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TD 4: LWE and PRFs (corrected version)

Exercise 1. PRG from LWE
We recall the Learning with Errors assumption.

Definition 1 (Learning with Errors). Let q ∈ N, B ∈ N, A ←↩ U(Zm×n
q ). The Learning with Errors

(LWE) distribution is defined as follows: DLWE = (A, A · s + e mod q) for s←↩ U(Zn
q ), A←↩ U(Zm×n

q ) and
e←↩ U ((−B, B]m).

In this setting, the vector s is called the secret, and e the noise.
Remark. If q and B are powers of 2, we are manipulating bits, contrary to the DDH-based PRG from
the lecture.
The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to
distinguish DLWE from the distribution U(Zm×n

q ×Zm
q ).

Let us propose the following pseudo-random generator: G(A, s, e) = (A, A · s + e mod q).

1. By definition, a PRG must have a bigger output size than input size. Give a bound on B that
depends on the other parameters if we want G to satisfy this.

☞ We want the parameters to satisfy qmn · qn Bm ≤ qnm · qm i.e. Bm ≤ qm−n . Then the bound is B ≤ q1−n/m.

2. Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is
a secure pseudo-random generator.
☞ Let A be a PPT adversary that distinguishes with non negligible advantage the output of G from the uniform distribution. Let us use
this adversary to solve the LWE problem.

At the beginning of the game, the reduction B receives a LWE instance (A, b) ∈ Zm×n
q ×Zm

q of the LWE problem, the goal is to output LWE
if it is a LWE instance, and Unif if it is uniform.

The reduction sends (A, b) to the adversary A against the PRG. The adversary then returns a bit b′ that the reduction returns to its
challenger.

Analysis. AdvLWE(B) = |Pr[B→ 1|b LWE]− Pr[B→ 1|b Unif]| = |Pr[A→ 1|b LWE]− Pr[A→ 1 | b Unif]| = AdvPRG(A) = non negl.

Exercise 2. LWE with small secret
We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption
holds. Moreover, we assume that q is prime.

1. (a) What is the probability that A1 ∈ Zn×n
q is invertible where A =: [A⊤1 |A⊤2 ]⊤ is uniformly

sampled?
☞ We have to compute |GLn(Fq)|, i.e. the number of invertibles matrices with coefficients in Fq. We have qn − 1 choice for the
first vector (it can be any vector except the 0 vector), then qn − q1 for the second vector (anything except a vector collinear to the first
one), then qn − q2 (anything that is not a linear combination of the first two vectors), etc. So we get

Pr
A1←↩U(Fm×n

2 )
[A1 ∈ GLn(Fq)] =

1

qn2

n−1

∏
i=0

(qn − qi)

=
n−1

∏
i=0

(1− qi−n),

which is always ≥ ∏n−1
=0 (1− 2i−n) ≥ 0.288.

(b) Assume that m ≥ 2n. Prove that there exists a subset of n lineraly independent rows of A ←↩
U(Zm×n

q ) with probability ≥ 1− 1/2Ω(n) and that we can find them in polynomial time.
☞ If this is not the case, then there exists an hyperplane of Zn

q in which each row is sampled. A hyperplane is given by a nonzero
vector: there are at most qn − 1 hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it
is q(n−1)m/qnm = 1/qm. Then the union bound gives us that the probability is ≥ 1− 1

qm−n ≥ 1− 1
qn .

To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for i = 2 to m. If the i-th row is

linearly independent from the selected rows, select it.
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2. Let us define the distribution DB = U ((−B, B] ∩Z), and m′ = m− n.

Show that under the LWEq,m,n,B assumption, the distributions (A′, A′s′ + e′) ∈ Zm′×n
q ×Zm′

q , with

s′ ←↩ Dn
B and e′ ←↩ Dm′

B , and (A′, b′) with b′ ← U(Zm′
q ) are indistinguishable.

☞ We show how to reduce an instance of the decision problem LWEq,m,n,B to an instance of this new decision problem. Let (A, b) ∈

Zm×n
q × Zm

q . With non negligible probability and up to permuting the rows of A (and b), one can write A =

[
A1
A2

]
, where A1 ∈ Zn×n

q is

invertible.

Notice that in this case, A2A−1
1 ∈ Zm′×n

q is still uniform because A1 is invertible, and A2 is uniformly sampled.

Assume that we are given a sample (A, As + e) of the LWEq,m,n,B distribution. Set e =: (e⊤1 ,−e⊤2 )
⊤ Consider the following:

(A2A−1
1 , A2A−1

1 (A1s + e1)−A2s + e2) = (A2A1, A2A−1
1 e1 + e2).

This is exactly a sample from the new distribution, with secret e1 and noise e2.

Assume now that we are given a sample (A, b) where b is uniformly sampled. We write b =: (b⊤1 , b⊤2 )
⊤. With the previous transformation

we get: A2A−1
1 , A2A−1

1 b1 − b2. Whatever A2A−1
1 b1 is, since it is independent from b2, we get a uniform sample over Zm′×n

q ×Zm′
q .

This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any efficient
distinguisher has negligible advantage and this concludes the proof.

Exercise 3. CTR Security
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF. To encrypt a message M ∈ {0, 1}d·n, CTR proceeds as
follows:

• Write M = M0∥M1∥ . . . ∥Md−1 with each Mi ∈ {0, 1}n.

• Sample IV uniformly in {0, 1}n.

• Return IV∥C0∥C1∥ . . . ∥Cd−1 with Ci = Mi ⊕ F(k, IV + i mod 2n) for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext
attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
☞ Let (KeyGen,Enc,Dec) be an encryption scheme. We consider the following experiments Expb for b ∈ {0, 1}:

• Challenger samples k← KeyGen,

• Adversary makes q encryption queries on messages (Mi,0, Mi,1),

• Challenger sends back Enc(k, Mi,b) for each i,

• Adversary returns b′ ∈ {0, 1}.

We define the advantage of the adversary A against the encryption scheme as

AdvCPA(A) =
∣∣Pr(A

Exp1−−→ 1)− Pr(A
Exp0−−→ 1)

∣∣.
Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a
non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, q must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at

random, and the advantage is defined as AdvCPA(A) = |Pr(A → 1 | b = 0)− Pr(A → 1 | b = 1)|.

2. Assume an attacker makes Q encryption queries. Let IV1, . . . , IVQ be the corresponding IV’s.
Let Twice denote the event “there exist i, j ≤ Q and ki, k j < d such that IVi + ki = IVj + k j mod 2n

and i ̸= j.” Show that the probability of Twice is bounded from above by Q2d/2n−1.
☞ Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not
interesting for our purpose.

For i, j ≤ Q, let Twicei,j be the event “∃ki , k j < d : IVi + ki = IVj + k j (mod 2n)”, which is equivalent to “∃k, |k| < d and IVi − IVj = k
(mod 2n). As the IVs are chosen uniformly and independently, IVi − IVj is uniform modulo 2n and Pr(Twicei,j) ≤ 2−n(2d − 1). (The
inequality is strict when 2d− 1 > 2n, in which case Pr(Twicei,j) = 1.) Then,

Pr(Twice) ≤ ∑
1≤i ̸=j≤Q

Pr(Twicei,j) = Q(Q− 1)2−n(2d− 1) ≤ 21−nQ2d.
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3. Assume the PRF F is replaced by a uniformly chosen function f : {0, 1}n → {0, 1}n. Give an
upper bound on the distinguishing advantage of an adversary A against this idealized version of
CTR, as a function of d, n and the number of encryption queries Q.
☞ We write Mi,β = Mi,β

0 ∥ . . . ∥Mi,β
d−1 with 1 ≤ i ≤ Q and β ∈ {0, 1} the encryption queries of the adversary A and Ci = IVi∥Ci

0∥ . . . ∥Ci
d−1

with 1 ≤ i ≤ Q the replies. Given the value of b ∈ {0, 1} chosen by the challenger, we know that Ci
j = Mi,b

j ⊕ f (IVi + j (mod 2n)) for all
1 ≤ i ≤ Q and 0 ≤ j < d.

If Twice does not occur, then all the IVi + j (mod 2n) for 1 ≤ i ≤ Q and 0 ≤ j < d are pairwise distinct. Then the values of f at these
points are independent and uniformly distributed, since f : {0, 1}n → {0, 1}n is chosen uniformly at random. Therefore, all the Ci

j are also
independent and uniformly distributed regardless of the value of b, so that Pr(¬Twice∧A → 1 | b = 0) = Pr(¬Twice∧A → 1 | b = 1). It
follows that

AdvCPAU (A) = |Pr(Twice∧A → 1 | b = 0)− Pr(Twice∧A → 1 | b = 1)|
= |Pr(A → 1 | b = 0, Twice)− Pr(A → 1 | b = 1, Twice)|Pr(Twice)

≤ Pr(Twice) ≤ 21−nQ2d.

4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PRF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.
☞ Assume that A is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We
build an adversary B against the underlying PRF F as follows:

1. Choose b ∈ {0, 1} uniformly at random.

2. For each encryption query (M0, M1) from A, encrypt Mb using the given scheme, that is,

(a) Choose IV ∈ {0, 1}n uniformly at random.
(b) For j = 0 to d− 1, send a query for IV + j and with the reply f j compute Cj = Mb

j ⊕ f j.

(c) Send IV∥C0∥ . . . ∥Cd−1 back to A.

3. When A finally outputs a bit b′ ∈ {0, 1}, output 1 if b′ = b and 0 otherwise.

The advantage of B against the PRF F is

AdvPRFF (B) = |Pr(B → 1 | PRF)− Pr(B → 1 | Unif)|

where PRF is the experiment in which replies to B are computed by calling F and Unif is the one in which replies to B are computed from
a uniformly chosen random function f .

Considering the two terms separately gives

Pr(B → 1 | E) =
1
2
(Pr(b′ = 0 | E, b = 0) + Pr(b′ = 1 | E, b = 1))

=
1
2
(1 + Pr(A → 1 | E, b = 1)− Pr(A → 0 | E, b = 0))

where E is either PRF or Unif. Therefore

AdvPRFF (B) ≥ 1
2
(
AdvCPA(A)−AdvCPAU (A)

)
≥ 1

2
AdvCPA(A)− 21−nQ2d

using the previous question. Thus, if AdvCPA(A) is non-negligible then so is AdvPRFF (B), which is then about a half of AdvCPA(A).
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