
Leveraging Expert Usage to
Speed up LLM Inference with

Expert Parallelism

Loris Marchal
(CNRS & ÉTS Montréal)

April 2025



2 / 28

Who am I?

▶ Senior researcher from CNRS
▶ Actually at ILLS, in Montréal

International Laboratory on Learning Systems
ETS Montréal, McGill, MILA, CNRS, Univ. Paris Saclay

optimization
(OR, graph alg.)

High Performance
Computing

Linear
Algebra
Machine
Learning



3 / 28

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference
Paging for Mixture-Of-Experts Models
Design of parallel LLMs



4 / 28

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference
Paging for Mixture-Of-Experts Models
Design of parallel LLMs



5 / 28

Large Language Models (Transformer-based)

generated

token

text

(prompt)

input next

Start again for next token

U
ne

m
be

di
ng

Transformer layer

ve
ct

or

to
ke

n

To
ke

ni
ze

r

E
m

be
di

ng

A
tte

nt
io

n

FF
N

A
tte

nt
io

n

FF
N

A
tte

nt
io

n

FF
N

A
tte

nt
io

n

FF
N

▶ Input sequence transformed into tokens (tokenization)
▶ Tokens encoded are vectors (embedding)
▶ Network made of a succession of layers, each layer contains:

▶ Attention mechanism (relation with other tokens)
▶ Feed Forward Network (MultiLayered Perceptron)

▶ Resulting vector converted into token (un-embedding)



6 / 28

Challenge for high inference throughput

generated

token

text

(prompt)

input next

Start again for next token

U
ne

m
be

di
ng

Transformer layer

ve
ct

or

to
ke

n

To
ke

ni
ze

r

E
m

be
di

ng

A
tte

nt
io

n

FF
N

A
tte

nt
io

n

FF
N

A
tte

nt
io

n

FF
N

A
tte

nt
io

n

FF
N

▶ Producing one token: going through the whole network, one layer
after the other

▶ Token i needed to produce token i + 1
▶ LLMs have reached huge sizes: several high-end GPUs needed just to

store the model weights
▶ Or resort to costly I/O (load weights when needed)



7 / 28

LLM with Mixture-Of-Experts

▶ MoE proposed to reduce computation at inference time

Figure 1: Mixture of Experts Layer. Each input vector is assigned to 2 of the 8 experts by a router. The
layer’s output is the weighted sum of the outputs of the two selected experts. In Mixtral, an expert is a standard
feedforward block as in a vanilla transformer architecture.

Mixtral demonstrates superior capabilities in mathematics, code generation, and tasks that require
multilingual understanding, significantly outperforming Llama 2 70B in these domains. Experiments
show that Mixtral is able to successfully retrieve information from its context window of 32k tokens,
regardless of the sequence length and the location of the information in the sequence.

We also present Mixtral 8x7B – Instruct, a chat model fine-tuned to follow instructions using
supervised fine-tuning and Direct Preference Optimization [25]. Its performance notably surpasses
that of GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B – chat model on human evaluation
benchmarks. Mixtral – Instruct also demonstrates reduced biases, and a more balanced sentiment
profile in benchmarks such as BBQ, and BOLD.

We release both Mixtral 8x7B and Mixtral 8x7B – Instruct under the Apache 2.0 license1, free for
academic and commercial usage, ensuring broad accessibility and potential for diverse applications.
To enable the community to run Mixtral with a fully open-source stack, we submitted changes to
the vLLM project, which integrates Megablocks CUDA kernels for efficient inference. Skypilot also
allows the deployment of vLLM endpoints on any instance in the cloud.

2 Architectural details

Parameter Value

dim 4096
n_layers 32
head_dim 128
hidden_dim 14336
n_heads 32
n_kv_heads 8
context_len 32768
vocab_size 32000
num_experts 8
top_k_experts 2

Table 1: Model architecture.

Mixtral is based on a transformer architecture [31] and uses the same
modifications as described in [18], with the notable exceptions that Mix-
tral supports a fully dense context length of 32k tokens, and the feed-
forward blocks are replaced by Mixture-of-Expert layers (Section 2.1).
The model architecture parameters are summarized in Table 1.

2.1 Sparse Mixture of Experts
We present a brief overview of the Mixture of Experts layer (Figure 1).
For a more in-depth overview, see [12]. The output of the MoE module
for a given input x is determined by the weighted sum of the outputs
of the expert networks, where the weights are given by the gating
network’s output. i.e. given n expert networks {E0, Ei, ..., En�1}, the
output of the expert layer is given by:

n�1X

i=0

G(x)i · Ei(x).

Here, G(x)i denotes the n-dimensional output of the gating network for the i-th expert, and Ei(x)
is the output of the i-th expert network. If the gating vector is sparse, we can avoid computing
the outputs of experts whose gates are zero. There are multiple alternative ways of implementing
G(x) [6, 15, 35], but a simple and performant one is implemented by taking the softmax over the
Top-K logits of a linear layer [28]. We use

G(x) := Softmax(TopK(x · Wg)),

where (TopK(`))i := `i if `i is among the top-K coordinates of logits ` 2 Rn and (TopK(`))i := �1
otherwise. The value of K – the number of experts used per token – is a hyper-parameter that modu-
lates the amount of compute used to process each token. If one increases n while keeping K fixed, one

1https://mistral.ai/news/mixtral-of-experts/

2

▶ Replace the FFN block
in each transformer
with expert module

▶ Gating function (router) selects k experts out of n
(Mixtral: 2 out of 8, Llama-7B: 4 / 16, DeepSeek-R1: 6 / 64)

▶ Large set of weights for training
▶ Smaller set used for inference

Rest of talk: we consider pairs of experts (e.g. Mixtral) but can be
extended for any subset



8 / 28

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference
Paging for Mixture-Of-Experts Models
Design of parallel LLMs



9 / 28

Distributing experts on multiple GPUs

▶ Need for serving large language models fast
▶ Even on commodity machines
▶ Usually requires several GPUs to store the model
▶ How to distribute model weights?

1. Tensor parallelism
(may not be possible
with complex experts/)

2. Expert parallelism
(selected experts may lie on the
same GPU, leaving other idle/)

Expert 3

2GPUs:

Expert 1

Expert 2

Expert 3

Expert 4Expert 4

Expert ParallelismTensor Parallelism

Expert 1

Expert 2

1



10 / 28

Probability of expert usage for a given layer

▶ By design: same probability for
each expert to be used

▶ But: different probabilities for
each pairs of experts

Key idea: map high-probability pairs of experts on distinct GPUs
⇒ allow for parallel inference



11 / 28

Problem 1: static allocation, no replication

PC
Ie

B
us

M
em

ory

GPU 2

GPU 1

M
em

ory

M
ain

m
em

ory

Expert 1 Expert 2

Expert 4Expert 3

Expert 5 Expert 6

Expert 8Expert 7

time

GPU 2 Expert 6

Expert 1
Attn

case (i)
Expert 1

Expert 6gating
function

GPU 1

idle time

GPU 1

GPU 2

Expert 4Expert 1
Attn

case (ii)
Expert 1

Expert 4gating
function

time

Objective:
map experts to GPU so that frequent pairs are processed in parallel.



11 / 28

Problem 1: static allocation, no replication

PC
Ie

B
us

M
em

ory

GPU 2

GPU 1

M
em

ory

M
ain

m
em

ory

Expert 1 Expert 2

Expert 4Expert 3

Expert 5 Expert 6

Expert 8Expert 7

time

GPU 2 Expert 6

Expert 1
Attn

case (i)
Expert 1

Expert 6gating
function

GPU 1

idle time

GPU 1

GPU 2

Expert 4Expert 1
Attn

case (ii)
Expert 1

Expert 4gating
function

time

Objective:
map experts to GPU so that frequent pairs are processed in parallel.



12 / 28

Problem complexity of static allocation

Input: usage probability of expert pairs
Output: mapping of experts to the 2 GPUs that minimizes expected
processing time

pi ,j
i

j

Search for graph bisection with maximal cut
⇒ NP-complete problem



12 / 28

Problem complexity of static allocation

Input: usage probability of expert pairs
Output: mapping of experts to the 2 GPUs that minimizes expected
processing time

Experts on GPU 2Experts on GPU 1

pi ,j
i

j

Search for graph bisection with maximal cut

⇒ NP-complete problem



12 / 28

Problem complexity of static allocation

Input: usage probability of expert pairs
Output: mapping of experts to the 2 GPUs that minimizes expected
processing time

Experts on GPU 2Experts on GPU 1

1 − pi ,j
i

j

Search for graph bisection with maximal minimal cut
⇒ NP-complete problem



13 / 28

Problem 2: dynamic allocation with replication

Mapping experts→GPU is fixed, choose which replica is used to serve a
given pair.

Expert 6

Expert 2

M
ain

m
em

ory

PC
Ie

B
us

M
em

ory

GPU 2

GPU 1

M
em

ory

Expert 1

Expert 3

Expert 2

Expert 4

Expert 1

Expert 5

choice 1

function

Expert 4gating

time

idle time

GPU 1

GPU 2
Attn

Expert 1 Expert 4

Expert 1

Replica choice (=dynamic allocation) influences total processing time

How to compute optimal dynamic allocation with minimal processing time?



13 / 28

Problem 2: dynamic allocation with replication

Mapping experts→GPU is fixed, choose which replica is used to serve a
given pair.

Expert 6

Expert 2

M
ain

m
em

ory

PC
Ie

B
us

M
em

ory

GPU 2

GPU 1

M
em

ory

Expert 1

Expert 3

Expert 2

Expert 4

Expert 1

Expert 5

Expert 4
Attn

GPU 2

GPU 1

choice 2

time

Expert 1

choice 1

function

Expert 4gating

time

idle time

GPU 1

GPU 2
Attn

Expert 1 Expert 4

Expert 1

Replica choice (=dynamic allocation) influences total processing time

How to compute optimal dynamic allocation with minimal processing time?



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

2

1

GPUs

8

7

6

5

4

3

2

1

Experts

▶ For each expert pair (subset), consider graph restricted to the subset
▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1
▶ No ?

Duplicate GPUs (corresponding to 2 times slots on each GPUS)

▶ There exists a matching covering both experts ⇒ Processing time = 2



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

1

2

GPUs

2

1

8

7

6

5

4

3

Experts
Selected

▶ For each expert pair (subset), consider graph restricted to the subset

▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1
▶ No ?

Duplicate GPUs (corresponding to 2 times slots on each GPUS)

▶ There exists a matching covering both experts ⇒ Processing time = 2



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

1

2

GPUs

2

1

8

7

6

5

4

3

Experts
Selected

▶ For each expert pair (subset), consider graph restricted to the subset
▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1
▶ No ?

Duplicate GPUs (corresponding to 2 times slots on each GPUS)

▶ There exists a matching covering both experts ⇒ Processing time = 2



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

1

2

GPUs

2

1

8

7

6

5

4

3

Experts
Selected

▶ For each expert pair (subset), consider graph restricted to the subset
▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1

▶ No ?

Duplicate GPUs (corresponding to 2 times slots on each GPUS)

▶ There exists a matching covering both experts ⇒ Processing time = 2



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

2

1

GPUs

2

1

8

7

6

5

4

3

Experts
Selected

▶ For each expert pair (subset), consider graph restricted to the subset
▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1
▶ No ?

Duplicate GPUs (corresponding to 2 times slots on each GPUS)
▶ There exists a matching covering both experts ⇒ Processing time = 2



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

1’

2’

2

1

GPUs

2

1

8

7

6

5

4

3

Experts
Selected

▶ For each expert pair (subset), consider graph restricted to the subset
▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1
▶ No ? Duplicate GPUs (corresponding to 2 times slots on each GPUS)

▶ There exists a matching covering both experts ⇒ Processing time = 2



14 / 28

Solving the dynamic allocation problem

Build bipartite graph corresponding to expert mapping:

1’

2’

2

1

GPUs

2

1

8

7

6

5

4

3

Experts
Selected

▶ For each expert pair (subset), consider graph restricted to the subset
▶ Is there a matching covering both experts ?

▶ Yes ? Processing time = 1
▶ No ? Duplicate GPUs (corresponding to 2 times slots on each GPUS)
▶ There exists a matching covering both experts ⇒ Processing time = 2



15 / 28

How to solve the static allocation problem?

Two strategies that solves both problems at once:
1. Linear programming solution:

xi ,k = 1 iff expert i mapped on GPU k
yi ,j ,k = 1 iff expert i on GPU k is used for pair i , j

2. Simple greedy heuristic
▶ Start with empty mapping
▶ Map new copy of expert i on GPU k with maximal gain on cost
▶ Stop when memory full
▶ Compute which copy to use with graph matching algorithm



16 / 28

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference
Paging for Mixture-Of-Experts Models
Design of parallel LLMs



17 / 28

Potential gain on expected processing time 1/2

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
available memory (in number of experts per GPU)

1.0

1.1

1.2

1.3

1.4

Ex
pe

ct
ed

 c
os

t o
f t

he
 m

ap
pi

ng

greedy
ILP
round-robin

Simulations with Mixtral usage (pairs of experts, 2 GPUs)



18 / 28

Potential gain on expected processing time 2/2

4 6 8 10 12 14 16
available memory (in number of experts per GPU)

1.0

1.2

1.4

1.6

1.8

2.0

Ex
pe

ct
ed

 c
os

t o
f t

he
 m

ap
pi

ng

greedy
round-robin

Simulations with DRBX usage (subset of 4 experts, 4 GPUs)



19 / 28

Preliminary experimental evaluation

▶ Mixtral model on HuggingFace
(using only one layer for now)

▶ Added support for expert parallelism
▶ Real + Synthetic distributions of expert probabilities

⇒ test a range of variance
▶ 2 GPUs, range of memory constraint:

4 experts/GPU (no duplication) → 8 experts/GPU (complete duplication)



20 / 28

Experiments with Mixtral on two GPUs

X: high variance in pair probability (left) – low variance (right)
Y: inference time (truncated)



21 / 28

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference
Paging for Mixture-Of-Experts Models
Design of parallel LLMs



22 / 28

Extension to larger subsets of experts

▶ Theory: Algorithms/Linear Program easily extended to any subset size

▶ Practice: DeepSeek-R1: choose 6 experts among 64 experts
→ 74.974.368 subsets

▶ Up to 6 matching computations per subset, just to evaluate the cost
of a solution!

▶ Many more for the greedy algorithm

▶ Impractical computation times /
▶ Forget about optimization?/



23 / 28

Simplifying the problem
Not all expert subsets are created equal:

0 25000 50000 75000 100000 125000 150000 175000
10 6

10 5

10 4

10 3

10 2

Proba distribution for each layer

0 25000 50000 75000 100000 125000 150000 175000

0.2

0.4

0.6

0.8

1.0

ECDF for each layer

subset usage for DeepSeek-R1, first 6 layers

▶ 0.2 % of the subsets account for 99% of the subset usage
▶ We can safely consider only 150k subsets for DeepDeek
▶ 0.03 % of the subsets account for 85% of the subset usage
▶ Consider 25k subsets should be enough for sufficient accuracy



24 / 28

Preliminary experiments

0 5 10 15 20 25
Mapping computation time (s)

1.3

1.4

1.5

1.6

1.7

Ex
pe

ct
ed

 c
os

t o
f t

he
 m

ap
pi

ng

0 250 500 750 1000 1250 1500 17500.0

0.2

0.4

0.6

0.8

1.0

ECDF

Simulations with the DRBX model and greedy mapping heuristic
Using from 90 (left) to 1820 (right) subsets

Using only subsets that cover 80% of the cases is enough to get optimal
performance



25 / 28

Conclusions/Perspectives

▶ Proof-of-concept for expert parallelism at inference

▶ Take advantage of usage statistics for better performance

▶ What if memory is too limited ? How to efficiently use expert pair
popularities?

More at https://hal.science/hal-04994839

https://hal.science/hal-04994839


26 / 28

Outline

Inference of Mixture-Of-Experts LLMs

Opportunities for parallelism and optimization

Experimental evaluation

Extension to larger subsets of experts

Other research projects for LLM inference
Paging for Mixture-Of-Experts Models
Design of parallel LLMs



27 / 28

Paging for Mixture-Of-Experts Models

What to do if not enough memory to store all experts?
▶ Sequence of experts (a few experts per layer)
▶ Some experts may reappear soon, some of them later
▶ Special case of cache management to avoid costly expert loading

▶ Definition of the layered paging problem
▶ New lower bounds on the cache misses,

both for deterministic and randomized
algorithms

▶ Layer-aware LRU eviction policy
to avoid worse-case scenarios

▶ Use predictors to improve performance? 0 100 200 300 400 500
Cache Size (k)

500

750

1000

1250

1500

1750

2000

2250

Fa
ul

ts

OPT
Marking
LRU
LLRU
LRU-dist
Cache size=num experts

https://hal.science/hal-04961621

https://hal.science/hal-04961621


27 / 28

Paging for Mixture-Of-Experts Models

What to do if not enough memory to store all experts?
▶ Sequence of experts (a few experts per layer)
▶ Some experts may reappear soon, some of them later
▶ Special case of cache management to avoid costly expert loading

▶ Definition of the layered paging problem
▶ New lower bounds on the cache misses,

both for deterministic and randomized
algorithms

▶ Layer-aware LRU eviction policy
to avoid worse-case scenarios

▶ Use predictors to improve performance? 0 100 200 300 400 500
Cache Size (k)

500

750

1000

1250

1500

1750

2000

2250

Fa
ul

ts

OPT
Marking
LRU
LLRU
LRU-dist
Cache size=num experts

https://hal.science/hal-04961621

https://hal.science/hal-04961621


28 / 28

Design of parallel LLMs
▶ Inference throughput limited by the sequentiality between layers
▶ Model parallelism:

, Good to training (batches processed independently, may be pipelined)
/ Useless for inference, except for distributing the model

▶ Tensor parallelism:
/ Costly synchronizations (all-reduce)

▶ Run sub-models in parallel, one on each GPU
▶ Synchronizations every few layers
▶ Non-blocking synchronizations

https://hal.science/hal-04920049

https://hal.science/hal-04920049


28 / 28

Design of parallel LLMs
▶ Inference throughput limited by the sequentiality between layers
▶ Model parallelism:

, Good to training (batches processed independently, may be pipelined)
/ Useless for inference, except for distributing the model

▶ Tensor parallelism:
/ Costly synchronizations (all-reduce)

▶ Run sub-models in parallel, one on each GPU
▶ Synchronizations every few layers
▶ Non-blocking synchronizations

https://hal.science/hal-04920049

https://hal.science/hal-04920049

	Personnal presentation
	Inference of Mixture-Of-Experts LLMs
	Opportunities for parallelism and optimization
	Experimental evaluation
	Extension to larger subsets of experts
	Other research projects for LLM inference
	Paging for Mixture-Of-Experts Models
	Design of parallel LLMs


