Framework

Partial Detectors Versus Replication To Cope With Silent Errors

Alix Tremodeux¹, Anne Benoit^{1,2}, Thomas Herault^{3,4}, Yves Robert¹

1 ENS Lyon & Inria; 2 IUF & IDEaS, Georgia Tech; 3 Inria Bordeaux; 4 Univ. Tennessee Knoxville

Scheduling Workshop - July 8, 2025

Outline

•00

- Tramework
- Partial detectors

- Iterative algorithm executing on a large-scale platform
- Silent errors may strike
- Minimize expected cost per iteration

Strategies

000

- Replication: only general-purpose approach
- Detectors: verified checkpoints (application-specific)

Need perfect detectors: no false negatives (recall r = 1)

- Can we use partial detectors with recall r < 1?
- If yes, how does it compare to replication?

Strategies

- Replication: only general-purpose approach
- Detectors: verified checkpoints (application-specific)

Need perfect detectors: no false negatives (recall r=1)

- Can we use partial detectors with recall r < 1?
- If yes, how does it compare to replication?

Outline

- 1 Framework
- 2 Replication
- 3 Partial detectors
- 4 Experiments

Approach

- Execution is partitioned into *segments* of *M* iterations, each followed by a checkpoint
- Execution of a new segment (after a checkpoint *C*):

Two different errors never lead to the same (incorrect) result

Approach

• Execution is partitioned into *segments* of *M* iterations, each followed by a checkpoint

Replication

• Execution of a new segment (after a checkpoint *C*): Re-execute until getting the same result twice

Two different errors never lead to the same (incorrect) result

Approach

- Execution is partitioned into *segments* of *M* iterations, each followed by a checkpoint
- Execution of a new segment (after a checkpoint C):
 - Execute segment for the first time and checkpoint result res₁
 - While results after t > 1 attempts are all different, execute new attempt t+1:
 - recover from checkpoint C
 - redo the M iterations

Replication

- checkpoint result res_{t+1}
- Keep the outcome of the two identical checkpoints
- Proceed to next segment

Two different errors never lead to the same (incorrect) result

Framework

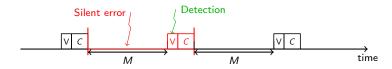
Minimizing expected time per iteration

- A silent error may strike each iteration independently and with fixed probability f (Geometric law for IATs)
- Given a segment:
 - cost of first attempt: M + C
 - cost of following attempts: R + M + C
 - number of attempts until one is successful: geometric law of parameter $p_S = (1 - f)^M$
 - expected cost $cost(M) = (M+C) + \left(\frac{2}{p_S} 1\right)(R+M+C)$
 - expected slowdown $S = \frac{cost(M)}{M} = \frac{2(R+C)}{Mps} + \frac{2}{ps} \frac{R}{M}$
 - differentiate and solve, find optimal M numerically
- No closed-form solution unless R = 0 (then Lambert \odot)

Outline

- Partial detectors

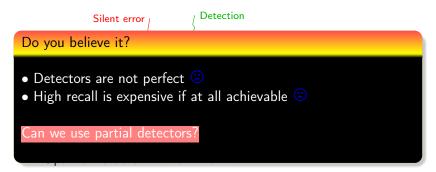
Perfect detectors



- Perfect detector of cost V
- Segment: M iterations + detector V + checkpoint C
- Recall $r = 1 \Rightarrow$ verified checkpoint
- Optimal value of M well-known
- First-order approximation à la Young-Daly

Perfect detectors

Framework



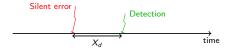
• First-order approximation à la Young-Daly

Can we use partial detectors?

Can we use partial detectors?

... unless we make some reasonable assumption ...

Bounded detection latency



Error and detection latency

Assumption

- If a silent error strikes at iteration $I \dots$... it will be detected at iteration (I-1)+X or after
- X obeys a probability distribution with bounded support [1, D]

Rationale

- The impact of the silent error on the application data grows and becomes more and more detectable
- For computation errors: numerical amplification as execution progresses

Case study

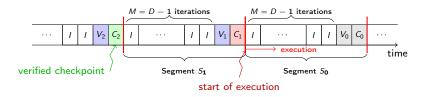
- X truncated geometric R.V. with bounded support [1, D]
- $X = \min(Y, D)$, with Y geometric R.V. of parameter θ

Typical values for maximum detection distance D

Recall θ	$ \min\{d P(X \ge d) \le 10^{-6}\} $	$\min\{d P(X \ge d) \le 10^{-9}\}$
0.2	62	93
0.4	28	41
0.9	6	9

- Efficient partial detector $\theta = 0.9$: distance detection never exceeds 10 in practice
- Poor partial detector $\theta = 0.2$ (capturing only 20% of errors): distance detection never exceeds 100 in practice

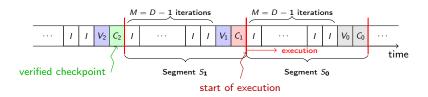
Simple scheme



- Completing the execution of segment S_0
- Checkpoints C_1 and C_2 stored in memory
- C_2 is verified (by induction) but C_1 is not (yet)

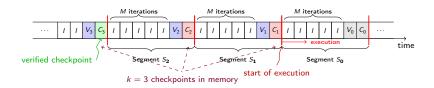
Simple scheme

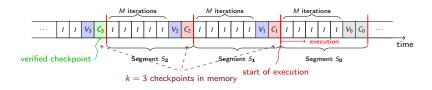
Framework



After V_0 :

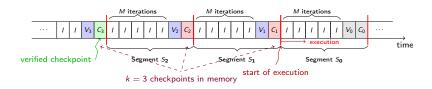
- No error is detected
 - \Rightarrow C_1 is verified (Why?)
 - \Rightarrow take C_0 and overwrite C_2
- An error is detected
 - \Rightarrow Roll back to C_2 , re-execute S_1 then S_0





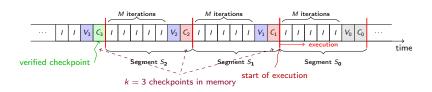
- k segments, k checkpoints in memory (k = 3)
- M iterations per segment (M = 5)
- Need (k-1)M > D-1
- Given M, use $k = \left\lceil \frac{D-1}{M} \right\rceil + 1$
- M = 5 and $k = 3 \Rightarrow D < 11$
- Conversely for D = 11, $k = 3 \Rightarrow 5 < M < 9$

Framework



After V_0 :

- No error is detected
 - $\Rightarrow C_{k}$ is verified
 - \Rightarrow take C_0 and overwrite C_k
- An error is detected
 - \Rightarrow Roll back to C_k , re-execute $S_{k-1}S_{k-2}...S_0$



- Compute E_0 : expected time to process segment S_0 with a successful verification V_0 and take new checkpoint C_0 (then delete C_k from memory and move on to next segment)
- Minimize $S = \frac{E_0}{M}$ (with $k = \lceil \frac{D-1}{M} \rceil + 1$)

Computation of E_0

$$\begin{split} &\langle f, R(k)g \rangle_{L^{2}(T^{d+1})} = \int_{\mathbb{T}^{d+1}} \int_{\mathbb{T}^{d+1}} \widehat{D}(k, p, q) \, \overline{f(p)} \, g(q) \, dq \, dp \\ &= (2\pi)^{\frac{1-d}{2}} \sum_{\mathbf{t}, \{0, \xi\}, (0, \eta)} \mathrm{e}^{-ik\cdot \mathbf{t}} \, D(\mathbf{t}, (0, \xi), (0, \eta)) \, \check{f}(-\xi) \, \check{g}(-\eta) \\ &= (2\pi)^{\frac{1-d}{2}} \sum_{\mathbf{t}, \{0, \xi\}, (0, \eta)} \mathrm{e}^{-ik\cdot \mathbf{t}} \, \left\langle \, \Theta(\xi), \, \mathrm{e}^{-\frac{1}{2}|\mathbf{t}_0|H} \, \mathrm{e}^{-\frac{1}{2}i\tau\cdot P} \, \Theta(\eta) \, \right\rangle_{\mathcal{H}} \, \check{f}(-\xi) \, \check{g}(-\eta) \\ &= (2\pi)^{\frac{1-d}{2}} \sum_{\mathbf{t}} \mathrm{e}^{-ik\cdot \mathbf{t}} \, \left\langle \, \Theta(\check{f}), \, \mathrm{e}^{-\frac{1}{2}|\mathbf{t}_0|H} \, \mathrm{e}^{-\frac{1}{2}i\tau\cdot P} \, \Theta(\check{g}) \, \right\rangle_{\mathcal{H}} \qquad (VI.3) \\ &= (2\pi)^{\frac{1-d}{2}} \int_{0}^{\infty} \int_{\mathbb{T}^d} \left(\sum_{\xi_0 \in \mathbb{Z}} \mathrm{e}^{-ik\cdot \mathbf{t}} \, \mathrm{e}^{-\frac{1}{2}|\mathbf{t}_0|h_0} \right) \left(\sum_{\tau \in \mathbb{Z}^d} \mathrm{e}^{-ik\cdot \tau} \, \mathrm{e}^{-\frac{1}{2}i\tau\cdot \lambda} \right) dE_{\lambda} \\ &= (2\pi)^{\frac{d+1}{2}} \int_{0}^{\infty} \int_{\mathbb{T}^d} \frac{\sinh(\lambda_0/2)}{\cosh(\lambda_0/2) - \cos k_0} \, \delta\left(\frac{\lambda}{2} + \mathbf{k} \right) dE_{\lambda} \\ &= (2\pi)^{\frac{d+1}{2}} \int_{0}^{\infty} \frac{\sinh(\lambda_0/2)}{\cosh(\lambda_0/2) - \cos k_0} \, dE_{(\lambda_0 - 2\mathbf{k})}. \end{split}$$

After a long and painful derivation \odot

Computation of E_0

$$E_{0} = a_{k}C + b_{k}(M + V) + c_{k}R$$

$$a_{k} = 1 + \left(\frac{1}{\Phi_{k-1}} - 1\right)u_{k}, b_{k} = \frac{1}{\Phi_{k-1}} + \left(\frac{1}{\Phi_{k-1}} - 1\right)v_{k}, c_{k} = \left(\frac{1}{\Phi_{k-1}} - 1\right)w_{k}$$

$$u_{k} = 1 + \sum_{m=0}^{k-3} \prod_{\ell=0}^{m} \frac{1}{\Phi_{k-2-\ell}}, v_{k} = \sum_{m=0}^{k-2} \prod_{\ell=0}^{m} \frac{1}{\Phi_{k-2-\ell}}, w_{k} = \prod_{\ell=0}^{k-2} \frac{1}{\Phi_{\ell}}$$

where

Framework

$$\begin{split} P_{i,j} &= P\big(X \leq jM + (M-i+1)\big) - P\big(X \leq (j-1)M + (M-i+1)\big) \\ P_{i,>j} &= P\big(X > jM + (M-i+1)\big) \\ Q_{\ell} &= \prod_{i=1}^{M} \left(1 - \frac{fP_{i,\ell}}{(1-f) + f(P_{i,>\ell} + P_{i,\ell})}\right) \\ \Phi_{j} &= \prod_{\ell=0}^{j} Q_{\ell} \end{split}$$

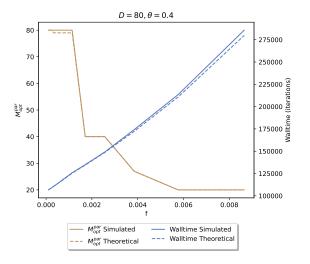
Probabilities

 $P_{i,O}$: error at iteration i detected at the end of current segment $P_{i,j}$: error at iteration i detected exactly i segments later $P_{i,>i}$: error at iteration i detected more than j segments later

Outline

- Partial detectors
- 4 Experiments

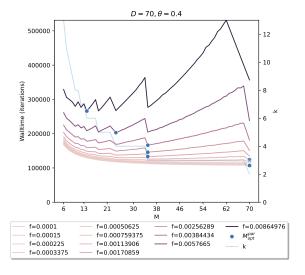
Validation



Optimal values of (k, M_{opt}^{par}) and walltime, model vs. simulation

Parameter exploration (1/4)

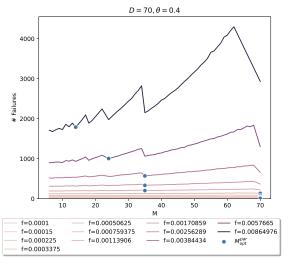
Framework



Simulated walltime varying error risk f and segment size M

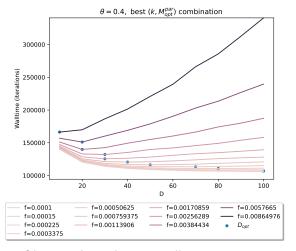
Parameter exploration (2/4)

Framework



Number of errors varying error risk f and segment size M

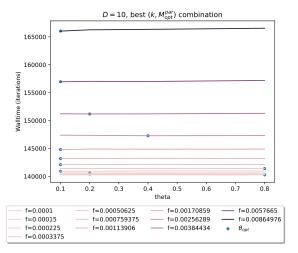
Parameter exploration (3/4)



Impact of latency bound D on walltime, varying f and M

Parameter exploration (4/4)

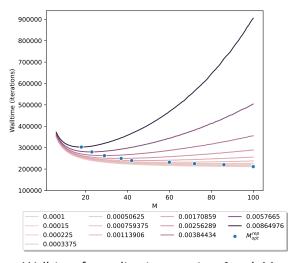
Framework



Impact of detection probability θ on walltime, varying f and M

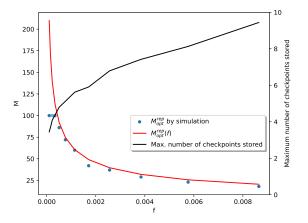
yves.robert@ens-lyon.fr

Replication (1/3)



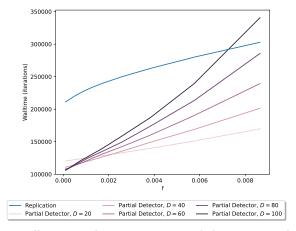
Walltime for replication, varying f and M

Replication (2/3)



Best segment size M for replication, model vs. simulation

Replication (3/3)



Comparing walltime, replication vs. partial detection with heta=0.4

Conclusion

Synthesis

- First comparison of replication with partial detection
- Optimal solution for both approaches
- Monte-Carlo simulations perfectly match model predictions
- Partial detectors can massively outperform replication
- Number of stored checkpoints:
 fixed for partial detection, unknown for replication

Future work

- Extend analysis to false positives (precision < 1):
 extra rollbacks, recoveries, re-executions due to false alarms
- Experimental validation with PCG

What about AI?

- No Artificial Intelligence in this work . . .
- ...some Human Magnificence instead 😊
- Al tools give simple solutions to complicated problems
- Scheduling guys give complicated solutions to simple problems

What about AI?

- No Artificial Intelligence in this work . . .
- ...some Human Magnificence instead 😊
- Al tools give simple solutions to complicated problems
- Scheduling guys give complicated solutions to simple problems

What about AI?

- No Artificial Intelligence in this worksome Human Magnificence instead 😊
- Al tools give simple solutions to complicated problems
- Scheduling guys give complicated solutions to simple problems

- A greedy algorithm better than ten other greedy algorithms
- A greedy algorithm whose performance seems close to a lower bound
- A greedy algorithm whose performance is guaranteed to be close to a lower bound
- An optimal solution (usually via Dynamic Programming)

- A greedy algorithm better than ten other greedy algorithms
- A greedy algorithm whose performance seems close to a lower bound
- A greedy algorithm whose performance is guaranteed to be close to a lower bound
- An optimal solution (usually via Dynamic Programming)

- A greedy algorithm better than ten other greedy algorithms
- A greedy algorithm whose performance seems close to a lower bound
- A greedy algorithm whose performance is guaranteed to be close to a lower bound
- An optimal solution (usually via Dynamic Programming)

Framework

- A greedy algorithm better than ten other greedy algorithms
- A greedy algorithm whose performance seems close to a lower bound
- A greedy algorithm whose performance is guaranteed to be close to a lower bound
- An optimal solution (usually via Dynamic Programming)

What AI could have done for this problem?

- The problem: magically materialized during some work for the NumPeX project
 - es 🗸
- The model: several similar studies

 \bullet The pattern with segments and global rollback

