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Abstract—This paper is devoted to mapping iterative algorithms onto heterogeneous clusters. The application data is partitioned over

the processors, which are arranged along a virtual ring. At each iteration, independent calculations are carried out in parallel, and some

communications take place between consecutive processors in the ring. The question is to determine how to slice the application data

into chunks, and to assign these chunks to the processors, so that the total execution time is minimized. One major difficulty is to

embed a processor ring into a network that typically is not fully connected, so that some communication links have to be shared by

several processor pairs. We establish a complexity result that assesses the difficulty of this problem, and we design a practical

heuristic that provides efficient mapping, routing, link-sharing, and data distribution schemes.

Index Terms—Scheduling, load-balancing, iterative computations, heterogeneous clusters.
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1 INTRODUCTION

IN this paper, we investigate the mapping of iterative
algorithms onto heterogeneous clusters. Such algorithms

typically operate on a large collection of application data,
which will be partitioned over the processors. At each
iteration, some independent calculations will be carried out
in parallel, and then some communications will take place.
This scheme is very general and encompasses a broad
spectrum of scientific computations, from mesh-based
solvers (e.g., elliptic PDE solvers) to signal processing
(e.g., recursive convolution) and image processing algo-
rithms (e.g., mask-based algorithms such as thinning).

An abstract view of the problem is the following: The
iterative algorithm repeatedly operates on a large rectan-
gular matrix of data samples. This data matrix is split into
vertical slices that are allocated to the computing resources
(processors). At each step of the algorithm, the slices are
updated locally, and then boundary information is ex-
changed between consecutive slices. This (virtual) geome-
trical constraint advocates that processors be organized as a
virtual ring. Then, each processor will only communicate
twice, once with its (virtual) predecessor in the ring and
once with its successor. Note that there is no reason a priori
to restrict to a unidimensional partitioning of the data and
to map it onto a unidimensional ring of processors: More
general data partitionings, such as two-dimensional, recur-
sive or even arbitrary slicings into rectangles, could be
considered. But, unidimensional partitionings are very
natural for most applications and, as will be shown in this
paper, the problem to find the optimal one is already very
difficult.

The target architecture is a fully heterogeneous platform
composed of different-speed processors that communicate
through links of different bandwidths. On the architecture
side, the problem is twofold: 1) select the processors that

will participate in the solution and decide for their ordering
that will represent the arrangement into a ring and 2) assign
communication routes from each participating processor to
its successor in the ring. One major difficulty of this ring
embedding process is that some of the communication
routes will (most probably) have to share some physical
communication links: Indeed, the communication networks
of heterogeneous platforms typically are sparse, i.e., far
from being fully connected. If two or more routes share the
same physical link, we have to decide which portion of the
link bandwidth is to be assigned to each route.

Once the ring and the routing have been decided, there
remains to determine the best partitioning of the application
data. Clearly, the quality of the final solution depends on
many application and architecture parameters, and we
should expect the optimization problem to be very difficult
to solve. To assess the impact of sharing the link
bandwidths, we first deal with the simplified version of
the problem where we view the target interconnection
network as fully connected: Between any node pair, the
routing is fixed (shortest paths in terms of bandwidth) and
the bandwidth is assumed to be that of the slowest link in
the routing path. This simplified model is not very realistic
because no link contention is taken into account, but it will
lead to a solution ring that can be compared to that obtained
with link sharing, thereby providing a convenient way to
evaluate the significance of the different hypotheses on the
communications.

The rest of the paper is organized as follows: In Section 2,
we formally state the previous optimization problems,
which we denote as SLICERING for the simplified version
without link sharing, and as SHAREDRING for the more
general version with link sharing. Section 3 is devoted to the
complexity of the SLICERING problem. After formally
stating the optimization problem, we show that the
associated decision problem is NP-complete. Section 4
deals with the more realistic SHAREDRING problem and
contains the major contributions of this paper. We state the
problem (Section 4.1), we work out a small-size example
(Section 4.2), and we prove a complexity result (Section 4.3).
Then, in Section 4.4, we proceed to the design of
polynomial-time heuristics to solve the SHAREDRING
optimization problem. We report some experimental results
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in Section 5. We start by experimenting with the SHARE-
DRING heuristics using a network generator. Then, we
move to a comparison of the two approaches, with and
without link sharing, using two heterogeneous networks of
workstations. We survey related work in Section 6,
including dynamic strategies that are not considered in this
paper (our scheduling approach is fully static). Finally, we
state some concluding remarks in Section 7.

2 FRAMEWORK

In this section, we start with the framework that is common
to the two optimization problems SLICERING and SHARE-

DRING. Next, we state specific assumptions for each of
them in Section 2.2 for SLICERING, and in Section 2.3 for
SHAREDRING, and we discuss some variants (Section 2.4).

2.1 Common Assumptions

Computing costs. The target computing platform is
modeled as a directed graph G ¼ ðP;EÞ. Each node Pi in
the graph, 1 � i � jP j ¼ p, models a computing resource,
and is weighted by its relative cycle-time wi: Pi requires wi

time-steps to process a unit-size task. Of course, the
absolute value of the time-unit is application-dependent;
what matters is the relative speed of one processor versus
the other.

Communication costs. Graph edges represent commu-
nication links and are labeled with available bandwidths. If
there is an oriented link e 2 E from Pi to Pj, we let be denote
the bandwidth of the link. It will take Dc=be time-units to
transfer a single message of sizeDc from Pi to Pj using link e.

Application parameters: computations. Let Dw be the
total size of the work to be performed at each step of the
algorithm. Processor Pi will accomplish a share �i:Dw of
this total work, where �i � 0 for 1 � i � p and

Pp
i¼1 �i ¼ 1.

Note that we allow �j ¼ 0 for some index j, meaning that
processor Pj does not participate in the computation.
Indeed, there is no reason a priori for all resources to be
involved, especially when the total work is not very large:
The extra communications incurred by adding more
processors may slow down the whole process, despite the
increased cumulated speed.

Application parameters: communications in the ring.
We arrange the participating processors along a ring (yet to
be determined). After updating its data slice of size �i:Dw,
each active processor Pi sends a message of fixed length Dc

(typically some boundary data) to its successor. To illustrate
the relationship between Dw and Dc, we can view the
original data matrix as a large rectangle composed of Dw

columns of height Dc, so that one single column is
exchanged between any pair of consecutive processors in
the ring. Let succðiÞ and predðiÞ denote the successor and
the predecessor of Pi in the virtual ring. The time needed to
transfer a message of size Dc from Pi to Pj is Dc:ci;j, where
the communication delay ci;j will be instantiated below,
according to whether links are assumed to be shared or not.

Objective function. The total cost of a single step in the
iterative algorithm is the maximum, over all participating
processors, of the time spent computing and communicating:

Tstep ¼ max
1�i�p

IIfig½�i:Dw:wi þDc:ðci;predðiÞ þ ci;succðiÞÞ�; ð1Þ

where IIfig½x� ¼ x if Pi is involved in the computation, and
0 otherwise. In summary, the goal is to determine the best
way to select q processors out of the p available, to assign

them computational workloads, to arrange them along a
ring, and to share the network bandwidth so that the total
execution time per step is minimized.

2.2 Specific Assumptions for SLICERING

As already mentioned, the target computing platform is
modeled as a complete graph for the simplified optimiza-
tion problem SLICERING. See Section 5.2.1 for an example
where such a complete graph is built out of a real platform
using shortest-paths routing.

Communication costs. The time needed to transfer a
message of size Dc from Pi to Pj is Dc:ci;j, where ci;j is the
capacity of the link e from Pi to Pj, i.e., the inverse of its
bandwidth be.

Application parameters: communications in the ring.
Processor Pi requires Dc:ci;succðiÞ time-units to send a
message of size Dc to its successor, plus Dc:ci;predðiÞ to send
a message of same size to its predecessor.

2.3 Specific Assumptions for SHAREDRING

Communications and routing are muchmore complicated to
dealwith in the general optimization problemSHAREDRING.

Communication costs. It takes Dc=be time-units to
transfer a single message of size Dc from Pi to Pj using
link e. When there are several messages sharing the link,
each of them receives a portion (to be determined later) of
the available bandwidth. For instance, if there are two
messages sharing link e and if the first message is allocated
two-thirds of the bandwidth, i.e., 2be=3, then the second
message cannot use more than be=3. The portions of the
bandwidth that are allocated to the messages can be freely
determined by the user; the only rule is that the sum of all
these portions cannot exceed the total link bandwidth. In
practice, such a freedom for the routing strategy will only
be available with future-generation networks like IPv6, with
a suitable QoS policy framework [33]. Note, however, that
the eXplicit Control Protocol XCP [26] is already enabled to
implement a bandwidth allocation strategy that complies
with our hypotheses.

Routing. We assume that we can freely decide how to
route messages from one processor to another. Assume that
we want to route a message of size Dc from Pi to Pj, along a
path composed of k edges e1; e2; . . . ; ek. Along each edge em,
the message will be allocated a portion fm of the bandwidth
bem . The overall speed of the communication along the path
is bounded by the link where the smallest amount of
bandwidth is available for the message: We need Dc=b time-
units to route the message, where b ¼ min1�m�k fm: This is
as if we had a direct link dedicated to the message, but of
reduced bandwidth b. The constraint on total link band-
widths still holds: If several messages simultaneously
circulate on the network and happen to share links, the
total bandwidth capacity of each link cannot be exceeded.

Application parameters: communications in the ring.
There is a communication path Si (S stands for “successor”)
from Pi to PsuccðiÞ in the network: Let si;m be the portion of
the bandwidth bem of the physical link em that has been
allocated to the path Si. Of course, if a link er is not used in
the path, then si;r ¼ 0. Let ci;succðiÞ ¼ 1

minem2Si si;m
: Then, Pi

requires Dc:ci;succðiÞ time-units to send its message of size Dc

to its successor PsuccðiÞ.
Similarly, we define the communication path Pi (P for

“predecessor”) from Pi to PpredðiÞ in the network; pi;m is the
portion of the bandwidth bem of the physical link em that has
been allocated to the path Pi, and ci;predðiÞ ¼ 1

minem2Pi pi;m
.
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Then, Pi requires Dc:ci;predðiÞ time-units to send its message
of size Dc to its predecessor PpredðiÞ.

2.4 Variants

We discuss here several variants of the previous applica-
tion/architecture framework:

Start-up overheads. The motivation to use a simple linear-
cost model, rather than an affine-cost model involving
start-ups, both for the communications and the compu-
tations, is the following: Only large-scale applications are
likely to be deployed on heterogeneous platforms. Each
step of the algorithm will be both computation and
communication-intensive, so that start-up overheads can
indeed be neglected. Anyway, most of the results
presented here extend to an affine cost modeling.

Bidirectional links. It is easy to model a bidirectional link
between a given processor pair Pi and Pj: Regardless of
their orientation (from Pi to Pj or the other way), all the
communications using that link will be allocated a
portion of the bandwidth, so that the total available of
the link bandwidth is not exceeded. In other words, we
assign a bandwidth portion fpath to each communication
path requesting a bidirectional link of bandwidth b,
regardless of the orientation of the path, and we state the
constraint

P
fpath � b; the sum extends to all paths using

the link, regardless of their orientation. In fact, unidirec-
tional links and bidirectional links can simultaneously
exist in the network, and it is easy to model both.

Multiple links. Similarly, multiple links between a given
processor pair can easily be taken into account: We
would simply model G as a multigraph rather than as a
simple graph.

Backbone links. Backbone links can accommodate several
communications at the same bandwidth rate b: To model
such a link, we assign the same portion fpath ¼ b to each
communication path requesting the link, regardless of
their number: In other words, we replace the constraintP

fpath � b by fpath � b for each path using the link.

To conclude this section, we point out that this framework
is not restricted to iterative algorithms. In fact, our approach
applies to problems where independent computations are
distributed over heterogeneous resources arranged along a
ring, and are interleavedwith communications fromadjacent
processors. The major hypothesis is that communications
only occur between adjacent processors, and that their
volume is independent of their relative workload.

There are other architectural models that would be worth
investigating. We use a model where each processor
sequentially sends messages to its two neighbors, and we
implicitly assume asynchronous receptions. In particular,
we could assume that each processor is able to send both
messages in parallel, which would lead to a Max operator
instead of a sum in the communication overhead of (1).

3 THE SLICERING OPTIMIZATION PROBLEM

3.1 Problem Statement

The goal of our problem is to minimize the maximum of
computation cost plus communication cost between neig-
bors. We state the simplified optimization problem as
follows.

Definition 1 (SLICERING(p; wi; ci;j; Dw;Dc)). Given p proces-
sors of cycle-times wi and pðp� 1Þ communication links of

capacity ci;j, given the total workload Dw and the commu-
nication volume Dc at each step, determine

Tstep ¼ min
1�q�p; �2�q;p;

Pq

i¼1
��ðiÞ¼1(

max
1�i�q

�
��ðiÞ:Dw:w�ðiÞ þDc:ðc�ðiÞ;�ði�1 mod qÞþ

c�ðiÞ;�ðiþ1 mod qÞÞ
�)

:

ð2Þ

In (2), �q;p denotes the set of one-to-one functions � :
½1::q� ! ½1::p� which index the q selected processors, for all
candidate valuesof q between 1 and p. From this equation, it is
not clearwhether all processorswill be involved or not. Itwill
be the case only if the ratio Dw

Dc
is large enough. Given

applicationparametersDc andDw, there is anupper bound in
the number q of participating processors: Above this value,
the relative cost of communications becomes too important in
front of the average computation load (see Figs. 9, 10, 11, and
12 for an illustration). In any case, after deciding how many
and which processors to use, we still have to decide how to
arrange themalonga ring.Extracting the“best” ringoutof the
interconnection graph seems to be a difficult combinatorial
problem. Before assessing this result (see Section 3.3),wedeal
with the much easier situation when the network is
homogeneous (see Section 3.2).

3.2 Homogeneous Networks

Solving the optimization problem, i.e., minimizing (2), is
easy when all communication times are equal. This
corresponds to a homogeneous network where each
processor pair can communicate at the same speed, for
instance, through a bus or an Ethernet backbone.

Assume that ci;j ¼ c for all i and j, where c is a constant.
There are only two cases to consider: 1) only the fastest
processor is active and 2) all processors are involved.
Indeed, as soon as a single communication occurs, we can
have several ones for the same cost, and the best is to divide
the computing load among all resources. In the former case
1), we derive that Tstep ¼ Dw:wmin, where wmin is the smallest
cycle-time. In the latter case 2), the load is most balanced
when the execution time is the same for all processors:
Otherwise, removing a small portion of the load of the
processor with largest execution time, and giving it to a
processor finishing earlier, would decrease the maximum
computation time. This leads to �i:wi ¼ Constant for all i,
with

Pp
i¼1 �i ¼ 1. We derive that Tstep ¼ Dw:wcumul þ 2Dc:c,

where wcumul ¼ 1Pp

i¼1
1
wi

. We summarize these results.

Proposition 1. The optimal solution to SLICERING (p; wi; c;Dw;
DcÞ is

Tstep ¼ min Dw:wmin; Dw:wcumul þ 2Dc:cf g;

where wmin ¼ min1�i�p wi and wcumul ¼ 1Pp

i¼1
1
wi

.

If the platform is given, there is a threshold, which is

application-dependent, to decide whether only the fastest

computing resource, as opposed to all the resources, should

be involved. Given Dc, the fastest processor will do all the

job for small values of Dw, namely, Dw � Dc:
2c

wmin�wcumul
.

Otherwise, for larger values of Dw, all processors should be

involved.
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3.3 Complexity

The decision problem associated to the SLICERING optimi-
zation problem is:

Definition 2 (SLICERINGDEC(p; wi; ci;j; Dw;Dc;K)). Given
p processors of cycle-times wi and pðp� 1Þ communication
links of capacity ci;j, given the total workload Dw and the
communication volume Dc at each step, and given a time
bound K, is it possible to find an integer q � p, a one-to-one
mapping � : ½1::q� ! ½1::p�, and nonnegative rational numbers
�i with

Pq
i¼1 ��ðiÞ ¼ 1, such that

Tstep ¼max
1�i�q

�
��ðiÞ:Dw:w�ðiÞ þDc:ðc�ðiÞ;�ði�1 mod qÞþ

c�ðiÞ;�ðiþ1 mod qÞÞ
�
� K?

The following result states the intrinsic difficulty of the
problem.

Theorem 1. SLICERINGDEC(p; wi; ci;j; Dw;Dc;K) is NP-com-
plete.

Proof. Obviously, SLICERINGDEC belongs to NP. To prove
its completeness, we use a reduction from HAMPATH,
the Hamiltonian Path Problem, which is NP-complete
[21]. Consider an arbitrary instance I 1 of HAMPATH:
Given a graph Gh ¼ ðVh; EhÞ, is there a Hamiltonian cycle
in Gh, i.e., a cycle that visits all the vertices of G exactly
once?

We construct the following instance I 2 of SLICER-
INGDEC: We let p ¼ jVhj (assume p � 2 without loss of
generality), and we define a complete interconnection
graph G ¼ ðP;EÞ, whose edge costs are given by

ce ¼
" if e 2 Eh

2 otherwise;

�

where 0 < " < 1
2 is a small constant. We let Dw ¼ Dc ¼ 1

and wi ¼ p for 1 � i � p. Clearly, I 2 can be constructed
in time polynomial in the size of I 1. Finally, we let
K ¼ 1þ 2".

Assume first that I 1 has a solution, i.e., that Gh

possesses a Hamiltonian path. We use the edges of this
path to build the ring. All processors are involved, and
we let �i ¼ 1=p for 1 � i � p. The execution time and the
communication time are the same for all processors, we
obtain that Tstep ¼ 1

p � pþ 2" ¼ K, hence, a solution to I 2.

Assume now that I 2 has a solution. If a single
processor was participating in that solution, then we
would have Tstep ¼ 1:p � 2 > K, a contradiction. Hence,
there are q processors, with q � 2, participating in the
solution. If the ring used a communication edge that did
not belong to Gh, then its cost would be 2 and
Tstep � Dc:2 ¼ 2 > K, again a contradiction. There re-
mains to show that we do use all the p processors in the
solution. But, otherwise, if q < p, one computation load
would be at least equal to 1

q :Dw:p > 1, which would
imply that Tstep > K. Finally, q ¼ p, and all the edges of
the solution ring enable to find a Hamiltonian path in Gh,
thereby providing a solution to I 1. tu
In [31], we have expressed the solution to the SLICERING

optimization problem, in terms of an Integer Linear
Programming (ILP) problem. When all processors are
involved in the optimal solution, we also proved that
finding the optimal solution is equivalent to solving the

Traveling Salesman Problem (TSP) in the weighted graph
ðP;E; dÞ, where di;j ¼ ci;jþcj;i

wi
.

4 THE SHAREDRING OPTIMIZATION PROBLEM

4.1 Sharing Links

The SHAREDRING optimization problem looks very similar
to the simplified version.

Definition 3 (SHAREDRING(p; wi; E; bem ;Dw;Dc)). Given p

processors Pi of cycle-times wi and E communication links em
of bandwidth bem , given the total workload Dw and the

communication volume Dc at each step, determine

Tstep ¼ min
1�q�p; �2�q;p;

Pq

i¼1
��ðiÞ¼1(

max
1�i�q

�
��ðiÞ:Dw:w�ðiÞ þDc:ðc�ðiÞ;�ði�1 mod qÞþ

c�ðiÞ;�ðiþ1 mod qÞÞ
�)

:

ð3Þ

As before, in (3), �q;p denotes the set of one-to-one functions
� : ½1::q� ! ½1::p� which index the q selected processors that
form the ring, for all candidate values of q between 1 and p.
But, in the general version, for each candidate ring
represented by such a � function, there are constraints
hidden by the introduction of the quantities c�ðiÞ;�ði�1 mod qÞ
and c�ðiÞ;�ðiþ1 mod qÞ, which we gather now. There are 2q
communicating paths, the path Si from P�ðiÞ to its successor
Psuccð�ðiÞÞ ¼ P�ðiþ1 mod qÞ and the path Pi from P�ðiÞ to its
predecessor Ppredð�ðiÞÞ ¼ P�ði�1 mod qÞ, for 1 � i � q. For each
link em in the interconnection network, let s�ðiÞ;m (respec-
tively, p�ðiÞ;m) be the portion of the bandwidth bem that is
allocated to the path S�ðiÞ (respectively, P�ðiÞ). We have the
equations:

s�ðiÞ;m � 0; p�ðiÞ;m � 0 1 � i � q; 1 � m � E;
c�ðiÞ;succð�ðiÞÞ ¼ 1

minem2S�ðiÞ s�ðiÞ;m
1 � i � q;

c�ðiÞ;predð�ðiÞÞ ¼ 1
minem2P�ðiÞ p�ðiÞ;m

1 � i � q;Pq
i¼1ðs�ðiÞ;m þ p�ðiÞ;mÞ � bem 1 � m � E:

8>>><
>>>:
The last equation states that the bandwidth of link em is

not exceeded. Since each communicating path S�ðiÞ or P�ðiÞ
will typically involve a few edges, most of the quantities
s�ðiÞ;m and p�ðiÞ;m will be zero. In fact, we have written em 2
S�ðiÞ if the edge em is actually used in the path S�ðiÞ, i.e., if
si;m is not zero (and, similarly, em 2 P�ðiÞ if pi;m is not zero).

Because of the link sharing, the SHAREDRING problem
looks evenmore combinatorial than the SLICERING problem.
Wehave to select the participating resources, to arrange them
along a ring, to construct the communicating paths, to assign
bandwidths ratios and, finally, to allocatedata chunks. Before
stating a complexity result (see Section 4.3), we work out a
small-size example (Section 4.2).

4.2 Toy Example

Consider the heterogeneous network represented in Fig. 1.
There are seven processors and eight bidirectional commu-
nication links. For the sake of simplicity, we have labeled
the processors P1 to P5 in the order that they appear in the
5-processor ring that we construct, leaving out the other two
processors Q and R. Also, links are labeled with letters from
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a to h instead of indices; we use bx to denote the bandwidth
of link x.

For the path from P1 to P2, we choose to use links a and b
so that the communication path from P1 to its successor P2

is S1 ¼ fa; bg. But, for the path from P2 to P1, we may use
links b, g, and h so that the communication path from P2 to
its predecessor is P2 ¼ fb; g; hg. Here is the complete list of
the paths (note that many other choices could have been
made):

. From P1: to P2, S1 ¼ fa; bg and to P5, P1 ¼ fhg.

. From P2: to P3, S2 ¼ fc; dg and to P1, P2 ¼ fb; g; hg.

. From P3: to P4, S3 ¼ fd; eg and to P2, P3 ¼ fd; e; fg.

. From P4: to P5, S4 ¼ ff; b; gg and to P3, P4 ¼ fe; dg.

. From P5: to P1, S5 ¼ fhg and to P4, P5 ¼ fg; b; fg.
Next,wedefine thepath costs. ForP1, becauseS1 ¼ fa; bg, we

get c1;2 ¼ 1
minðs1;a;s1;bÞ ; and because P1 ¼ fhg, we get c1;5 ¼ 1

p1;h
.

We proceed likewise for P2 to P5. Finally, here is the list of all

the equations that must be satisfied:

Link a: s1;a�ba Link b: s1;bþs4;bþp2;bþp5;b�bb

Link c: s2;c�bc Link d: s2;dþs3;dþp3;dþp4;d�bd

Link e: s3;eþp3;eþp4;e�be Link f: s4;fþp3;fþp5;f�bf

Link g: s4;gþp2;gþp5;g�bg Link h: s5;hþp1;hþp2;h�bh:

Now that we have all these constraints, we can (try to)
compute the �i, si;j, and pi;j that minimize the objective
function Tstep. Equation 4 explicits the whole system of (in)
equations which is quadratic in the unknowns �i, si;j, ci;j,
and pi;j.

1

minimize max1�i�5 ð�i:Dw:wiþDc:ðci;i�1þci;iþ1ÞÞ subject toP5

i¼1
�i¼1

s1;a�ba s1;bþs4;bþp2;bþp5;b�bb s2;c�bc

s2;dþs3;dþp3;dþp4;d�bd s3;eþp3;eþp4;e�be s4;fþp3;fþp5;f�bf

s4;gþp2;gþp5;g�bg s5;hþp1;hþp2;h�bh

s1;a:c1;2�1 s1;b:c1;2�1 p1;h:c1;5�1

s2;c:c2;3�1 s2;d:c2;3�1 p2;b:c2;1�1

p2;g :c2;1�1 p2;h:c2;1�1 s3;d:c3;4�1

s3;e:c3;4�1 p3;d:c3;2�1 p3;e:c3;2�1

p3;f :c3;2�1 s4;f :c4;5�1 s4;b:c4;5�1

s4;g :c4;5�1 p4;e:c4;3�1 p4;d:c4;3�1

s5;h:c5;1�1 p5;g:c5;4�1 p5;b:c5;4�1

p5;f :c5;4�1:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

To build up (4), we have used arbitrary communication
paths, and there are many others to try. Worse, there are
many other rings to build, even with the same processors
that could be arranged differently, or with other processors.
And, the number of processors q must be varied also. Not

surprisingly, the decision problem associated to the SHARE-
DRING optimization problem is NP-complete, as shown in
Section 4.3.

4.3 Complexity

The decision problem associated to the SHAREDRING
optimization problem turns out to be NP-complete. The
proof of this result is quite similar to that of Theorem 1 (see
[27]), and we state it for the sake of reference.

Theorem 2. SHAREDRINGDEC(p; wi; E; bem ;Dw;Dc;K) is NP-
complete.

4.4 Heuristics

In this section, we describe a polynomial-time heuristic to
solve the SHAREDRING optimization problem. We describe
the heuristic in three steps: 1) the greedy algorithm used to
construct a solution ring, 2) the strategy used to assign
bandwidth portions during the construction, and 3) a final
refinement.

4.4.1 Ring Construction

We consider a solution ring involving q processors,
numbered from P1 to Pq. Ideally, all these processors
should require the same amount of time to compute and
communicate: Otherwise, we would slightly decrease the
computing load of the last processor to complete its
assignment (computations followed by communications)
and assign extra work to another one. Hence (see Fig. 2 for
an illustration), we have

Tstep ¼ �i:Dw:wi þDc:ðci;i�1 þ ci;iþ1Þ

for all i (indices in the communication costs are taken

modulo q). Since
Pq

i¼1 �i ¼ 1, we derive that
Pq

i¼1
Tstep�Dc:ðci;i�1þci;iþ1Þ

Dw:wi
¼ 1. Defining wcumul ¼ 1Pq

i¼1
1
wi

, we rewrite

this as:

Tstep ¼ Dw:wcumul 1þ Dc

Dw

Xq
i¼1

ci;i�1 þ ci;iþ1

wi

 !
: ð5Þ

We will use (5) as a basis for a greedy algorithm to grow
a solution ring iteratively. The greedy heuristic starts by
selecting the best pair of processors. Then, it iteratively
includes a new node in the current solution ring. Assume
that we have already selected a ring of r processors. For
each remaining processor Pi, we search where to insert it in
the current ring: For each pair of successive processors
ðPj; PkÞ in the ring, we compute the cost of inserting Pi

between Pj and Pk in the ring. We retain the processor and
the pair that minimize the insertion cost, and we store the
new value of Tstep.

How do we compute the cost of inserting Pi between Pj

and Pk? We have to resort to another heuristic to construct
communicating paths and allocate bandwidth portions
(explained in Section 4.4.2), in order to compute the new
costs ck;j (path from Pk to its successor Pj), cj;k (the other
way round), ck;i (path from Pk to its predecessor Pi), and ck;i
(the other way round). Once we have these costs, we can
compute the new value of Tstep as follows:

. We update wcumul by adding the new processor Pk

into the formula, which will decrease its value.
. In the summation

Pr
s¼1

c�ðsÞ;�ðs�1Þþc�ðsÞ;�ðsþ1Þ
w�ðsÞ

, we suppress
the two terms corresponding to the two paths
between Pi to Pj (by hypothesis we had i ¼ �ðsÞ
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1. We did not express in (4) the inequations stating that all the unknowns
are nonnegative.

Fig. 1. A small-size cluster.



and j ¼ �ðsþ 1Þ for some s), and we insert the new
terms

ck;jþck;i
wk

,
cj;k
wj
, and

ci;k
wi
.

This step of the heuristic has a complexity proportional
to ðp� rÞ:r times the cost to compute four communicating
paths. Finally, we grow the ring until we have p processors.
We return the minimal value obtained for Tstep. The total
complexity is

Pp
r¼1ðp� rÞrC ¼ Oðp3ÞC, where C is the cost

of computing four paths in the network. Note that it is
important to try all values of r because Tstep may not vary
monotonically with r (for instance, see Fig. 11).

4.4.2 Bandwidth Allocation

In this section, we assume that we already have a
r-processor ring, a pair ðPi; PjÞ of successive processors in
the ring, and a new processor Pk to be inserted between Pi

and Pj. Together with the ring, we have constructed 2r
communicating paths, and a certain portion of the initial
bandwidth has been allocated to these paths. To build the
new four paths involving Pk, we reason on the graph
G ¼ ðV ;E; bÞ, where each edge is labeled with the remain-
ing available bandwidth: Now, bðemÞ is not the initial
bandwidth of edge em, but what has been left by the 2r
paths.

The first thing to do is to reinject in the network the
bandwidth portions used by the two communication paths
between Pi and Pj (because these paths will be replaced by
the new four paths). We use a simple shortest path
algorithm to determine the four paths, from Pk to Pi and
Pj and vice-versa. There is a subtlety here because these
four paths may share some links. The strategy that we use is
the following:

. We independently compute four paths of maximal
bandwidth, using a standard shortest path algorithm
[13] in G.

. If some paths happen to share some links, we do not
change the paths; instead, we use a brute force
(analytical) method to compute the bandwidth
portions minimizing (5) to be allocated to each path,
and we update the four path costs accordingly.

Now that we have the paths and their costs, we compute the
new value of Tstep as explained above. Note that from Tstep,
we can derive the values of the computing workloads �i,
but we do not need them until the end. The cost C of
computing four paths in the network is Oðpþ EÞ.

4.4.3 Refinements

A concise way to describe the heuristic is the following:
We greedily grow a ring by peeling off the bandwidths to

insert new processors. To diminish the cost of the
heuristic, we never recalculate the bandwidth portions
that have been assigned to previous communicating
paths. When we are done with the heuristic, we have a
q-processor ring, q workloads, 2q communicating paths,
bandwidth portions, and communication costs for these
paths, and a feasible value of Tstep.

Because the heuristic could appear oversimplistic, we
have implemented two variants aimed at refining the
solution. The idea for the two variants is to keep everything
but the bandwidth portions and the workloads, and to
recompute these each time we have inserted a new
processor in the ring. In other words, once we have selected
the processor and the pair minimizing the insertion cost in
the current ring, we perform the insertion and we
recompute all the bandwidth portions and the workloads.
We keep the ring (both the processors and their ordering)
and the communication paths as such. Since we know all
the 2q paths, we can reevaluate bandwidth portions, hence,
communication costs, using a global approach:

Method 1: Max-min fairness. This is the traditional
bandwidth-sharing algorithm [5], which is designed to
maximize the minimum bandwidth allocated to a path.
Once we have computed the bandwidths portions with
the algorithm, we have the communication costs, and we
compute the �i so as to equate all execution times
(computations followed by communications), thereby
minimizing Tstep.

Method 2: quadratic resolution using the KINSOL soft-
ware. As mentioned in Section 4.2, once we have a ring
and communicating paths, the program to minimize Tstep

is quadratic in the unknowns �i, si;j, ci;j, and pi;j. We use
the KINSOL library [34] to solve it.

5 EXPERIMENTAL RESULTS

5.1 SHAREDRING with a Network Generator

To evaluate the heuristics designed for SHAREDRING, we
experimented with two platforms generated with the Tiers
network generator [10], [16]. This generator produces
graphs having three levels of hierarchy referred as LAN,
MAN, and WAN levels.

5.1.1 Platform Description

The platforms are generated by selecting a fraction of the
LAN nodes, referred to as the boxed nodes in Figs. 3 and 4.
These boxed nodes are the selected machine nodes that are
used in the computing process. They represent about
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Fig. 2. Summary of computation and communication times with q ¼ 5 processors.



30 percent of the initial LAN nodes. All other nodes are
handled as simple routers. The processing powers of the
selected machine nodes are randomly chosen in a list of
values corresponding to the processing powers (expressed
in MFlops and evaluated thanks to a benchmark taken from
LINPACK [8]) of a wide variety of machines (Pentium Pro
200MHz, Pentium 2 350MHz, Celeron 400MHz, Athlon
1.4GHz, Pentium 4 1.7GHz, etc.). The capacities of the edges
are assigned using the classification of the Tiers generator
(local LAN link, LAN/MAN link, MAN/WAN link, etc.).
For each link type, we use values measured using
pathchar [17] between some machines in ENS Lyon and
some other machines scattered in France (Strasbourg, Lille,
Grenoble, and Orsay), in the US (Knoxville, San Diego, and

Argonne), and in Japan (Nagoya and Tokyo). The second
platform is (roughly) twice larger than the first platform.

5.1.2 Results

In Figs. 5 and 6, we plot the number of processors used in
the solution ring. The ratio Dc=Dw ranges between values
which have been roughly estimated as follows: Suppose we
have a square matrix of size n to which we want to apply
some filters. Dc is then roughly equal to n� 64=1; 0242

Mbits (when using double) and Dw is roughly equal to
n2=1; 0242 Mflops (if there is one Floating Point operation to
perform per cell). Dc=Dw is then equal to 64=n and for
reasonnable values of n, Dc=Dw ranges between 0:0064 (for
n ¼ 10; 000) and 0:64 (for n ¼ 100).

As expected, the size of the ring increases as the ratio
Dc=Dw decreases: additional computational power pay off
the communication overhead. In Figs. 7, 8, 9, 10, 11, and 12,
we represent the normalized execution time as a function of
the size of the solution ring. For both platforms, we use
various communication-to-computation ratios. For each
ratio, there is an optimal size, which is reached with more
and more processors as the ratio decreases. When Dc=Dw is
small enough, the bath tub shape of the curves is readily
explained: The execution time first decreases as the number
of processors increases because the load is distributed over
more resources; then, the relative cost of communications
becomes more important, and it no longer pays off to use
more resources. Note that, when the ratio Dc=Dw is too
large, we can see that, as expected, it is not worth it to
distribute the application among different processors.

Finally, we assess the usefulness of the two variants
(max-min fairness and quadratic programming) introduced
to refine the heuristic. Surprisingly enough, the impact of
both variants is not significant at all (see Figs. 13 and 14). In
fact, they turn out to be even less efficient in most cases than
the plain version of the heuristic, which turns out to be both
low-cost and very efficient.
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Fig. 3. First platform. Boxed nodes are selected machine nodes. There
are 38 selected machine nodes, connected through 49 routers and
92 communication links.

Fig. 4. Second platform. Boxed nodes are selected machine nodes. There are 90 selected machine nodes, connected through 43 routers and

136 communication links.



5.2 Assessing the Impact of Link Sharing

5.2.1 Platform Description

To evaluate the impact of link sharing, we experimented
with two platforms, one heterogeneous network of work-
stations located in ENS Lyon and the other in the University
of Strasbourg. Fig. 15 shows the Lyon platform, which is
composed of 14 computing resources and three routers. An
abstraction of the Lyon platform is represented in Fig. 16. In

this figure, circled nodes 0 to 13 are the processors, and

diamond nodes 14 to 16 are the routers. Edges are labeled

with link bandwidths. Processor cycle-times are gathered in

Table 1.
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Fig. 6. Second platform. Size of the optimal ring as a function of the ratio
Dc=Dw.

Fig. 7. First platform. Value of Tstep normalized byDw as a function of the
size of the solution ring, with a high communication-to-computation ratio:
Dc=Dw ¼ 0:064. In both cases, the optimal ring size is equal to 1: There
is not enough work to distribute, hence it is not worth it to distribute the
application among different processors.

Fig. 8. Second platform. Value of Tstep normalized by Dw as a function of
the size of the solution ring, with a high communication-to-computation
ratio: Dc=Dw ¼ 0:064. In both cases, the optimal ring size is equal to 1:
There is not enough work to distribute, hence it is not worth it to
distribute the application among different processors.

Fig. 5. First platform. Size of the optimal ring as a function of the ratio

Dc=Dw.

Fig. 9. First platform. Value of Tstep normalized by Dw as a function of
the size of the solution ring, with a balanced communication-to-
computation ratio: Dc=Dw ¼ 0:0064. The most efficient ring found has a
size equal to 10.

Fig. 10. Second platform. Value of Tstep normalized by Dw as a function
of the size of the solution ring, with a balanced communication-to-
computation ratio: Dc=Dw ¼ 0:0064. The most efficient ring found has a
size equal to 13.



Similarly, Fig. 17 represents the Strasbourg platform,
which is composed of 13 computing resources and six
routers. An abstraction of the Strasbourg platform is
represented in Fig. 18. In this figure, circled nodes 0 to 12
are the processors, and diamond nodes 13 to 18 are the
routers. Edges are labeled with link bandwidths. Processor
cycle-times are gathered in Table 2.

5.2.2 Results

To evaluate the impact of link sharing, we proceeded as
follows with the Lyon and Strasbourg platforms.

In the first heuristic, we return the solution ring computed
by a greedy heuristic for the SLICERING problem. This

heuristic takes a fully connected network as input and
iteratively builds a solution ring, quite similarly to the greedy

heuristic described in Section 4.4. The heuristic starts by
selecting the fastest processor. Then, it iteratively includes a

new node in the current solution ring. Assume that we have
already selected a ring of r processors. For each remaining

processor Pi, we search where to insert it in the current ring:
For each pair of successive processors ðPj; PkÞ in the ring, we
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Fig. 13. First platform. Impact of the refinements on the quality of the

solution.

Fig. 14. Second platform. Impact of the refinements on the quality of the
solution.

Fig. 12. Second platform. Value of Tstep normalized by Dw as a
function of the size of the solution ring, with a low communication-to-
computation ratio: Dc=Dw ¼ 0:00064. The most efficient ring found has
a size equal to 26.

Fig. 11. First platform. Value of Tstep normalized byDw as a function of the
size of the solution ring, with a low communication-to-computation ratio:
Dc=Dw ¼ 0:00064. The most efficient ring found has a size equal to 22.

Fig. 16. Abstraction of the Lyon platform.

Fig. 15. Topology of the Lyon platform.



compute the cost of insertingPi betweenPj andPk in the ring.

We retain the processor and the pair that minimize the

insertion cost, and we store the value of Tstep. This step of the

heuristic ismuch simpler than for the SHAREDRINGproblem,

and it has a complexity proportional to ðp� rÞ:r. Finally, we

grow the ring until we have p processors and we return the

minimal value obtained for Tstep. The total complexity isPp
r¼1ðp� rÞr ¼ Oðp3Þ. Note that it is important to try all

values of r because Tstep may not vary monotically with r.
How do we provide a (fake) completely connected

network as input of this heuristic? We have to build up the

communication matrix, that gives the capacity of each

(virtual) link between any processor pair. We use a shortest-

paths algorithm (in terms of bandwidth) to construct this

matrix, thereby simulating a complete interconnectiongraph.

For example, with the Lyon platform, to go fromprocessor 12

to processor 5, we use the following links: 13; 5; 4; 23. Link 13

connects processor 12 and router 15, link 5 connects routers 15

and 14, link 4 connects router 14 and processor 10, and link 23

connects processors 10 and 5. The maximum bandwidth

available is 30:51 Mb/s (these bandwidths were obtained

through an ssh connection (constraint of encoding, etc.),

which explains the relatively low value), and we store this

value in the matrix.
Clearly, the value of Tstep achieved by the heuristic may

well not be feasible because the actual network is not fully
connected. Therefore, we keep the ring and the commu-

nicating paths between adjacent processors in the ring, and
we compute feasible values using the max-min fairness

heuristic.
The second heuristic is the greedy heuristic designed in

Section 4.4 for the SHAREDRING problem, using the max-
min fairness heuristic. The major difference between the
two heuristics is that the latter takes link contention into

account when building up the solution ring.
To compare the value of

Tstep

Dw
returned by both algorithms,

we use various communication-to-computation ratios.
Tables 3 and 4 show these values for each platform. The

conclusions that can be drawn from these experiments is
that an accurate modeling of the communications has a
dramatic impact on the performance of the load-balancing

strategies.
Note that we cannot compare our heuristics to an

exhaustive search of the optimal ring. Indeed, such research
would be prohibitive as it requires not only to enumerate all

processor permutations, but also for each permutation to
test all possible routings (as using alternate routings may
decrease the amount of link sharing and thus increase the

available bandwidth).
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TABLE 1
Processor Cycle-Times (in Seconds per Megaflop)

for the Lyon Platform

Fig. 17. Topology of the Strasbourg platform.

TABLE 2
Processor Cycle-Times (in Seconds per Megaflop)

for the Strasbourg Platform

Fig. 18. Abstraction of the Strasbourg platform.

TABLE 3
Tstep=Dw for Each Heuristic on the Lyon Platform

(Number between Parentheses Denotes the
Size of the Corresponding Ring)

TABLE 4
Tstep=Dw for Each Heuristic on the Strasbourg Platform

(Number between Parentheses Denotes the
Size of the Corresponding Ring)



6 RELATED WORK

Load balancing strategies have been widely studied, both
for homogeneous platforms (see the collection of papers
[32]) and for heterogeneous clusters (see chapter 25 in [9]).
Distributing the computations (together with the associated
data) can be performed either dynamically or statically, or a
mixture of both.

The vast majority of the literature deals with dynamic
strategies that call for periodic remapping phases to remedy
observed load-imbalance. Even though we target static
schemes, we briefly discuss a few important references in
the field of dynamic approaches. Simple paradigms are
based upon the idea “use the past to predict the future,” i.e.,
use the currently observed speed of computation of each
machine to decide for the next distribution of work [11],
[12], [4]. Several authors [18], [30], [29], [35], [22] propose a
mapping policy which dynamically minimizes system
degradation (including the cost of remapping) for each
computation step. Other papers [36], [15] advocate local
schemes where data is exchanged only between neighbor
processors. Generally speaking, there is a challenge in
determining a trade off between the data distribution
parameters and the process spawning and possible migra-
tion policies. Redundant computations might also be
necessary to use a heterogeneous platform at its best
capabilities [28].

In the context of a library oriented approach, dynamic
strategies are difficult to introduce because they imply a
complicated memory management. Static strategies are less
general, but prove useful if enough knowledge can be
injected in the scheduling and mapping decision process. In
other words, if the characteristics of the target platform
(processor speeds and link capacities) and of the target
application (computation and communication costs asso-
ciated to each data chunk) are known rather accurately,
then excellent performance can be achieved through static
strategies. However, sophisticated data distribution
schemes (like the ones presented in this paper) are
mandatory to achieve such a good performance.

A survey of static load balancing techniques for mesh
computations has been written by Hu and Blake [22]. On the
same subject, see also the paper by Ichikawa and Yamashita
[23]. Several authors have dealt with the static implementa-
tion of linear algebra kernels on heterogeneous platforms.
Matrix multiplication has been studied by [25], [2]. LU and
QR decomposition have been discussed by Barbosa et al. [1].
Static partitioning schemes to map a two-dimensional data
matrix onto heterogeneous resources have been investigated
by Crandall and Quinn [14], Kaddoura et al. [24], and
Beaumont et al. [3]. Themain conclusions of these papers are
drawn for three kinds of problems:

. Distributing independent chunks of work to uni-
dimensional (linear) arrays of heterogeneous pro-
cessors is easy (see the algorithm in [2]).

. Distributing independent chunks of work to two-
dimensional processor grids is difficult. We have to
search for the best distribution of work for each
processor arrangement along the two-dimensional
grid, and there is an exponential number of such
arrangements as the grid size increases (see [1], [2]).

. Relaxing the geometrical constraints induced by
two-dimensional grids leads to irregular partition-
ings [14], [24], [3] that allow for a good load-
balancing, but are much more difficult to implement.
This approach has been extended to three-dimen-
sional problems [19].

In this perspective, this paper shows that the first problem,
i.e., distributing independent chunks of work to unidimen-
sional processor arrays, is no longer easy when communica-
tions are taken into account in addition to computations.

Related work also includes the vast amount of literature
dealing with divisible loads (see [6], [7]): Just as in this
paper, a big chunk of work can be arbitrarily divided into
several pieces, and these pieces are assigned to processors
so that the total execution time, i.e., the sum of the
communication and the computation, is minimized. How-
ever, in the divisible load theory, the target architecture is
fixed, typically a master-slave fork graph, or a tree, and the
communication links are dedicated.

7 CONCLUSION

In this paper, the major emphasis was toward a realistic
modeling of concurrent communications in cluster net-
works. One major result is the NP-completeness of
SLICERING and SHAREDRING problems. Rather than the
proof, the result itself is interesting because it provides yet
another evidence of the intrinsic difficulty of designing
algorithms for heterogeneous platforms. But, this negative
result should not be overemphasized. Indeed, another
important contribution of this paper is the design of an
efficient heuristic, that provides a pragmatic guidance to the
designer of iterative scientific computations. Implementing
such computations on commodity clusters made up of
several heterogeneous resources is a promising alternative
to using costly supercomputers.

One major limitation of our work is that it assumes some
static knowledge of the target heterogeneous platform to
take mapping and load-balancing decisions. In fact, load
balancing techniques can be introduced dynamically or
statically, or a mixture of both. On one hand, we may think
that dynamic strategies are likely to perform better because
the machine loads will be self-regulated, hence, self-
balanced, if processors pick up new tasks just as they
terminate their current computation. However, data de-
pendences, in addition to communication costs and control
overhead, may well lead to slow the whole process down to
the pace of the slowest processors. On the other hand, static
strategies will suppress (or at least minimize) data redis-
tributions and control overhead during execution. Further-
more, in the context of a scientific library, static allocations
seem to be necessary for a simple and efficient memory
allocation.

We agree, however, that targeting larger platforms such
as distributed collections of heterogeneous clusters, e.g.,
available from the metacomputing grid [20], may well
enforce the use of dynamic schemes. If the target computing
platform is unstable, with rapidly changing CPU loads and
communication hot-spots, a dynamic approach is likely to
be the only viable alternative. Still, even in such a context,
there is hope that injecting some static knowledge in the
dynamic scheduler will prove useful for a wide spectrum of
applications.
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