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Framework

Iterative algorithm executing on a large-scale platform
Silent errors may strike
Minimize expected cost per iteration
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Strategies

Replication: only general-purpose approach
Detectors: verified checkpoints (application-specific)

" Need perfect detectors: no false negatives (recall r = 1)

Can we use partial detectors with recall r < 1?
If yes, how does it compare to replication?
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Approach

Execution is partitioned into segments of M iterations,
each followed by a checkpoint
Execution of a new segment (after a checkpoint C ):

Two different errors never lead to the same (incorrect) result
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Approach

Execution is partitioned into segments of M iterations,
each followed by a checkpoint
Execution of a new segment (after a checkpoint C ):

Execute segment for the first time and checkpoint result res1
While results after t ≥ 1 attempts are all different,
execute new attempt t + 1:
- recover from checkpoint C
- redo the M iterations
- checkpoint result rest+1
Keep the outcome of the two identical checkpoints
Proceed to next segment

Two different errors never lead to the same (incorrect) result
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Minimizing expected time per iteration

A silent error may strike each iteration independently and with
fixed probability f (Geometric law for IATs)
Given a segment:
- cost of first attempt: M + C
- cost of following attempts: R +M + C
- number of attempts until one is successful:
geometric law of parameter pS = (1 − f )M

- expected cost cost(M) = (M + C ) +
(

2
pS

− 1
)
(R +M + C )

- expected slowdown S = cost(M)
M = 2(R+C)

MpS
+ 2

ps −
R
M

- differentiate and solve, find optimal M numerically
No closed-form solution unless R = 0 (then Lambert ,)
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Perfect detectors

timeM M

Silent error Detection

V C V C V C

Perfect detector of cost V
Segment: M iterations + detector V + checkpoint C
Recall r = 1 ⇒ verified checkpoint
Optimal value of M well-known
First-order approximation à la Young-Daly
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Perfect detectors

timeM M

Silent error Detection

V C V C V C

Perfect detector of cost V
Segment: M iterations + detector V + checkpoint C
Recall r = 1 ⇒ verified checkpoint
Optimal value of M well-known
First-order approximation à la Young-Daly

Do you believe it?

• Detectors are not perfect /
• High recall is expensive if at all achievable /

Can we use partial detectors?
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Can we use partial detectors?
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Can we use partial detectors?

. . . unless we make some reasonable assumption . . .
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Bounded detection latency

timeXd

Silent error
Detection

Error and detection latency

Assumption
If a silent error strikes at iteration I . . .
. . . it will be detected at iteration (I − 1) + X or after
X obeys a probability distribution with bounded support [1,D]

Rationale
The impact of the silent error on the application data grows
and becomes more and more detectable
For computation errors: numerical amplification as execution
progresses
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Case study

X truncated geometric R.V. with bounded support [1,D]

X = min(Y ,D), with Y geometric R.V. of parameter θ

Typical values for maximum detection distance D

Recall θ min{d |P(X ≥ d) ≤ 10−6} min{d |P(X ≥ d) ≤ 10−9}
0.2 62 93
0.4 28 41
0.9 6 9

Efficient partial detector θ = 0.9:
distance detection never exceeds 10 in practice
Poor partial detector θ = 0.2 (capturing only 20% of errors):
distance detection never exceeds 100 in practice
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Simple scheme

time

· · · I I V2 C2 I · · · I I V1 C1 I · · · I I V0 C0 · · ·

verified checkpoint

M = D − 1 iterations

Segment S1

M = D − 1 iterations

Segment S0

execution

start of execution

Completing the execution of segment S0

Checkpoints C1 and C2 stored in memory
C2 is verified (by induction) but C1 is not (yet)
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Simple scheme

time

· · · I I V2 C2 I · · · I I V1 C1 I · · · I I V0 C0 · · ·

verified checkpoint

M = D − 1 iterations

Segment S1

M = D − 1 iterations

Segment S0

execution

start of execution

After V0:
No error is detected
⇒ C1 is verified (Why?)
⇒ take C0 and overwrite C2

An error is detected
⇒ Roll back to C2, re-execute S1 then S0
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General scheme

time

· · · I I V3 C3 I I I I I V2 C2 I I I I I V1 C1 I I I I I V0 C0 · · ·

verified checkpoint

k = 3 checkpoints in memory

M iterations

Segment S2

M iterations

Segment S1

M iterations

Segment S0

execution

start of execution

yves.robert@ens-lyon.fr Resilience 14/ 28



Framework Replication Partial detectors Experiments

General scheme

time

· · · I I V3 C3 I I I I I V2 C2 I I I I I V1 C1 I I I I I V0 C0 · · ·

verified checkpoint

k = 3 checkpoints in memory

M iterations

Segment S2

M iterations

Segment S1

M iterations

Segment S0

execution

start of execution

k segments, k checkpoints in memory (k = 3)
M iterations per segment (M = 5)
Need (k − 1)M ≥ D − 1
Given M, use k =

⌈
D−1
M

⌉
+ 1

M = 5 and k = 3 ⇒ D ≤ 11
Conversely for D = 11, k = 3 ⇒ 5 ≤ M ≤ 9
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General scheme

time

· · · I I V3 C3 I I I I I V2 C2 I I I I I V1 C1 I I I I I V0 C0 · · ·

verified checkpoint

k = 3 checkpoints in memory

M iterations

Segment S2

M iterations

Segment S1

M iterations

Segment S0

execution

start of execution

After V0:
No error is detected
⇒ Ck is verified
⇒ take C0 and overwrite Ck

An error is detected
⇒ Roll back to Ck , re-execute Sk−1Sk−2 . . . S0
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General scheme

time

· · · I I V3 C3 I I I I I V2 C2 I I I I I V1 C1 I I I I I V0 C0 · · ·

verified checkpoint

k = 3 checkpoints in memory

M iterations

Segment S2

M iterations

Segment S1

M iterations

Segment S0

execution

start of execution

Compute E0: expected time to process segment S0 with a
successful verification V0 and take new checkpoint C0
(then delete Ck from memory and move on to next segment)
Minimize S = E0

M (with k =
⌈
D−1
M

⌉
+ 1)
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Computation of E0

After a long and painful derivation . . ./
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Computation of E0

E0 = akC + bk(M + V ) + ckR

ak = 1 +
(

1
Φk−1

− 1
)
uk , bk = 1

Φk−1
+

(
1

Φk−1
− 1

)
vk , ck =

(
1

Φk−1
− 1

)
wk

uk = 1 +
∑k−3

m=0
∏m

ℓ=0
1

Φk−2−l
, vk =

∑k−2
m=0

∏m
ℓ=0

1
Φk−2−l

,wk =
∏k−2

ℓ=0
1
Φℓ

where

Pi,j = P
(
X ≤ jM + (M − i + 1)

)
− P

(
X ≤ (j − 1)M + (M − i + 1)

)
Pi,>j = P

(
X > jM + (M − i + 1)

)
Qℓ =

∏M
i=1

(
1 − fPi,ℓ

(1−f )+f (Pi,>ℓ+Pi,ℓ)

)
Φj =

∏j
ℓ=0 Qℓ

Probabilities
Pi,O : error at iteration i detected at the end of current segment
Pi,j : error at iteration i detected exactly j segments later
Pi,>j : error at iteration i detected more than j segments later
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Validation
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Parameter exploration (1/4)
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Parameter exploration (2/4)
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Parameter exploration (3/4)
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Parameter exploration (4/4)
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Replication (1/3)
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Replication (2/3)
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Replication (3/3)
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Conclusion

Synthesis
First comparison of replication with partial detection
Optimal solution for both approaches
Monte-Carlo simulations perfectly match model predictions
Partial detectors can massively outperform replication
Number of stored checkpoints:

fixed for partial detection, unknown for replication

Future work
Extend analysis to false positives (precision < 1):

extra rollbacks, recoveries, re-executions due to false alarms
Experimental validation with PCG
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What about AI?

No Artificial Intelligence in this work . . .
. . . some Human Magnificence instead ,
AI tools give simple solutions to complicated problems
Scheduling guys give complicated solutions to simple problems
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Solution to an Optimization Problem

A greedy algorithm better than ten other greedy algorithms
A greedy algorithm whose performance
seems close to a lower bound
A greedy algorithm whose performance
is guaranteed to be close to a lower bound
An optimal solution (usually via Dynamic Programming)
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What AI could have done for this problem?

The problem: magically materialized during some work for the
NumPeX project

The model: several similar studies

The pattern with segments and global rollback

The solution: not sure! even with the assistance of several

computer algebra tools / theorem provers
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