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Model Sizes Growing Exponentially

Source: https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems 

                                                      
                                                                                                              
                                                                                                           

               

                                                                                 

                    

       

         

          

           

         

          

           

          

          

                  
     

         

                  

      

        

               

           

                         

                                                                                                                                           
                                                                                                        

                                                

If we include training checkpoints, optimizer states, 

and multiple precision versions, the full footprint of 

these models, including all stages of development, can 

easily reach 10-100+ TB in storage.
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Datasets Growing Exponentially

Source: https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems 
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DeepSeek-V3

Jan 22, 2025

Data needs and will need to be 

served from persistent storage
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Data is the moving force of ML algorithms

… but in many projects the storage decision is an afterthought
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Write: Model checkpointing

Dataset

Data pipeline in ML: Training
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Data Loader

Data preprocessing



PyTorch Data Loader: Low GPU Use
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Data Loader

Data preprocessing

• Large time variability in sample preprocessing.
• Difference up to an order of magnitude → head-of-line blocking
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Data Loader

Data preprocessing

• Data loaders are oblivious to tiered storage.

• Large time variability in sample preprocessing.
• Difference up to an order of magnitude → head-of-line blocking
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Data Loader

Data preprocessing

• Data loaders are oblivious to tiered storage.

• Large time variability in sample preprocessing.
• Difference up to an order of magnitude → head-of-line blocking.

• Dataset quality can slow down training.
• Deduplication helps with training but is slow and memory intensive.
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Data Loader

Data preprocessing

• Data loaders are oblivious to tiered storage.

• Large time variability in sample preprocessing.
• Difference up to an order of magnitude → head-of-line blocking.

• Dataset quality can slow down training.
• Deduplication helps with training but is slow and memory intensive.



SpeedyLoader: Efficient Pipelining of Data 
Preprocessing and Machine Learning Training 

Rahma Nouaji1, Stella Bitchebe1, Ricardo Macedo2, Oana Balmau1 

1. McGill 2. INESC-TEC
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Why do we care about data preprocessing? 

• Data sample quality is crucial for prediction accuracy. 

• Data preprocessing is often overlooked.

• Many workloads are randomly augmented for each batch

•  Need online data preprocessing. 
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Why do we care about data preprocessing? 

• Data sample quality is crucial for prediction accuracy. 

• Data preprocessing is often overlooked.

• Many workloads are randomly augmented for each batch

•  Need online data preprocessing. 

→ Used out-of-the-box, default data loaders do not efficiently 
pipeline CPU preprocessing with GPU training.
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SpeedyLoader Key Insight

Large variability in the preprocessing time of different samples 

leads to head-of-line blocking.

oana.balmau@mcgill.ca 16



Head-of-line blocking caused by:

• Randomness in sample size, 

• Information “richness”, 

• Randomness inside preprocessing ops, 

• Randomness in the op choice.
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Example: 3D-Unet

• The KiTS19 dataset 

• with 210 samples. 

• 3D-UNet model. 

• 8 data preprocessing steps. 

• Dataset size: 29GB. 
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PyTorch Data Loader: Head-of-line Blocking
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PyTorch Data Loader: Head-of-line Blocking
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SpeedyLoader Design
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SpeedyLoader Mitigates Head-of-Line Blocking
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GPU Use Improvement for 3D-Unet
4 x A100 GPU system

SpeedyLoader
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Throughput Improvement for 3D-Unet
4 x A100 GPU system

SpeedyLoader

DALI

PyTorch Data Loader

 Training ends

 Training ends
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Key Takeaways

Thanks to MLPerf Storage co-chairs!

Thanks to my postdoc and PhD students!• Data preprocessing is important for 

efficient ML training.

• Preprocessing sample time can have 

order-of-magnitude variability. 

• SpeedyLoader assesses fast and slow 

samples to avoid head-of-line blocking.

• (Talk to me about MLPerf Storage!)

• Dr. Stella Bitchebe

• Rahma Nouaji

• Nelson Bore

• Jiaxuan Chen

• Shubham Vashisth

• Ruben Adao

• Pritish Mishra

https://github.com/mlcommons/storage 

https://discslab.cs.mcgill.ca 

• Curtis Anderson, Hammerspace

• Dr. Huihuo Zheng, Argonne National Labs

• Johnu George, Nutanix
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