
(to be presented at IEEE CLUSTER 2025)

Taylan Özden, Ahmad Tarraf, and Felix Wolf

Technical University of Darmstadt

EquilibrIO: Taming the I/O
Tides in High-Performance

Computing

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 1

▪ Consequently, data-intensive application suffer more from lower I/O

bandwidth than compute-intensive ones

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 2

Motivation:
Data-intensive applications

Amdahl’s law: “The overall performance improvement gained by

optimizing a single part of a system is limited by the fraction of time

that the improved part is actually used.”

▪ Compute-intensive jobs can better tolerate

data-intensive ones scheduled alongside

▪ We propose EquilibrIO, a novel scheduling

algorithm to mitigate I/O contention by

▪ keeping the I/O intensity of running jobs

close to the average I/O intensity of the

entire workload, while

▪ still maintaining schedule fairness

Imbalance between
computation and I/O

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 3

▪ When I/O-intensive jobs do not overlap, the

probability of contention reduces

▪ Hypothesis: The overall I/O intensity of running

jobs will oscillate around the average I/O

intensity of the entire workload (incl. queue)

▪ Example: stock market

▪ Unfortunately, hard to impossible to predict

the outcome in the future

▪ However, jobs in the queue are an indicator for

the near future

Intuition behind our approach

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 4

▪ No scheduling of I/O bandwidth

▪ I/O intensity of a job (roughly) known (e.g., via

Darshan logs)

▪ Applications have

▪ exclusive access to compute nodes

▪ shared access to the parallel file

system (PFS)

▪ During I/O-intensive phases, congestion

occurs, and applications compete for I/O

resources

Problem definition &
assumptions

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 5

▪ For all running jobs (𝑅𝐽) and queued jobs (𝑄𝐽), we introduce three

different I/O intensity measurements for

▪ each job: 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗 ≔
𝑖𝑜_𝑤𝑎𝑙𝑙𝑡𝑖𝑚𝑒𝑗

𝑡𝑜𝑡𝑎𝑙_𝑤𝑎𝑙𝑙𝑡𝑖𝑚𝑒𝑗
∙ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑏𝑤𝑗

▪ the system: 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊 ≔
σ𝑗∈𝑅𝐽 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗

|𝑅𝐽|

▪ the workload: 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎 ≔
σ𝑗∈𝑅𝐽∪𝑄𝐽 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗

|𝑅𝐽∪𝑄𝐽|

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 6

I/O intensity

▪ Balances the I/O intensity of the executing

workload by minimizing

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎 − 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Invoked at each job submission or completion

▪ Scheduling events modify the system or

workload I/O intensity

▪ Provides a fallback if no I/O information is

available

▪ Employs backfilling if available resources are

not sufficient for the optimal candidate

Scheduling algorithm

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 7

Event Affected metric

Job submission 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

Job admission 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

Job completion
𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊 ,

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Making decisions purely based on I/O intensity may cause starvation

▪ We introduce a weighted priority metric based on the I/O intensity of

a job and its arrival time

▪ Let 𝛼 𝜖 0,1 be the reordering intensity the site administrator can

choose with

▪ 𝛼 = 0 representing first-come first-serve (FCFS)

▪ 𝛼 = 1 maximum optimization for I/O intensity

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 8

Preventing job starvation

▪ We derive our proposed fairness priority

metric for all queued jobs in the set 𝑄𝐽

▪ For each candidate c ∈ 𝑄𝐽, we define 𝜆𝑐,

representing its normalized arrival time in the

system

▪ The scheduler calculates the fairness priority

value 𝜆𝑐 ∈ 0,1 for all jobs in the queue

𝜆𝑚𝑖𝑛
′ ≔ min

𝑐∈𝑄𝐽
(𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒𝑐)

𝜆𝑚𝑎𝑥
′ ≔ m𝑎𝑥

𝑐∈𝑄𝐽
(𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒𝑐)

𝜆c ≔
𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒𝑐 − 𝜆𝑚𝑖𝑛

′

𝜆𝑚𝑎𝑥
′ − 𝜆𝑚𝑖𝑛

′

Fairness priority value

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 9

▪ For each candidate 𝑐, we calculate

and normalize its intensity delta 𝛿𝑐 ∈

0,1

▪ The scheduler calculates the weighted

priority based on the reordering

intensity 𝛼

▪ In the final step, the scheduler chooses

the best candidate, represented by the

minimum weighted priority value, and

schedules the job

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊 𝑐 ≔
σ𝑗∈𝑅𝐽 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗 + 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑐

𝑅𝐽 + 1

𝛿𝑐
′ ≔ |𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎 − 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑐|

𝛿𝑚𝑖𝑛
′ ≔ min

𝑐∈𝑄𝐽
𝛿𝑐
′ ,

𝛿𝑚𝑎𝑥
′ ≔ m𝑎𝑥

𝑐∈𝑄𝐽
(𝛿𝑐

′)

𝛿c ≔
𝛿𝑐
′ − 𝛿𝑚𝑖𝑛

′

𝛿𝑚𝑎𝑥
′ − 𝛿𝑚𝑖𝑛

′

𝑤𝑝: ℝ3 → ℝ,𝑤𝑝 𝛼, 𝜆, 𝛿 ↦ 1 − 𝛼 ⋅ 𝜆 + 𝛼 ⋅ 𝛿

Weighted priority
(combining fairness with I/O intensity)

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 10

▪ At each invocation, we recalculate the I/O

intensity averages and make scheduling

decisions based on the weighted priority

Algorithm

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 11

▪ Analyzing the effects of the reordering

intensity on the executed workload

▪ Continuously increase its value and evaluate

𝛼 ∈ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

▪ Expecting EquilibrIO to move 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

closer to 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Evaluating the achieved performance

improvement in I/O-intensive jobs

▪ EquilibrIO provides a fallback mechanism to

FCFS if no I/O information is available

▪ Choose a balanced reordering intensity

based on the previous experiment

▪ Continuously remove I/O information

▪ Evaluate with

100%, 85%, 70%, 55%, 40%, 25%, 10%, 0%

a-priori knowledge

Experimental setup

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 12

Evaluating increasing α Evaluating decreasing knowledge

▪ We use ElastiSim, a batch-system simulator to

evaluate our experiments

▪ We investigated platforms with open access to job

and I/O profiles and simulated a system inspired by

ANL’s Theta (scaled down by the factor 4):

▪ 4392 → 1098 compute nodes

▪ 172 → 43 GB/s PFS bandwidth (write)

▪ 100 Gb/s network connection

Experimental evaluation

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 13

Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard, Felix Wolf: ElastiSim: A Batch-System Simulator for Malleable Workloads.

In Proc. of the 51st International Conference on Parallel Processing (ICPP), Bordeaux, France, pages 1–11, ACM, August 2022 [DOI].

https://elastisim.github.io

http://dx.doi.org/10.1145/3545008.3545046
https://elastisim.github.io/

▪ Workload based on Darshan logs collected

on Theta from 2017–2023

▪ Darshan (w/o extended tracing) only provides

coarse-grained I/O information, such as

▪ Total number of bytes

▪ Accumulated time in I/O operations

▪ Estimating I/O time and bandwidth based on

available data

▪ Divided in low-to-medium and high I/O-

intensity jobs

▪ High-intensity jobs spend at least 10% of their

time doing I/O, reaching 10 GB/s on average

▪ We combine 5000 low-to-medium intensity

jobs with four periods of high-intensity jobs,

▪ Each peak comprises 40 jobs

▪ 5160 simulated jobs in total

Experimental workload

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 14

Information retrieval Workload generation

▪ Job slowdown: how much longer a job takes to finalize compared to its

isolated execution

▪ I/O slowdown: how much longer I/O tasks take to complete compared to when

executed in isolation

▪ Utilization: the fraction of time spent on non-I/O tasks (calculated per job)

▪ Displacement: absolute distance of how far a job is displaced compared to its

arrival time order

▪ Mean distance: Average distance between 𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊 and

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 15

Evaluation metrics

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.78

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 16

FCFS w/ backfilling (𝛼 = 0.0)

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.59

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 17

Reordering intensity 𝛼 = 0.1

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.48

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 18

Reordering intensity 𝛼 = 0.2

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.38

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 19

Reordering intensity 𝛼 = 0.3

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.21

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 20

Reordering intensity 𝛼 = 0.4

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.07

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 21

Reordering intensity 𝛼 = 0.5

▪ Red solid line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕊

▪ Blue dashed line represents

𝑖𝑜_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝕎

▪ Mean distance: 0.06

Results
Experiment 1

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 22

Reordering intensity 𝛼 = 0.6

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 23

Results
Experiment 1 (job metrics)

Removed outliers in job slowdown above 230% (4 values, maximum of 316% for 𝛼 = 0.0)

and in I/O slowdown above 650% (9 values, maximum of 1659% for 𝛼 = 0.3)

Lower is better Lower is better Higher is better

▪ Displacements caused by

backfilling dominate those

caused by deliberate reordering

▪ Significant fairness observable

for 𝛼 ≤ 0.3 even without

considering backfilling

Results
Experiment 1 (displacement)

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 24

Lower is better

▪ 85% and 70% a-priori-

knowledge still yields

remarkable optimization

▪ 25% and even 10% a-priori-

knowledge can lead to an

apparent performance

improvement

Results
Experiment 2 (job metrics)

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 25

Lower is better Higher is better

▪ Mitigating I/O contention is in active research

▪ However, many approaches either

▪ (1) employ I/O scheduling

▪ Scheduling under congestion (Gainaru et al.),

CALCioM (Dorier et al.), IO-Sets (Boito et al.)

▪ (2) require dedicated hardware

▪ Burst-buffer enabled scheduling (Herbein et al.)

▪ (3) interfere with job execution (Zhou et al.)

▪ (4) require detailed a-priori I/O information

▪ SchedP (Wu et al.)

▪ EquilibrIO is an I/O-aware job scheduling

algorithm

▪ No dedicated hardware requirements

▪ No interference after job admission

▪ Require none to minimal I/O information

▪ However, those approaches are not mutually

exclusive, for example

▪ EquilibrIO + I/O scheduling can operate

alongside and potentially further improve I/O

performance

Related work

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 26

taylan.oezden@tu-darmstadt.de

▪ EquilibrIO can reduce the median I/O slowdown from 64.0% to 3.6%, while still

maintaining fairness at 𝛼 = 0.5

▪ Even limited a-priori-knowledge yields remarkable performance improvement

▪ 25% already exploits half of the optimization potential

▪ Future work

▪ Dynamic adaptation of the reordering intensity

▪ Evaluating IOPS performance improvement

▪ Accepted paper: join us at the IEEE CLUSTER 2025 conference

▪ Contact: Taylan Özden (taylan.oezden@tu-darmstadt.de)

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 27

Conclusion & outlook

mailto:taylan.oezden@tu-darmstadt.de

10 July 2025 18th Scheduling for Large-Scale Systems Workshop, Montréal, Canada | Özden, Tarraf, Wolf | Department of Computer Science | Laboratory for Parallel Programming 28

Thank you!

	Slide 1: EquilibrIO: Taming the I/O Tides in High-Performance Computing
	Slide 2: Motivation: Data-intensive applications
	Slide 3: Imbalance between computation and I/O
	Slide 4: Intuition behind our approach
	Slide 5: Problem definition & assumptions
	Slide 6: I/O intensity
	Slide 7: Scheduling algorithm
	Slide 8: Preventing job starvation
	Slide 9: Fairness priority value
	Slide 10: Weighted priority (combining fairness with I/O intensity)
	Slide 11: Algorithm
	Slide 12: Experimental setup
	Slide 13: Experimental evaluation
	Slide 14: Experimental workload
	Slide 15: Evaluation metrics
	Slide 16: Results Experiment 1
	Slide 17: Results Experiment 1
	Slide 18: Results Experiment 1
	Slide 19: Results Experiment 1
	Slide 20: Results Experiment 1
	Slide 21: Results Experiment 1
	Slide 22: Results Experiment 1
	Slide 23: Results Experiment 1 (job metrics)
	Slide 24: Results Experiment 1 (displacement)
	Slide 25: Results Experiment 2 (job metrics)
	Slide 26: Related work
	Slide 27: Conclusion & outlook
	Slide 28: Thank you!

