M1 — Cryptography and Security (2025/2026) L. Gaillard and A. Passelégue
TD 4: LWE and PRFs (corrected version)

Exercise 1. PRG from LWE
We recall the Learning with Errors assumption.

Definition 1 (Learning with Errors). Let ¢ € N, B € N, A U(ZQ”X”). The Learning with Errors
(LWE) distribution is defined as follows: Dywg = (A, A - s + e mod q) for s <> U(Zy), A <> U(Zy™") and
e < U((—B,B]™).

In this setting, the vector s is called the secret, and e the noise.
Remark. If g and B are powers of 2, we are manipulating bits, contrary to the DDH-based PRG from
the lecture.

The LWE assumption states that, given suitable parameters g, B,m, n, it is computationally hard to
distinguish Dywg from the distribution U(Z§"™" x Zj').

Let us propose the following pseudo-random generator: G(A,s,e) = (A, A -s+ e mod g).

1. By definition, a PRG must have a bigger output size than input size. Give a bound on B that
depends on the other parameters if we want G to satisfy this.

IS We want the parameters to satisfy q"" - g"B" < g .g" i.e. B" < ¢"". Then the bound is B < g'~"/™.

2. Given suitable B, g, n, m such that the LWE assumption and previous bound hold, show that G is
a secure pseudo-random generator.

IS |et A beaPPT adversary that distinguishes with non negligible advantage the output of G from the uniform distribution. Let us use
this adversary to solve the LWE problem.

At the beginning of the game, the reduction B receives a LWE instance (A,b) € Zy™" x Zg' of the LWE problem, the goal is to output LWE
if it is a LWE instance, and Unif if it is uniform.

The reduction sends (A,b) to the adversary A against the PRG. The adversary then returns a bit b’ that the reduction returns to its
challenger.

Analysis. Adv™E(B) = |Pr[B — 1|b LWE] — Pr[B — 1|b Unif]| = | Pr[A — 1|b LWE] — Pr[A — 1| b Unif]| = Adv"®%(A) = non negl.

Exercise 2. LWE with small secret
We once more work in the setting of the LWE assumption. Let g, B, n, m such that the LWE assumption
holds. Moreover, we assume that g is prime.

1. (@) What is the probability that A; € Z7*" is invertible where A =: [A]|A]]T is uniformly
sampled?

IS We have to compute |GL,(F,)|, i.e. the number of invertibles matrices with coefficients in F;. We have g" — 1 choice for the

first vector (it can be any vector except the 0 vector), then " — g' for the second vector (anything except a vector collinear to the first
one), then g" — g% (anything that is not a linear combination of the first two vectors), etc. So we get
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which is always > [T"5"' (1 —27") > 0.288.

(b) Assume that m > 2n. Prove that there exists a subset of n lineraly independent rows of A <>
U(Zy™") with probability > 1—1/ 20(") and that we can find them in polynomial time.
I |f this is not the case, then there exists an hyperplane of Z[]’ in which each row is sampled. A hyperplane is given by a nonzero
vector: there are at most q" — 1 hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it
is q(”’l)’”/q”"‘ =1/g". Then the union bound gives us that the probability is > 1 — qm%,, >1- q%
To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for i = 2 to m. If the i-th row is

linearly independent from the selected rows, select it.



2. Let us define the distribution Dy = U ((—B,B]NZ), and m' = m — n.

Show that under the LWE, ,, , p assumption, the distributions (A’, A’s’ +e’) € Z;”,X” X ZT, with
s’ <> D and ¢’ <> D', and (A’,b’) with b’ « U(Z?l) are indistinguishable.

I We show how to reduce an instance of the decision problem LWE, ;4,5 to an instance of this new decision problem. Let (A,b) €
Z;’XH X Z,;”. With non negligible probability and up to permuting the rows of A (and b), one can write A = {gj, where A; € Zf;xy, is

invertible.
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Notice that in this case, AzAl1 €Ly *" s still uniform because A; is invertible, and A; is uniformly sampled.

Assume that we are given a sample (A, As + e) of the LWE, 5 distribution. Set e =: (ef,—e, )" Consider the following:

(A2A7 1, AA T (Ars +e1) — Ass + e2) = (A2A1, AsA; e + e).

This is exactly a sample from the new distribution, with secret e; and noise e;.
Assume now that we are given a sample (A, b) where b is uniformly sampled. We write b =: (b],b, )". With the previous transformation
we get: AzAl’l,AzAl’lb1 — by. Whatever AzAl’lb1 is, since it is independent from by, we get a uniform sample over Z;”IX" X Zj;”.

This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any efficient
distinguisher has negligible advantage and this concludes the proof.

Exercise 3. CTR Security
Let F : {0,1}" x {0,1}" — {0,1}" be a PRFE. To encrypt a message M € {0,1}*", CTR proceeds as
follows:

e Write M = My||M]...||My_1 with each M; € {0,1}".
e Sample IV uniformly in {0,1}".
e Return IV||Cy|Cq|| ... ||Cy_1 with C; = M; & F(k, IV +imod 2") for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext
attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.

IS et (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments Exp; for b € {0,1}:

e Challenger samples k < KeyGen,

¢ Adversary makes g encryption queries on messages (M;o, M;1),
o Challenger sends back Enc(k, M;)) for each i,

e Adversary returns b’ € {0,1}.

We define the advantage of the adversary A against the encryption scheme as

AdvEPA(A) = | Pr(A 225 1) — Pr(A 229 1))

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a
non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, 4 must be polynomial in 7.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at

random, and the advantage is defined as Adv®™A(A) = [Pr(4A — 1| b=0) —Pr(A —1|b=1)|.

Assume an attacker makes Q encryption queries. Let IVy,..., IV be the corresponding IV’s.
Let Twice denote the event “there exist i, j < Q and k;, k; < d such that IV; +k; = IV; + k; mod 2"

and i # j.” Show that the probability of Twice is bounded from above by Q?d/2"~1.

IS Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not
interesting for our purpose.

For i,j < Q, let Twice;; be the event “Jk; k; < d : 1V, +k; = 1V, +k; (mod 2")", which is equivalent to “3k, [k| < d and IV; -1V, =k
(mod 2"). As the IVs are chosen uniformly and independently, IV; —IV; is uniform modulo 2" and Pr(Twice;;) < 27"(2d —1). (The
inequality is strict when 2d —1 > 2", in which case Pr(Twice;;) = 1.) Then,

Pr(Twice) < Y Pr(Twice;;) = Q(Q—1)27"(2d — 1) < 2" "Q%d.
1<i#j<Q



3.

Assume the PRF F is replaced by a uniformly chosen function f : {0,1}" — {0,1}". Give an
upper bound on the distinguishing advantage of an adversary .4 against this idealized version of
CTR, as a function of 4,7 and the number of encryption queries Q.

I We write MiF = M(I]ﬂ|| S HM;é1 with 1 <i < Q and B € {0,1} the encryption queries of the adversary A and C' =1V,||C}| ... [|C}_,

with 1 < i < Q the replies. Given the value of b € {0,1} chosen by the challenger, we know that G = M;’b & f(IV; +j (mod 2")) for all
1<i<Qand0<j<d.

If Twice does not occur, then all the IV; +j (mod 2") for 1 <i < Q and 0 < j < d are pairwise distinct. Then the values of f at these
points are independent and uniformly distributed, since f : {0,1}" — {0,1}" is chosen uniformly at random. Therefore, all the C! are also
independent and uniformly distributed regardless of the value of b, so that Pr(—=Twice AAA — 1|b=0) =Pr(-Twice AA—1[b=1). It

follows that
AdviA(A) = |Pr(Twice AA — 1| b=0)—Pr(Twice AA— 1| b=1)]
= |Pr(A—1|b=0,Twice) —Pr(A — 1| b =1,Tuice)|Pr(Tuice)
< Pr(Twice) < 217102,

Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PRF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.

IS Assume that A is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We
build an adversary B against the underlying PRF F as follows:
1. Choose b € {0,1} uniformly at random.
2. For each encryption query (M?, M) from A, encrypt M" using the given scheme, that is,
(a) Choose IV € {0,1}" uniformly at random.
(b) Forj=0tod—1, send a query for IV +j and with the reply f; compute C; = M? D fj-
(c) Send IV||Cy]| ... ||C4—1 back to A.
3. When A finally outputs a bit b’ € {0,1}, output 1 if b’ = b and 0 otherwise.

The advantage of B against the PRF F is
AdvERF(B) = |Pr(B — 1| PRF) — Pr(B — 1| Unif)|

where PRF is the experiment in which replies to BB are computed by calling F and Unif is the one in which replies to B are computed from
a uniformly chosen random function f.

Considering the two terms separately gives

Pr(Bﬁl|E):%(Pr(b’:0|E,b:0)+Pr(b’:1\E,b:l))
:%(1+Pr(A—>1|E,b:1)—Pr(A—>0\E,b:0))

where E is either PRF or Unif. Therefore

AdvERF(B) >

> % (AdVPA(A) — AdviA (A)) > %AdePA(A) — 2%

using the previous question. Thus, if AdePA(.A) is non-negligible then so is AdvERF(B), which is then about a half of AdePA(.A).
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