
école normale supérieure 2024-2025
Département d’informatique

Introduction à la cryptologie
TD n◦ 1 : Top modèle

Exercice 1 (Plus on est de fous, plus on rit).

Definition 1. Let ϵ ∈ [0; 1]N×N. A scheme ΠS is ϵ-secure if for all probabilistic algorithm A, which takes
a time of computation at most t: P

[
InforgA,Π (λ) = 1

]
≤ ϵ(t, λ).

Definition 2. Let ϵ ∈ [0; 1]N×N. A scheme ΠS is ϵ-secure in a multi-user context if for all probabilistic
algorithm A, which takes a time of computation at most t and does at most q queries OCreate:

P
[
InforgMUA,Π(λ) = 1

]
≤ ϵ(t, q, λ).

Show that if ΠS is ϵ-secure (definition 1), then it is qϵ-secure in a multi-user context (definition 2).
Hint : We could try to guess which user among the q’s will be the “target” and imagine that this one has
the key of the original single-user game (and the other (q − 1) keys are artificially built).

InforgMUA,Π(λ):

C ← U ← Q← ∅
(vk,m, σ)← AOCreate(),OCorrupt(·),OSign(·,·)

Retourner Π.Verify (vk,m, σ)
∧ ((vk,m) ̸∈ Q) ∧ ((vk, ·) ∈ U)

OCreate ():

(sk, vk)← Π.KeyGen
(
1λ

)
U := U ∪ {(sk, vk)}
Retourner vk
OCorrupt (vk):
Q := Q ∪ ({vk} ×M)
Si ∃sk/(sk, vk) ∈ U
Retourner sk
Sinon Retourner ⊥

OSign (vk,m):
Q := Q ∪ {(vk,m)}
Si ∃sk/(sk, vk) ∈ U
σ ← Π.Sign(sk,m)
Retourner σ
Sinon Retourner ⊥

Figure 1: Jeu de sécurité d’inforgeabilité dans un contexte multi-utilisateurs.

Solution: We start by recalling the game InforgA,Π for the security of a scheme Π in the single user
context.

InforgA,Π(λ):

Q← ∅
(sk, vk)← Π.KeyGen(1λ)

(m,σ)← AOSignsk
(·)(vk)

Return Π.Verify (vk,m, σ) ∧ (m ̸∈ Q)

OSignsk (m):
Q← Q ∪ {m}
Return Π.Sign(sk,m)

Figure 2: Security game for unforgeability in a single user context

Suppose that ΠS is ε-secure according to definition 1. For all probabilistic algorithm A with runnning
time ≤ t,

P
[
InforgA,ΠS

(λ) = 1
]
≤ ϵ(t, λ).

We show that ΠS is qε-secure according to definition 2.
The sketch of the proof is the following. Let A be a probabilistic algorithm with computation time ≤ t
that does at most q queries to OCreate. The goal is to bound pA = P

[
InforgMUA,ΠS

(λ) = 1
]

by qϵ.
To do so, we will build a probabilistic algorithm B from A for the game InforgB,ΠS

(λ) and express the
probability pB = P

[
InforgB,ΠS

(λ) = 1
]

as f(pA) for some function f . Yet by assumption, we have

pB = f(pA) ≤ ε.

1

And hopefully, this inequality will give us pA ≤ qε. Note that in this example, we would like to have
f(x) = 1/q · x in order to conclude.
We build the algorithm BOSignsk(·)(vk) as follows.

BOSignsk(·)(vk):
CA ← UA ← QA ← ∅
Sample 1 ≤ j ≤ q uniformly at random
Run AOCreate(),OCorrupt(·),OSign(·,·)

by implementing the three oracles
OCreate () ,OCorrupt (·) ,OSign (·, ·) as
specified on the right-hand side of this figure
and get (vkA,mA, σA) as result
If vkA = vk Return (mA, σA)
Else Return ⊥

OCreate ():
If it is the j-th call of A to OCreate:
Return vk
Else:
(s̄k, v̄k)← Π.KeyGen(1λ)
UA ← UA ∪ {(s̄k, v̄k)}
Return v̄k

OCorrupt
(
v̄k

)
:

QA := QA ∪
(
{v̄k} ×M

)
If ∃s̄k/(s̄k, v̄k) ∈ UA
Return s̄k
Else Return ⊥

OSign
(
v̄k,m

)
:

QA := QA ∪ {(v̄k,m)}
If v̄k = vk
Return OSignsk(vk,m)
If ∃s̄k/(s̄k, v̄k) ∈ Ū
σ ← Π.Sign(s̄k,m)
Return σ
Else Return ⊥

Figure 3: Security game for unforgeability in a single user context

In the view of A, the simulation is perfect, thus A the output of this simulation of A satifies

P
[
InforgMUSimu(A),ΠS

(λ) = 1
]
= pA.

Moreover, let 1 ≤ i ≤ q be such that vkA has been created at the i-th call to the oracle OCreate, then
vkA = vk iff i = j and thus this happens with probability 1/q. Finally, InforgB,ΠS

= 1 if and only if
vkA = vk and InforgMUA,ΠS

= 1 and these two events are independent. Hence we get

pB =
1

q
· pA.

However, by assumption, pB ≤ ε. Therefore, pA ≤ qε and we conclude that the scheme ΠS is qε-secure
in a multi-user context. 2

Exercice 2. Let f ∈ RN, show the following properties are equivalent:

1. f is negligeable in all function of
(
x 7→ 1

P (x)

)
P∈Z[X]

⊂ RN.

2. |f | is asymptotically upper bounded by all function of
(
x 7→ 1

xk

)
k∈N ⊂ RN.

Then show this property define a sub-Z[X]-module of RN.

Exercice 3. Is f a negligeable function

1. Let c ∈ N : f(λ) = 1

(λc)
.

2. f(λ) = 1
elog2(λ)

.

3. f(λ) = 1
elog2(λ)

.

4. f(λ) = λ!
λλ .

Exercice 4.

Definition 3 (Statistical distance). Let X and Y be two discrete random variables over a countable set
A. The statistical distance between X and Y is the quantity

∆(X,Y) =
1

2

∑
a∈A
|P[X = a]− P[Y = a]| .

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary
symmetric function that satisfies the triangle inequality:

2

• ∆(X,Y) ≥ 0, with equality if and only if X and Y are identically distributed,

• ∆(X,Y) = ∆(Y,X),

• ∆(X,Z) ≤ ∆(X,Y) + ∆(Y,Z).

1. Show that if ∆(X,Y) = 0, then for any deterministic adversary A, we have AdvA(X,Y) :=
∆ (A(X),A(Y)) = 0.

Solution: By definition, AdvA(X,Y) = |Pa←X [A(a) = 1]−Pa←Y [A(a) = 1]|. Since ∆(X,Y) = 0,
we directly obtain that P[X = a] = P[Y = a] for all a ∈ S, or in other words, X and Y are identically
distributed. As a result, Pa←X [A(a) = 1] = Pa←Y [A(a) = 1] and thus AdvA(X,Y) = 0. 2

In the next question, we will prove the data processing inequality for the statistical distance.

Let X,Y be two random variables over a common set A.

2. Let f : A→ S be a deterministic function with domain S. Show that

∆(f(X), f(Y)) ≤ ∆(X,Y).

Solution: We write the definition of ∆.

∆(f(X), f(Y)) =
1

2

∑
s∈S
|P(f(X) = s)− P(f(Y) = s)|

Then decompose the event f(X) = s into something more explicit.

∆(f(X), f(Y)) =
1

2

∑
s∈S

∣∣∣∣∣∣
∑

a∈f−1(s)

P(X = a)−
∑

a∈f−1(s)

P(Y = a)

∣∣∣∣∣∣
Now use the triangle inequality.

∆(f(X), f(Y)) ≤ 1

2

∑
s∈S

∑
a∈f−1(s)

|P(X = a)− P(Y = a)|

Finally, recall that ⊔s∈Sf−1(s) = A, and this ends the proof. 2

3. Let Z be another random variable with domain Z, statistically independent from X and Y . Show
that

∆((X,Z), (Y,Z)) = ∆(X,Y).

Solution: Once again, we write the definition of the statistical distance.

∆((X,Z), (Y,Z)) =
∑

(a,z)∈A×Z

|P(X = a ∧ Z = z)− P(Y = a ∧ Z = z)|

=
∑

(a,z)∈A×Z

|P(Z = z) · (P(X = a)− P(Y = a))|

=
∑
z∈Z

P(Z = z) ·
∑
a∈A
|P(X = a)− P(Y = a)|.

This is exactly ∆(X,Y). 2

4. Let f be a (possibly probabilistic) function with domain S. Define f ′ a deterministic function and R
a random variable independent from X and Y such that for any input x, we have f ′(x,R) = f(x).
The random variable R is the internal randomness of f . Using f ′ and R, show that ∆(f(X), f(Y)) =
∆(f ′(X,R), f ′(Y,R)) ≤ ∆(X,Y).

3

Solution: We apply the two previous results: ∆(f(X), f(Y)) ≤ ∆((X,R), (Y,R)) = ∆(X,Y). 2

5. Show that for any (possibly probabilistic) adversary A, we have AdvA(X,Y) ≤ ∆(X,Y).

Solution: This follows from the definition of the advantage, and from the above property (A is a
function):

AdvA(X,Y) = |P[A(X) = 1]−P[A(Y) = 1]| = 1

2

∑
b∈{0,1}

|P[A(X) = b]−P[A(Y) = b]| = ∆(A(X),A(Y)) ≤ ∆(X,Y).

2

Exercice 5. We consider two distributions D0 and D1 over {0, 1}n. You found a distinguisher A on
internet. However, you cannot find anywhere in the documentation its performances!

1. Assuming that you have access to as many samples as you like from D0 and D1 (you can for
instance assume that you can sample yourself from these distributions), how would you estimate
the advantage of A? Hint: use the Chernoff Bound: P(|X − np| ≥ nt) ≤ 2 exp(−2nt2), where X
follows a binomial distribution with parameters (n, p).

Solution: Let Exp b for b ∈ {0, 1} denote the experience “sample from the distribution Db”.
Run N times Exp 0 and Exp 1 for a number N to be determined later. This gives us b

(1)
1 , . . . b

(N)
1

and b
(1)
2 , . . . , b

(N)
2 , 2N results. Define

b̄1 :=

∑N
i=1 b

(i)
1

N
and b̄2 :=

∑N
i=1 b

(i)
2

N
.

Then let pb be the probability that A outputs 1 at the end of Exp b. The Chernoff bound gives

P(|b̄i − pi| ≥ ε) ≤ 2 exp(−2Nε2),

for any accuracy ε > 0. Then notice the following sequence of inequalities:

Adv(A) = |p1 − p0| ≤ |p1 − b̄1|+ |b̄1 − b̄0|+ |b̄0 − p0| ≤ 2ε+ |b̄1 − b̄0|,

where the last inequality holds with probability at least 1 − 4 exp(−2Nε2). The same sequence
can be written by reversing the roles of pb and b̄p. This gives us |Adv(A) − |b̄1 − b̄0|| ≤ 2ϵ with
probability at least 1− 4 exp(−2Nε2).

Assuming that you want to compute the advantage with accuracy 1
λc and probability 0.95, set ε :=

1
2λc and N such that 1− 4 exp(N/(2λ2c)) ≥ 0.95 i.e. N/λ2c ≥ 2 ln(80) ≈ 8.76. 2

By convention, you want to design a distinguisher such that it outputs 1 when it thinks the sample
comes from D1 and 0 otherwise. However, because of the definition of advantage, it is also possible
to design distinguishers that do the reverse, and still have the same advantage. For instance, the
above distinguisher A may often be “wrong”. This could be troublesome if your aim is to use its
output to do further computations. Luckily, there exists a way to transform A into a distinguisher
that is more often right than wrong, whatever it previously did.

2. The definition of advantage given in class may be called Absolute Advantage, for the purpose of
this exercise. In this question, we define the Positive Advantage of A as

AdvP (A) := P(A Exp1−−−→ 1)− P(A Exp0−−−→ 1).

Given a distinguisher A with Absolute Advantage ε, we build a distinguisher A′ that does the
following:

(a) Upon receiving a sample y ←↩ Db, it runs b′ ← A(y).
(b) It samples x0 ←↩ D0 and x1 ←↩ D1 and runs b0 ← A(x0) and b1 ← A(x1).

(c) It returns b′ if b0 = 0 and b1 = 1. It returns 1− b′ if b0 = 1 and b1 = 0.

4

(d) In any other cases, it returns a uniform bit.

Prove that the Positive Advantage of A′ is ε2.

Solution: To clarify notation P(A Expb−−−→ 1) for any b ∈ {0, 1} stands for “the probability that A
outputs 1 knowing that we are in Exp b”, namely y has been sampled using Db. The probability
that A outputs 1 in experience Exp b is p1(1−p0)pb+p0(1−p1)(1−pb)+

1
2 (p0p1+(1−p0)(1−p1)).

The positive advantage of A′ is then:

AdvP (A′) = p1(1− p0)(p1 − p0) + p0(1− p1)(p0 − p1)

= (p1 − p0) · (p1(1− p0)− p0(1− p1))

= (p1 − p0) · (p1 − p0p1 − p0 + p0p1)

= ε2.

2

5

