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Framework

o lterative algorithm executing on a large-scale platform
@ Silent errors may strike

@ Minimize expected cost per iteration
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Strategies

@ Replication: only general-purpose approach
@ Detectors: verified checkpoints (application-specific)

A Need perfect detectors: no false negatives (recall r = 1)
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Strategies

Replication: only general-purpose approach

Detectors: verified checkpoints (application-specific)

A Need perfect detectors: no false negatives (recall r = 1)

Can we use partial detectors with recall r < 17

If yes, how does it compare to replication?
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Approach

@ Execution is partitioned into segments of M iterations,
each followed by a checkpoint

@ Execution of a new segment (after a checkpoint C):

we Two different errors never lead to the same (incorrect) result
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Approach

@ Execution is partitioned into segments of M iterations,
each followed by a checkpoint

@ Execution of a new segment (after a checkpoint C):
Re-execute until getting the same result twice

wne  Two different errors never lead to the same (incorrect) result
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Approach

@ Execution is partitioned into segments of M iterations,
each followed by a checkpoint
e Execution of a new segment (after a checkpoint C):

o Execute segment for the first time and checkpoint result res;
o While results after t > 1 attempts are all different,
execute new attempt t + 1:
- recover from checkpoint C
- redo the M iterations
- checkpoint result res; 1
o Keep the outcome of the two identical checkpoints
o Proceed to next segment

Nl
& -

wne Two different errors never lead to the same (incorrect) result
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Minimizing expected time per iteration

@ A silent error may strike each iteration independently and with
fixed probability f (Geometric law for IATSs)

o Given a segment:
- cost of first attempt: M + C
- cost of following attempts: R+ M + C
- number of attempts until one is successful:
geometric law of parameter ps = (1 — )M

- expected cost cost(M) = (M + C) + <l - 1) (R+M+C)

cost(M) __ 2(R+C) R
- expected slowdown § = ==; + Z_ K

Mps
- differentiate and solve, find optlmal M numerlcally

@ No closed-form solution unless R = 0 (then Lambert ©)
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Perfect detectors

Silent error Detection
V] € } V| C v| ¢

M M time

Perfect detector of cost V
Segment: M iterations + detector V + checkpoint C
Recall r = 1 = verified checkpoint

Optimal value of M well-known

First-order approximation a la Young-Daly
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Perfect detectors

Silent error/ Detection

Do you believe it?

e Detectors are not perfect
e High recall is expensive if at all achievable

o First-order approximation a la Young-Daly
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Can we use partial detectors?
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Can we use partial detectors?
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Bounded detection latency

Silent error .
; | Detection

/
J

Xy time
Error and detection latency

Assumption

o If a silent error strikes at iteration / ...
...it will be detected at iteration (/ — 1) + X or after

@ X obeys a probability distribution with bounded support [1, D]

Rationale

@ The impact of the silent error on the application data grows
and becomes more and more detectable

@ For computation errors: numerical amplification as execution
progresses
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Case study

e X truncated geometric R.V. with bounded support [1, D]
e X =min(Y,D), with Y geometric R.V. of parameter

Typical values for maximum detection distance D

Recall § [ min{d|P(X > d) <1075} | min{d|P(X > d) < 10~°}
0.2 62 93
0.4 28 41
0.9 6 9

o Efficient partial detector # = 0.9:
distance detection never exceeds 10 in practice

@ Poor partial detector § = 0.2 (capturing only 20% of errors):
distance detection never exceeds 100 in practice
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Simple scheme

M = D — 1 iterations M = D — 1 iterations

C11| I|I

[— execution

[T T

time

verified checkpoint Segment Sy > Segment Sp

start of execution

e Completing the execution of segment Sy
@ Checkpoints C; and G stored in memory
e ( is verified (by induction) but C; is not (yet)
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Simple scheme

M = D — 1 iterations M = D — 1 iterations
|/|IV2C2I| I/V1C1/| 11|V G
) [— execution time
verified checkpoint Segment S > Segment Sp

start of execution

After V:

@ No error is detected
= ( is verified (Why?)
= take (y and overwrite G,

@ An error is detected
= Roll back to (5, re-execute S; then Sg
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General scheme

M iterations M iterations M iterations
e —
’I‘IVanI‘I‘I‘IIVzCzI‘I‘I‘IIV1C1I‘I‘I‘I‘IV0CU
“ [ execution time
. . =~ / _ -
verified checkpoint Segment Sz J _ _Segmient Sy Segment So
. -

N . start of execution
= 3 checkpoints in memory
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General scheme

M iterations M iterations M iterations
/—/%
"I‘/V3C3/‘I‘I‘I/V2C2/‘I‘I‘IIV1C11‘/‘I‘//VnCu
“ [ execu tion time
verified checkpoint h Segment S» ,/ B ,Segm/eﬂtrsl Segment So
z2 -

T . start of execution
k = 3 checkpoints in memory

@ k segments, k checkpoints in memory (k = 3)
@ M iterations per segment (M = 5)

@ Need (k—1)M>D -1

o Given M, use k = [%] +1

e M=5and k=3= D <11

@ Conversely for D =11, k=3 =5< M <9
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General scheme

M iterations M iterations M iterations
—

’/‘I‘Vg’Cé I‘I

o . =~ ! _ -
verified checkpoint Segment Sz I _ _Segmient Sy Segment So

L) Va Ly C1I‘I‘I//‘V0‘CD

[ execution

G I‘I

time

-

T start of execution
k = 3 checkpoints in memory

After V:
@ No error is detected
= Cy is verified
= take (y and overwrite Cy

@ An error is detected
= Roll back to Cy, re-execute Sx_1Sk_>...S50

yves.robert@ens-lyon.fr Resilience 14/ 28



Partial detectors
00000080

General scheme

M iterations M iterations M iterations
’/‘I‘V3C3/‘/‘I‘/IVZCZ/‘/‘I‘//VlCI/‘/‘/II‘VO‘CD
% ——— execution time
verified checkpoint h Segment Sz ,/ _ ,Segm/eth'Sl Segment S

~_/_--

T start of execution
k = 3 checkpoints in memory

o Compute Ey: expected time to process segment Sp with a
successful verification Vg and take new checkpoint Cy
(then delete Cx from memory and move on to next segment)

o Minimize S = £ (with k = (2] +1)

yves.robert@ens-lyon.fr Resilience 14/ 28



Partial detectors
0O000000e

Computation of E
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After a long and painful derivation ... ®
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Computation of E

Eo = akC—i—bk(M—&— V)—i—CkR

_ 1 _(_1
ak71+(°kkf 71) Uk b = Oy 1+k<¢k 1 71) Vi Gk = (‘”k 1 71) Wk
- 1 1
Uk = 1+Zm:one:o a0 VK =2 OHZ 0 ¢k 2’ Hz 0 o,

where
Pij=PX<M+(M-i+1))—=P(X<(j—-1)M+(M—i+1))
Pisj=P(X > jM+(M—i+1))

M P,
Q=11 (1~ wrerimsen)
®; =]l Q

Probabilities

Pi o: error at iteration i detected at the end of current segment
P; j: error at iteration i detected exactly j segments later

P; ~j: error at iteration i detected more than j segments later

yves.robert@ens-lyon.fr Resilience 15/ 28



Experiments
000000000000

Outline

@ Experiments

yves.robert@ens-lyon.fr Resilience 16/ 28



Experiments
0O@00000000000

Validation
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Optimal values of (k, M57!) and walltime, model vs. simulation
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Parameter exploration (1/4)
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Parameter exploration (2/4)

D=70,6=0.4
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Number of errors varying error risk f and segment size M

yves.robert@ens-lyon.fr Resilience 19/ 28



Experiments
[ee]ele] lelelelelelele]e]

Parameter exploration (3/4)

6=0.4, best (k, Mb3[) combination
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300000 4
2
§ 250000 4
g
2
"
£ 200000 4
3
=
150000
= - . 8
100000
20 40 60 80 100
D
f=0.00050625 f=0.00170859 ~—— f=0.0057665
f=0.000759375 f=0.00256289 ~—— f=0.00864976
f=0.00113906 ~ —— f=0.00384434 o Dopt

Impact of latency bound D on walltime, varying f and M
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Parameter exploration (4/4)

D =10, best (k, M?3[) combination
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Impact of detection probability # on walltime, varying f and M
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Replication (2/3)
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Replication (3/3)
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Comparing walltime, replication vs. partial detection with § = 0.4
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Conclusion

Synthesis
@ First comparison of replication with partial detection
@ Optimal solution for both approaches
@ Monte-Carlo simulations perfectly match model predictions
o Partial detectors can massively outperform replication

@ Number of stored checkpoints:
fixed for partial detection, unknown for replication

Future work

e Extend analysis to false positives (precision < 1):
extra rollbacks, recoveries, re-executions due to false alarms

@ Experimental validation with PCG
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What about Al?

@ No Artificial Intelligence in this work . ..
...some Human Magnificence instead ©

ON TiME

yves.robert@ens-lyon.fr Resilience 26/ 28



Experiments
0000000000800

What about Al?

@ No Artificial Intelligence in this work . ..
...some Human Magnificence instead ©
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What about Al?

@ No Artificial Intelligence in this work . ..
...some Human Magnificence instead ©

@ Al tools give simple solutions to complicated problems

@ Scheduling guys give complicated solutions to simple problems
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Solution to an Optimization Problem

@ A greedy algorithm better than ten other greedy algorithms
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Solution to an Optimization Problem

@ A greedy algorithm better than ten other greedy algorithms

o A greedy algorithm whose performance
seems close to a lower bound
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Solution to an Optimization Problem

@ A greedy algorithm better than ten other greedy algorithms

o A greedy algorithm whose performance
seems close to a lower bound

@ A greedy algorithm whose performance
is guaranteed to be close to a lower bound
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Solution to an Optimization Problem

@ A greedy algorithm better than ten other greedy algorithms

o A greedy algorithm whose performance
seems close to a lower bound

@ A greedy algorithm whose performance
is guaranteed to be close to a lower bound

@ An optimal solution (usually via Dynamic Programming)
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What Al could have done for this problem?

The problem: magically materialized during some work for the
NumPeX project

The model: several similar studies

e

The pattern with segments and global rollback =

The solution: not sure! even with the assistance of several

computer algebra tools / theorem provers 8
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