TD3: Security Assumptions

Exercise 1.

Attacking the DLG problem

Let \mathbb{G} be a cyclic group generated by g, of (known) prime order p, and let h be an element of \mathbb{G} . Let $F:\mathbb{G}\to\mathbb{Z}_p$ be a nonzero function, and let us define the function $H:\mathbb{G}\to\mathbb{G}$ by $H(\alpha)=\alpha\cdot h\cdot g^{F(\alpha)}$. We consider the following algorithm (called *Pollard* ρ *Algorithm*).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$

Output: $x \in \{0, ..., p-1\}$ such that $h = g^x$ or fail.

- 1. $i \leftarrow 1$
- 2. $x \leftarrow 0$, $\alpha \leftarrow h$
- 3. $y \leftarrow F(\alpha)$; $\beta \leftarrow H(\alpha)$
- 4. **while** $\alpha \neq \beta$ do
- 5. $x \leftarrow x + F(\alpha) \mod p; \alpha \leftarrow H(\alpha)$
- 6. $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$
- 7. $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$
- 8. $i \leftarrow i + 1$
- 9. end while
- 10. **if** i < p **then**
- 11. **return** $(x y)/i \mod p$
- 12. else
- 13. return FAIL
- 14. end if

To study this algorithm, we define the sequence (γ_i) by $\gamma_1 = h$ and $\gamma_{i+1} = H(\gamma_i)$ for $i \ge 1$.

- **1.** Show that in the **while** loop from Steps 4 to 9 of the algorithm, we have $\alpha = \gamma_i = g^x h^i$ and $\beta = \gamma_{2i} = g^y h^{2i}$.
- **2.** Show that if this loop terminates with i < p, then the algorithm returns the discrete logarithm of h in basis g.
- **3.** Let j be the smallest integer such that there exists k < j such that $\gamma_j = \gamma_k$. Show that $j \le p + 1$ and that the loop ends with i < j.
- **4.** Show that if *F* is a random function, then the average execution time of the algorithm is in $O(p^{1/2})$ multiplications in \mathbb{G} .

Exercise 2.

Around the DDH assumption

We recall the definition of the DDH assumption.

Definition 1 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of (prime) order p, and let g be a public generator of \mathbb{G} . The decisional Diffie-Hellman distribution (DDH) is, $D_{DDH} = (g^a, g^b, g^{ab}) \in \mathbb{G}^3$ with a, b sampled independently and uniformly in $\mathbb{Z}/p\mathbb{Z} =: \mathbb{Z}_p$.

Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between D_{DDH} and (g^a, g^b, g^c) with a, b, c sampled independently and uniformly at random in \mathbb{Z}_p .

- **1.** Does the DDH assumption hold in $\mathbb{G} = (\mathbb{Z}_p, +)$ for $p = \mathcal{O}(2^{\lambda})$ prime?
- **2.** Same question for $\mathbb{G} = (\mathbb{Z}_p^{\star}, \times)$ of order p-1, with p an odd prime.

Exercise 3. LWE assumption

We recall the Learning with Errors assumption.

Definition 3 (Learning with Errors). Let $q \in \mathbb{N}$, $B \in \mathbb{N}$, $A \leftarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text{LWE}} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$ for $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$, $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow U((-B, B]^m)$.

In this setting, the vector \mathbf{s} is called the secret, and \mathbf{e} the noise.

Remark. If q and B are powers of 2, we are manipulating bits, contrary to the DDH-based PRG from the lecture.

The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to distinguish D_{LWE} from the distribution $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Let us propose the following pseudo-random generator: $G(\mathbf{A}, \mathbf{s}, \mathbf{e}) = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$.

- **1.** By definition, a PRG must have a bigger output size than input size. Give a bound on *B* that depends on the other parameters if we want *G* to satisfy this.
- **2.** Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is a secure pseudo-random generator.