Data Pre-processing Challenges in ML Pipelines

Oana Balmau, McGill University

18th Scheduling for Large-Scale Systems Workshop ETS Montréal, Jul 8 2025

Model Sizes Growing Exponentially

Source: https://ourworldindata.org/grapher/exponential-growth-of-parameters-in-notable-ai-systems

Datasets Growing Exponentially

Source: https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems

Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

Data pipeline in ML: Training

Data pipeline in ML: Training

Write: Model checkpointing

PyTorch Data Loader: Low GPU Use

- Dataset quality can slow down training.
 - Deduplication helps with training but is slow and memory intensive.

Deduplication helps with training but is slow and memory intensive.

SpeedyLoader: Efficient Pipelining of Data Preprocessing and Machine Learning Training

Rahma Nouaji¹, Stella Bitchebe¹, Ricardo Macedo², Oana Balmau¹

1. McGill 2. INESC-TEC

Why do we care about data preprocessing?

- Data sample quality is crucial for prediction accuracy.
- Data preprocessing is often overlooked.
- Many workloads are randomly augmented for each batch
 - Need online data preprocessing.

Why do we care about data preprocessing?

- Data sample quality is crucial for prediction accuracy.
- Data preprocessing is often overlooked.
- Many workloads are randomly augmented for each batch
 - Need online data preprocessing.
 - → Used out-of-the-box, default data loaders do not efficiently pipeline CPU preprocessing with GPU training.

SpeedyLoader Key Insight

Large variability in the preprocessing time of different samples leads to head-of-line blocking.

Head-of-line blocking caused by:

- Randomness in sample size,
- Information "richness",
- Randomness inside preprocessing ops,
- Randomness in the op choice.

Example: 3D-Unet

- The KiTS19 dataset
 - with 210 samples.
- 3D-UNet model.
- 8 data preprocessing steps.
- Dataset size: 29GB.

PyTorch Data Loader: Head-of-line Blocking

PyTorch Data Loader: Head-of-line Blocking

SpeedyLoader Design

SpeedyLoader Mitigates Head-of-Line Blocking

GPU Use Improvement for 3D-Unet 4 x A100 GPU system

Throughput Improvement for 3D-Unet 4 x A100 GPU system

- SpeedyLoader
- DALI
- PyTorch Data Loader

Key Takeaways

- Data preprocessing is important for efficient ML training.
- Preprocessing sample time can have order-of-magnitude variability.
- SpeedyLoader assesses fast and slow samples to avoid head-of-line blocking.
- (Talk to me about MLPerf Storage!)
 - Commons

Thanks to my postdoc and PhD students!

- Dr. Stella Bitchebe
- Rahma Nouaji
- Nelson Bore
- Jiaxuan Chen
- Shubham Vashisth
- Ruben Adao
- Pritish Mishra

https://discslab.cs.mcgill.ca

Thanks to MLPerf Storage co-chairs!

- Curtis Anderson, Hammerspace
- Dr. Huihuo Zheng, Argonne National Labs
- Johnu George, Nutanix

https://github.com/mlcommons/storage