Leveraging Expert Usage to Speed up LLM Inference with Expert Parallelism

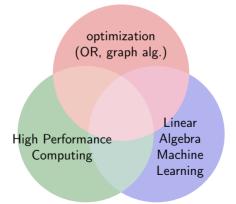
Loris Marchal (CNRS & ÉTS Montréal)

April 2025

Who am I?

- ► Senior researcher from CNRS ■■
- ► Actually at ILLS, in Montréal :: International Laboratory on Learning Systems

 ETS Montréal, McGill, MILA, CNRS, Univ. Paris Saclay



Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference Paging for Mixture-Of-Experts Models Design of parallel LLMs

Outline

Inference of Mixture-Of-Experts LLMs

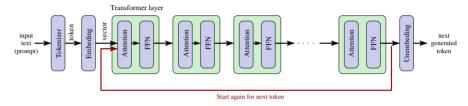
Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

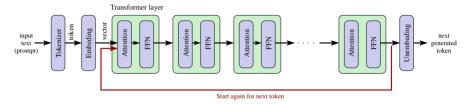
Other research projects for LLM inference Paging for Mixture-Of-Experts Models Design of parallel LLMs

Large Language Models (Transformer-based)



- Input sequence transformed into tokens (tokenization)
- Tokens encoded are vectors (embedding)
- ▶ Network made of a succession of layers, each layer contains:
 - ► Attention mechanism (relation with other tokens)
 - Feed Forward Network (MultiLayered Perceptron)
- ► Resulting vector converted into token (un-embedding)

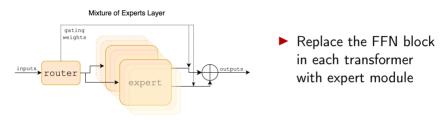
Challenge for high inference throughput



- Producing one token: going through the whole network, one layer after the other
- ▶ Token *i* needed to produce token i + 1
- ► LLMs have reached huge sizes: several high-end GPUs needed just to store the model weights
- Or resort to costly I/O (load weights when needed)

LLM with Mixture-Of-Experts

▶ MoE proposed to reduce computation at inference time



- ▶ Gating function (router) selects k experts out of n (Mixtral: 2 out of 8, Llama-7B: 4 / 16, DeepSeek-R1: 6 / 64)
- ► Large set of weights for training
- ► Smaller set used for inference

Rest of talk: we consider pairs of experts (e.g. Mixtral) but can be extended for any subset

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

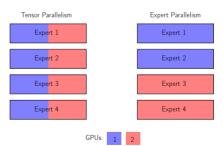
Experimental evaluation

Extension to larger subsets of experts

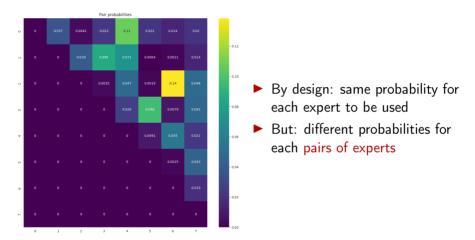
Other research projects for LLM inference Paging for Mixture-Of-Experts Models Design of parallel LLMs

Distributing experts on multiple GPUs

- ► Need for serving large language models fast
- ► Even on commodity machines
- Usually requires several GPUs to store the model
- ► How to distribute model weights?
- Tensor parallelism (may not be possible with complex experts³)
- 2. Expert parallelism (selected experts may lie on the same GPU, leaving other idle;)



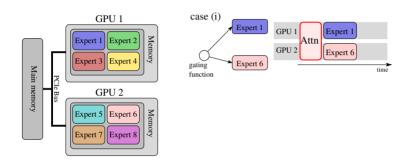
Probability of expert usage for a given layer



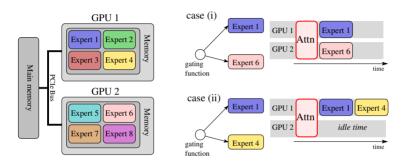
Key idea: map high-probability pairs of experts on distinct GPUs

⇒ allow for parallel inference

Problem 1: static allocation, no replication



Problem 1: static allocation, no replication



Objective:

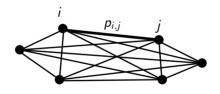
map experts to GPU so that frequent pairs are processed in parallel.

Problem complexity of static allocation

Input: usage probability of expert pairs

Output: mapping of experts to the 2 GPUs that minimizes expected

processing time

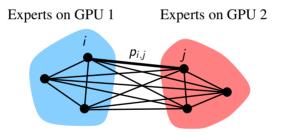


Problem complexity of static allocation

Input: usage probability of expert pairs

Output: mapping of experts to the 2 GPUs that minimizes expected

processing time



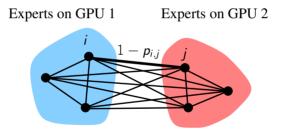
Search for graph bisection with maximal cut

Problem complexity of static allocation

Input: usage probability of expert pairs

Output: mapping of experts to the 2 GPUs that minimizes expected

processing time

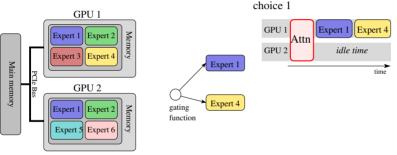


Search for graph bisection with maximal minimal cut

 \Rightarrow NP-complete problem

Problem 2: dynamic allocation with replication

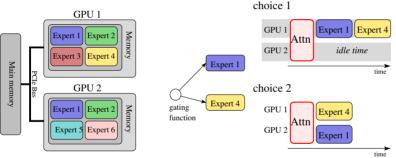
Mapping experts \rightarrow GPU is fixed, choose which replica is used to serve a given pair.



Replica choice (=dynamic allocation) influences total processing time

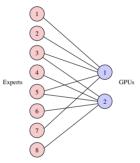
Problem 2: dynamic allocation with replication

Mapping experts \rightarrow GPU is fixed, choose which replica is used to serve a given pair.

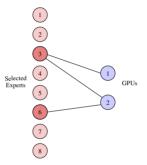


Replica choice (=dynamic allocation) influences total processing time

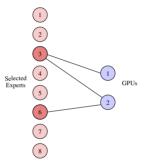
How to compute optimal dynamic allocation with minimal processing time?



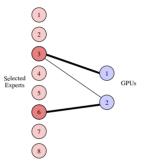
Build bipartite graph corresponding to expert mapping:



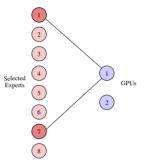
► For each expert pair (subset), consider graph restricted to the subset



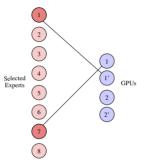
- ► For each expert pair (subset), consider graph restricted to the subset
- ▶ Is there a matching covering both experts?



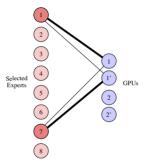
- ► For each expert pair (subset), consider graph restricted to the subset
- ▶ Is there a matching covering both experts?
 - ► Yes ? Processing time = 1



- ► For each expert pair (subset), consider graph restricted to the subset
- ▶ Is there a matching covering both experts?
 - ▶ Yes ? Processing time = 1
 - ► No?



- ► For each expert pair (subset), consider graph restricted to the subset
- ▶ Is there a matching covering both experts ?
 - ► Yes ? Processing time = 1
 - ▶ No? Duplicate GPUs (corresponding to 2 times slots on each GPUS)



- ► For each expert pair (subset), consider graph restricted to the subset
- ▶ Is there a matching covering both experts ?
 - ► Yes ? Processing time = 1
 - ▶ No? Duplicate GPUs (corresponding to 2 times slots on each GPUS)
 - ▶ There exists a matching covering both experts \Rightarrow Processing time = 2

How to solve the static allocation problem?

Two strategies that solves both problems at once:

1. Linear programming solution:

```
x_{i,k} = 1 iff expert i mapped on GPU k

y_{i,j,k} = 1 iff expert i on GPU k is used for pair i,j
```

- 2. Simple greedy heuristic
 - Start with empty mapping
 - ▶ Map new copy of expert *i* on GPU *k* with maximal gain on cost
 - ► Stop when memory full
 - Compute which copy to use with graph matching algorithm

Outline

Inference of Mixture-Of-Experts LLMs

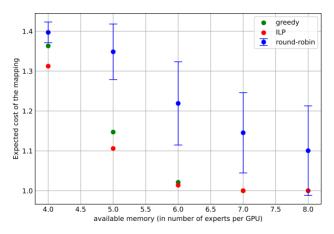
Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

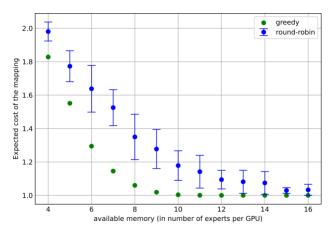
Other research projects for LLM inference Paging for Mixture-Of-Experts Models Design of parallel LLMs

Potential gain on expected processing time 1/2



Simulations with Mixtral usage (pairs of experts, 2 GPUs)

Potential gain on expected processing time 2/2

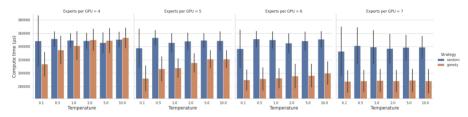


Simulations with DRBX usage (subset of 4 experts, 4 GPUs)

Preliminary experimental evaluation

- Mixtral model on HuggingFace (using only one layer for now)
- Added support for expert parallelism
- ▶ Real + Synthetic distributions of expert probabilities
 ⇒ test a range of variance
- ▶ 2 GPUs, range of memory constraint:
- 4 experts/GPU (no duplication) \rightarrow 8 experts/GPU (complete duplication)

Experiments with Mixtral on two GPUs



X: high variance in pair probability (left) - low variance (right)

Y: inference time (truncated)

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

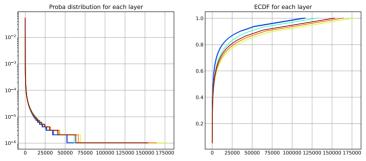
Other research projects for LLM inference Paging for Mixture-Of-Experts Models Design of parallel LLMs

Extension to larger subsets of experts

- ▶ Theory: Algorithms/Linear Program easily extended to any subset size
- ▶ Practice: DeepSeek-R1: choose 6 experts among 64 experts → 74.974.368 subsets
- ▶ Up to 6 matching computations per subset, just to evaluate the cost of a solution!
- ► Many more for the greedy algorithm
- ► Impractical computation times ©
- ► Forget about optimization? ©

Simplifying the problem

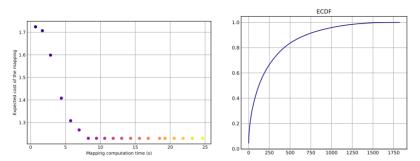
Not all expert subsets are created equal:



subset usage for DeepSeek-R1, first 6 layers

- ▶ 0.2 % of the subsets account for 99% of the subset usage
- ▶ We can safely consider only 150k subsets for DeepDeek
- ▶ 0.03 % of the subsets account for 85% of the subset usage
- ► Consider 25k subsets should be enough for sufficient accuracy

Preliminary experiments



Simulations with the DRBX model and greedy mapping heuristic Using from 90 (left) to 1820 (right) subsets

Using only subsets that cover 80% of the cases is enough to get optimal performance

Conclusions/Perspectives

- ▶ Proof-of-concept for expert parallelism at inference
- ► Take advantage of usage statistics for better performance
- What if memory is too limited ? How to efficiently use expert pair popularities?

More at https://hal.science/hal-04994839

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference Paging for Mixture-Of-Experts Models Design of parallel LLMs

Paging for Mixture-Of-Experts Models

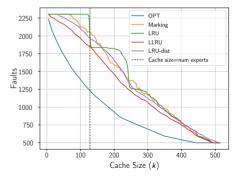
What to do if not enough memory to store all experts?

- Sequence of experts (a few experts per layer)
- ▶ Some experts may reappear soon, some of them later
- ► Special case of cache management to avoid costly expert loading

Paging for Mixture-Of-Experts Models

What to do if not enough memory to store all experts?

- Sequence of experts (a few experts per layer)
- ▶ Some experts may reappear soon, some of them later
- ► Special case of cache management to avoid costly expert loading
- Definition of the layered paging problem
- New lower bounds on the cache misses, both for deterministic and randomized algorithms
- Layer-aware LRU eviction policy to avoid worse-case scenarios
- Use predictors to improve performance?

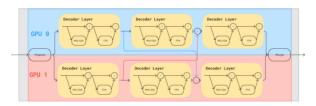


Design of parallel LLMs

- ▶ Inference throughput limited by the sequentiality between layers
- Model parallelism:
 - © Good to training (batches processed independently, may be pipelined)
 - © Useless for inference, except for distributing the model
- ► Tensor parallelism:
 - © Costly synchronizations (all-reduce)

Design of parallel LLMs

- ▶ Inference throughput limited by the sequentiality between layers
- ► Model parallelism:
 - © Good to training (batches processed independently, may be pipelined)
 - ② Useless for inference, except for distributing the model
- ► Tensor parallelism:
 - © Costly synchronizations (all-reduce)



- ► Run sub-models in parallel, one on each GPU
- ► Synchronizations every few layers
- ► Non-blocking synchronizations