TD 4: LWE and PRFs (corrected version)

Exercise 1. PRG from LWE

We recall the Learning with Errors assumption.

Definition 1 (Learning with Errors). Let $q \in \mathbb{N}$, $B \in \mathbb{N}$, $\mathbf{A} \hookleftarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{LWE} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \bmod q)$ for $\mathbf{s} \hookleftarrow U(\mathbb{Z}_q^n)$, $\mathbf{A} \hookleftarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \hookleftarrow U((-B, B]^m)$.

In this setting, the vector **s** is called the secret, and **e** the noise.

Remark. If q and B are powers of 2, we are manipulating bits, contrary to the DDH-based PRG from the lecture.

The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to distinguish D_{LWE} from the distribution $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Let us propose the following pseudo-random generator: $G(\mathbf{A}, \mathbf{s}, \mathbf{e}) = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$.

1. By definition, a PRG must have a bigger output size than input size. Give a bound on *B* that depends on the other parameters if we want *G* to satisfy this.

We want the parameters to satisfy $q^{mn} \cdot q^n B^m \le q^{nm} \cdot q^m$ i.e. $B^m \le q^{m-n}$. Then the bound is $B \le q^{1-n/m}$.

2. Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is a secure pseudo-random generator.

Let \mathcal{A} be a PPT adversary that distinguishes with non negligible advantage the output of G from the uniform distribution. Let us use this adversary to solve the LWE problem.

At the beginning of the game, the reduction $\mathcal B$ receives a LWE instance $(\mathbf A,\mathbf b)\in\mathbb Z_q^{m\times n}\times\mathbb Z_q^m$ of the LWE problem, the goal is to output LWE if it is a LWE instance, and Unif if it is uniform.

The reduction sends (\mathbf{A}, \mathbf{b}) to the adversary \mathcal{A} against the PRG. The adversary then returns a bit b' that the reduction returns to its challenger.

 $\textbf{Analysis.} \ \, \text{Adv}^{\text{LWE}}(\mathcal{B}) = |\Pr[B \rightarrow 1 | b \ \text{LWE}] - \Pr[B \rightarrow 1 | b \ \text{Unif}]| = |\Pr[A \rightarrow 1 | b \ \text{LWE}] - \Pr[A \rightarrow 1 | b \ \text{Unif}]| = \text{Adv}^{\text{PRG}}(\mathcal{A}) = \text{non negl.}$

Exercise 2. LWE with small secret

We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption holds. Moreover, we assume that q is prime.

1. (a) What is the probability that $\mathbf{A}_1 \in \mathbf{Z}_q^{n \times n}$ is invertible where $\mathbf{A} =: [\mathbf{A}_1^\top | \mathbf{A}_2^\top]^\top$ is uniformly sampled?

We have to compute $|GL_n(\mathbb{F}_q)|$, i.e. the number of invertibles matrices with coefficients in \mathbb{F}_q . We have q^n-1 choice for the first vector (it can be any vector except the 0 vector), then q^n-q^1 for the second vector (anything except a vector collinear to the first one), then q^n-q^2 (anything that is not a linear combination of the first two vectors), etc. So we get

$$\begin{split} \Pr_{\mathbf{A}_1 \leftarrow U(\mathbb{F}_2^{m \times n})}[A_1 \in GL_n(\mathbb{F}_q)] &= \frac{1}{q^{n^2}} \prod_{i=0}^{n-1} (q^n - q^i) \\ &= \prod_{i=0}^{n-1} (1 - q^{i-n}), \end{split}$$

which is always $\geq \prod_{i=0}^{n-1} (1-2^{i-n}) \geq 0.288$.

(b) Assume that $m \ge 2n$. Prove that there exists a subset of n linerally independent rows of $\mathbf{A} \hookrightarrow U(\mathbb{Z}_q^{m \times n})$ with probability $\ge 1 - 1/2^{\Omega(n)}$ and that we can find them in polynomial time.

If this is not the case, then there exists an hyperplane of \mathbb{Z}_q^n in which each row is sampled. A hyperplane is given by a nonzero vector: there are at most q^n-1 hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it is $q^{(n-1)m}/q^{nm}=1/q^m$. Then the union bound gives us that the probability is $\geq 1-\frac{1}{q^m-n}\geq 1-\frac{1}{q^n}$.

To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for i = 2 to m. If the i-th row is linearly independent from the selected rows, select it.

2. Let us define the distribution $D_B = U((-B, B] \cap \mathbb{Z})$, and m' = m - n. Show that under the LWE_{q,m,n,B} assumption, the distributions $(\mathbf{A}', \mathbf{A}'\mathbf{s}' + \mathbf{e}') \in \mathbb{Z}_q^{m' \times n} \times \mathbb{Z}_q^{m'}$, with $\mathbf{s}' \leftarrow D_B^n$ and $\mathbf{e}' \leftarrow D_B^{m'}$, and $(\mathbf{A}', \mathbf{b}')$ with $\mathbf{b}' \leftarrow U(\mathbb{Z}_q^{m'})$ are indistinguishable.

We show how to reduce an instance of the decision problem $LWE_{q,m,n,B}$ to an instance of this new decision problem. Let $(\mathbf{A},\mathbf{b}) \in \mathbf{Z}_q^{m \times n} \times \mathbf{Z}_q^m$. With non negligible probability and up to permuting the rows of \mathbf{A} (and \mathbf{b}), one can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$, where $\mathbf{A}_1 \in \mathbf{Z}_q^{n \times n}$ is invertible.

Notice that in this case, $\mathbf{A}_2\mathbf{A}_1^{-1}\in\mathbb{Z}_a^{m'\times n}$ is still uniform because \mathbf{A}_1 is invertible, and \mathbf{A}_2 is uniformly sampled.

Assume that we are given a sample $(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e})$ of the LWE $_{q,m,n,B}$ distribution. Set $\mathbf{e} = : (\mathbf{e}_{\perp}^{\top}, -\mathbf{e}_{2}^{\top})^{\top}$ Consider the following:

$$(\mathbf{A}_2\mathbf{A}_1^{-1}, \mathbf{A}_2\mathbf{A}_1^{-1}(\mathbf{A}_1\mathbf{s} + \mathbf{e}_1) - \mathbf{A}_2\mathbf{s} + \mathbf{e}_2) = (\mathbf{A}_2\mathbf{A}_1, \mathbf{A}_2\mathbf{A}_1^{-1}\mathbf{e}_1 + \mathbf{e}_2).$$

This is exactly a sample from the new distribution, with secret e_1 and noise e_2 .

Assume now that we are given a sample (\mathbf{A}, \mathbf{b}) where \mathbf{b} is uniformly sampled. We write $\mathbf{b} =: (\mathbf{b}_1^\top, \mathbf{b}_2^\top)^\top$. With the previous transformation we get: $\mathbf{A}_2 \mathbf{A}_1^{-1}, \mathbf{A}_2 \mathbf{A}_1^{-1} \mathbf{b}_1 - \mathbf{b}_2$. Whatever $\mathbf{A}_2 \mathbf{A}_1^{-1} \mathbf{b}_1$ is, since it is independent from \mathbf{b}_2 , we get a uniform sample over $\mathbb{Z}_q^{m'} \times \mathbb{Z}_q^{m'}$.

This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any efficient distinguisher has negligible advantage and this concludes the proof.

Exercise 3. CTR Security Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample IV uniformly in $\{0,1\}^n$.
- Return $IV ||C_0||C_1|| \dots ||C_{d-1}||$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.

Let (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments Exp_b for $b \in \{0,1\}$:

- $\bullet \quad \mathsf{Challenger} \; \mathsf{samples} \; k \leftarrow \mathsf{KeyGen}, \\$
- Adversary makes q encryption queries on messages $(M_{i,0}, M_{i,1})$,
- Challenger sends back $Enc(k, M_{i,b})$ for each i,
- Adversary returns $b' \in \{0,1\}$.

We define the advantage of the adversary ${\cal A}$ against the encryption scheme as

$$\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) = \big| \Pr(\mathcal{A} \xrightarrow{\mathsf{Exp}_1} 1) - \Pr(\mathcal{A} \xrightarrow{\mathsf{Exp}_0} 1) \big|.$$

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, q must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at random, and the advantage is defined as $Adv^{CPA}(\mathcal{A}) = |Pr(\mathcal{A} \to 1 \mid b = 0) - Pr(\mathcal{A} \to 1 \mid b = 1)|$.

2. Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2d/2^{n-1}$.

Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not interesting for our purpose.

For $i,j \leq Q$, let $\mathtt{Twice}_{i,j}$ be the event " $\exists k_i, k_j < d : \mathsf{IV}_i + k_i = \mathsf{IV}_j + k_j \pmod{2^n}$ ", which is equivalent to " $\exists k, |k| < d$ and $\mathsf{IV}_i - \mathsf{IV}_j = k \pmod{2^n}$. As the IVs are chosen uniformly and independently, $\mathsf{IV}_i - \mathsf{IV}_j$ is uniform modulo 2^n and $\Pr(\mathsf{Twice}_{i,j}) \leq 2^{-n}(2d-1)$. (The inequality is strict when $2d-1 > 2^n$, in which case $\Pr(\mathsf{Twice}_{i,j}) = 1$.) Then,

$$\Pr(\texttt{Twice}) \leq \sum_{1 \leq i \neq j \leq Q} \Pr(\texttt{Twice}_{i,j}) = Q(Q-1)2^{-n}(2d-1) \leq 2^{1-n}Q^2d.$$

3. Assume the PRF F is replaced by a uniformly chosen function $f: \{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of d,n and the number of encryption queries Q.

We write $M^{i,\beta} = M_0^{i,\beta} \| \dots \| M_{d-1}^{i,\beta}$ with $1 \le i \le Q$ and $\beta \in \{0,1\}$ the encryption queries of the adversary $\mathcal A$ and $C^i = \mathrm{IV}_i \| C_0^i \| \dots \| C_{d-1}^i$ with $1 \le i \le Q$ the replies. Given the value of $b \in \{0,1\}$ chosen by the challenger, we know that $C_j^i = M_j^{i,b} \oplus f(\mathrm{IV}_i + j \pmod{2^n})$ for all $1 \le i \le Q$ and $0 \le j < d$.

If Twice does not occur, then all the $\mathrm{IV}_i + j \pmod{2^n}$ for $1 \leq i \leq Q$ and $0 \leq j < d$ are pairwise distinct. Then the values of f at these points are independent and uniformly distributed, since $f: \{0,1\}^n \to \{0,1\}^n$ is chosen uniformly at random. Therefore, all the C^i_j are also independent and uniformly distributed regardless of the value of b, so that $\Pr(\neg \mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 0) = \Pr(\neg \mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 1)$. It follows that

$$\begin{split} \mathsf{Adv}^\mathsf{CPA}_{\mathcal{U}}(\mathcal{A}) &= |\mathsf{Pr}(\mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 0) - \mathsf{Pr}(\mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 1)| \\ &= |\mathsf{Pr}(\mathcal{A} \to 1 \mid b = 0, \mathsf{Twice}) - \mathsf{Pr}(\mathcal{A} \to 1 \mid b = 1, \mathsf{Twice})| \, \mathsf{Pr}(\mathsf{Twice}) \\ &\leq \mathsf{Pr}(\mathsf{Twice}) \leq 2^{1-n} O^2 d. \end{split}$$

4. Show that if there exists a probabilistic polynomial-time adversary \mathcal{A} against CTR based on PRF F, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF F. Give a lower bound on the advantage degradation of the reduction.

Assume that A is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We build an adversary \mathcal{B} against the underlying PRF F as follows:

- 1. Choose $b \in \{0,1\}$ uniformly at random.
- 2. For each encryption query (M^0, M^1) from A, encrypt M^b using the given scheme, that is,
 - (a) Choose $IV \in \{0,1\}^n$ uniformly at random.
 - (b) For j=0 to d-1, send a query for IV+j and with the reply f_i compute $C_i=M_i^b\oplus f_i$.
 - (c) Send $IV ||C_0|| \dots ||C_{d-1}||$ back to A.
- 3. When \mathcal{A} finally outputs a bit $b' \in \{0,1\}$, output 1 if b' = b and 0 otherwise.

The advantage of ${\cal B}$ against the PRF ${\it F}$ is

$$\mathsf{Adv}^{\mathsf{PRF}}_{\mathsf{F}}(\mathcal{B}) = |\Pr(\mathcal{B} \to 1 \mid \mathsf{PRF}) - \Pr(\mathcal{B} \to 1 \mid \mathsf{Unif})|$$

where PRF is the experiment in which replies to \mathcal{B} are computed by calling F and Unif is the one in which replies to \mathcal{B} are computed from a uniformly chosen random function f.

Considering the two terms separately gives

$$\begin{split} \Pr(\mathcal{B} \rightarrow 1 \mid E) &= \frac{1}{2} \left(\Pr(b' = 0 \mid E, b = 0) + \Pr(b' = 1 \mid E, b = 1) \right) \\ &= \frac{1}{2} \left(1 + \Pr(\mathcal{A} \rightarrow 1 \mid E, b = 1) - \Pr(\mathcal{A} \rightarrow 0 \mid E, b = 0) \right) \end{split}$$

where E is either PRF or Unif. Therefore

$$\mathsf{Adv}_{\scriptscriptstyle F}^{\mathsf{PRF}}(\mathcal{B}) \geq \frac{1}{2} \left(\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - \mathsf{Adv}_{\mathcal{U}}^{\mathsf{CPA}}(\mathcal{A}) \right) \geq \frac{1}{2} \mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - 2^{1-n} \mathcal{Q}^2 d$$

using the previous question. Thus, if $Adv^{CPA}(\mathcal{A})$ is non-negligible then so is $Adv^{PRF}_F(\mathcal{B})$, which is then about a half of $Adv^{CPA}(\mathcal{A})$.