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Exercice 1 (Plus on est de fous, plus on rit).

Definition 1. Let ϵ ∈ [0; 1]N×N. A scheme ΠS is ϵ-secure if for all probabilistic algorithm A, which takes
a time of computation at most t: P

[
InforgA,Π (λ) = 1

]
≤ ϵ(t, λ).

Definition 2. Let ϵ ∈ [0; 1]N×N. A scheme ΠS is ϵ-secure in a multi-user context if for all probabilistic
algorithm A, which takes a time of computation at most t and does at most q queries OCreate:

P
[
InforgMUA,Π(λ) = 1

]
≤ ϵ(t, q, λ).

Show that if ΠS is ϵ-secure (definition 1), then it is qϵ-secure in a multi-user context (definition 2).
Hint : We could try to guess which user among the q’s will be the “target” and imagine that this one has
the key of the original single-user game (and the other (q − 1) keys are artificially built).

InforgMUA,Π(λ):

C ← U ← Q← ∅
(vk,m, σ)← AOCreate(),OCorrupt(·),OSign(·,·)

Retourner Π.Verify (vk,m, σ)
∧ ((vk,m) ̸∈ Q) ∧ ((vk, ·) ∈ U)

OCreate ():

(sk, vk)← Π.KeyGen
(
1λ

)
U := U ∪ {(sk, vk)}
Retourner vk
OCorrupt (vk):
Q := Q ∪ ({vk} ×M)
Si ∃sk/(sk, vk) ∈ U
Retourner sk
Sinon Retourner ⊥

OSign (vk,m):
Q := Q ∪ {(vk,m)}
Si ∃sk/(sk, vk) ∈ U
σ ← Π.Sign(sk,m)
Retourner σ
Sinon Retourner ⊥

Figure 1: Jeu de sécurité d’inforgeabilité dans un contexte multi-utilisateurs.

Exercice 2. Let f ∈ RN, show the following properties are equivalent:

1. f is negligeable in all function of
(
x 7→ 1

P (x)

)
P∈Z[X]

⊂ RN.

2. |f | is asymptotically upper bounded by all function of
(
x 7→ 1

xk

)
k∈N ⊂ RN.

Then show this property define a sub-Z[X]-module of RN.

Exercice 3. Is f a negligeable function

1. Let c ∈ N : f(λ) = 1

(λc)
.

2. f(λ) = 1
elog2(λ)

.

3. f(λ) = λ!
λλ .

Exercice 4.

Definition 3 (Statistical distance). Let X and Y be two discrete random variables over a countable set
A. The statistical distance between X and Y is the quantity

∆(X,Y ) =
1

2

∑
a∈A

|P[X = a]− P[Y = a]| .

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary
symmetric function that satisfies the triangle inequality:
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• ∆(X,Y ) ≥ 0, with equality if and only if X and Y are identically distributed,

• ∆(X,Y ) = ∆(Y,X),

• ∆(X,Z) ≤ ∆(X,Y ) + ∆(Y,Z).

1. Show that if ∆(X,Y ) = 0, then for any deterministic adversary A, we have AdvA(X,Y ) :=
∆ (A(X),A(Y )) = 0.

In the next question, we will prove the data processing inequality for the statistical distance.

Let X,Y be two random variables over a common set A.

2. Let f : A→ S be a deterministic function with domain S. Show that

∆(f(X), f(Y )) ≤ ∆(X,Y ).

3. Let Z be another random variable with domain Z, statistically independent from X and Y . Show
that

∆((X,Z), (Y,Z)) = ∆(X,Y ).

4. Let f be a (possibly probabilistic) function with domain S. Define f ′ a deterministic function and R
a random variable independent from X and Y such that for any input x, we have f ′(x,R) = f(x).
The random variable R is the internal randomness of f . Using f ′ and R, show that ∆(f(X), f(Y )) =
∆(f ′(X,R), f ′(Y,R)) ≤ ∆(X,Y ).

5. Show that for any (possibly probabilistic) adversary A, we have AdvA(X,Y ) ≤ ∆(X,Y ).

Exercice 5. We consider two distributions D0 and D1 over {0, 1}n. You found a distinguisher A on
internet. However, you cannot find anywhere in the documentation its performances!

1. Assuming that you have access to as many samples as you like from D0 and D1 (you can for
instance assume that you can sample yourself from these distributions), how would you estimate
the advantage of A? Hint: use the Chernoff Bound: P(|X − np| ≥ nt) ≤ 2 exp(−2nt2), where X
follows a binomial distribution with parameters (n, p).

By convention, you want to design a distinguisher such that it outputs 1 when it thinks the sample
comes from D1 and 0 otherwise. However, because of the definition of advantage, it is also possible
to design distinguishers that do the reverse, and still have the same advantage. For instance, the
above distinguisher A may often be “wrong”. This could be troublesome if your aim is to use its
output to do further computations. Luckily, there exists a way to transform A into a distinguisher
that is more often right than wrong, whatever it previously did.

2. The definition of advantage given in class may be called Absolute Advantage, for the purpose of
this exercise. In this question, we define the Positive Advantage of A as

AdvP (A) := P(A Exp1−−−→ 1)− P(A Exp0−−−→ 1).

Given a distinguisher A with Absolute Advantage ε, we build a distinguisher A′ that does the
following:

(a) Upon receiving a sample y ←↩ Db, it runs b′ ← A(y).
(b) It samples x0 ←↩ D0 and x1 ←↩ D1 and runs b0 ← A(x0) and b1 ← A(x1).

(c) It returns b′ if b0 = 0 and b1 = 1. It returns 1− b′ if b0 = 1 and b1 = 0.

(d) In any other cases, it returns a uniform bit.

Prove that the Positive Advantage of A′ is ε2.
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