TD 4: LWE and PRFs

Exercise 1. PRG from LWE

We recall the Learning with Errors assumption.

Definition 1 (Learning with Errors). Let $q \in \mathbb{N}$, $B \in \mathbb{N}$, $A \leftarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{LWE} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$ for $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$, $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow U((-B, B]^m)$.

In this setting, the vector **s** is called the secret, and **e** the noise.

Remark. If *q* and *B* are powers of 2, we are manipulating bits, contrary to the DDH-based PRG from the lecture.

The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to distinguish D_{LWE} from the distribution $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Let us propose the following pseudo-random generator: $G(\mathbf{A}, \mathbf{s}, \mathbf{e}) = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \bmod q)$.

- **1.** By definition, a PRG must have a bigger output size than input size. Give a bound on *B* that depends on the other parameters if we want *G* to satisfy this.
- **2.** Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is a secure pseudo-random generator.

Exercise 2. LWE with small secret

We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption holds. Moreover, we assume that q is prime.

- **1. (a)** What is the probability that $\mathbf{A}_1 \in \mathbf{Z}_q^{n \times n}$ is invertible where $\mathbf{A} =: [\mathbf{A}_1^\top | \mathbf{A}_2^\top]^\top$ is uniformly sampled?
 - **(b)** Assume that $m \ge 2n$. Prove that there exists a subset of n linerally independent rows of $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$ with probability $\ge 1 1/2^{\Omega(n)}$ and that we can find them in polynomial time.
- 2. Let us define the distribution $D_B = U((-B, B] \cap \mathbb{Z})$, and m' = m n. Show that under the LWE_{q,m,n,B} assumption, the distributions $(\mathbf{A}', \mathbf{A}'\mathbf{s}' + \mathbf{e}') \in \mathbb{Z}_q^{m' \times n} \times \mathbb{Z}_q^{m'}$, with $\mathbf{s}' \leftarrow D_B^n$ and $\mathbf{e}' \leftarrow D_B^{m'}$, and $(\mathbf{A}', \mathbf{b}')$ with $\mathbf{b}' \leftarrow U(\mathbb{Z}_q^{m'})$ are indistinguishable.

Exercise 3. CTR Security Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample *IV* uniformly in $\{0,1\}^n$.
- Return $IV \|C_0\|C_1\|\dots\|C_{d-1}$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.

- **2.** Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2d/2^{n-1}$.
- **3.** Assume the PRF F is replaced by a uniformly chosen function $f:\{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of d,n and the number of encryption queries Q.
- **4.** Show that if there exists a probabilistic polynomial-time adversary \mathcal{A} against CTR based on PRF F, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF F. Give a lower bound on the advantage degradation of the reduction.