocessed batch

Batch size: 3 Workers: 2 BQ: Bafch Queue TQ: Temp Queue

oana.balmau@mcgill.ca

GPU Use Improvement for 3D-Unet

4 x A100 GPU system
w— CPU(%) = GPU (%)
PyTorch DALI SpeedylLoader
Image Segmentation

_ T
i WFGPU; 95% | Avg GPU: 96%

Avg CPU: 35% ~AvQCPL:14%

oana.balmau@mcgill.ca

0 200 400 O 100 200

23

Throughput Improvement for 3D-Unet

4 x A100 GPU system
120 %
:@100' MN I\éTrainingends
om
E 80 < Training ends
E_ 60
o
§ 40 W‘W\
= 20 Jd ‘MMM
90 200 400 600 800

Time (s)

oana.balmau@mcgill.ca

B SpeedylLoader

[DAL

B PyTorch Data Loader

24

Key Takeaways

« Data preprocessing IS iImportant for Thanks to my postdoc and PhD students!
efficient ML training. * Dr. Stella Bitchebe
 Rahma Nouaiji OfL=:10)
: . Nelson Bore -
* Preprocessing sample time can have Jiaxuan Chen ;

order-of-magnitude variability. © Shubham Vashisth [l¥a=r

EEE;? G?sar\?’a https://discslab.cs.mcgill.ca

SpeedylLoader assesses fast and slow

. . . - . I
samples to avoid head-of-line blocking. | Thanks to MLPerf Storage co-chairs:

Curtis Anderson, Hammerspace
Dr. Huihuo Zheng, Argonne National Labs

* (Talk to me about MLPerf Storage!) * Johnu George, Nutanix
MI_ https://github.com/mlcommons/stor
Commons

oana.balmau@mcgill.ca 25

https://github.com/mlcommons/storage
https://discslab.cs.mcgill.ca/

	Slide 1: Data Pre-processing Challenges in ML Pipelines
	Slide 2: Model Sizes Growing Exponentially
	Slide 3: Datasets Growing Exponentially
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: PyTorch Data Loader: Low GPU Use
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: SpeedyLoader: Efficient Pipelining of Data Preprocessing and Machine Learning Training
	Slide 14: Why do we care about data preprocessing?
	Slide 15: Why do we care about data preprocessing?
	Slide 16: SpeedyLoader Key Insight
	Slide 17: Head-of-line blocking caused by:
	Slide 18: Example: 3D-Unet
	Slide 19: PyTorch Data Loader: Head-of-line Blocking
	Slide 20: PyTorch Data Loader: Head-of-line Blocking
	Slide 21: SpeedyLoader Design
	Slide 22: SpeedyLoader Mitigates Head-of-Line Blocking
	Slide 23: GPU Use Improvement for 3D-Unet 4 x A100 GPU system
	Slide 24: Throughput Improvement for 3D-Unet 4 x A100 GPU system
	Slide 25: Key Takeaways

