## TD 5: PRFs

Exercise 1. CTR Security

Let  $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  be a PRF. To encrypt a message  $M \in \{0,1\}^{d \cdot n}$ , CTR proceeds as follows:

- Write  $M = M_0 || M_1 || \dots || M_{d-1}$  with each  $M_i \in \{0, 1\}^n$ .
- Sample *IV* uniformly in  $\{0,1\}^n$ .
- Return  $IV \|C_0\|C_1\| \dots \|C_{d-1}$  with  $C_i = M_i \oplus F(k, IV + i \mod 2^n)$  for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

- 1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
- 2. Assume an attacker makes Q encryption queries. Let  $IV_1, \ldots, IV_Q$  be the corresponding IV's. Let Twice denote the event "there exist  $i, j \leq Q$  and  $k_i, k_i < d$  such that  $IV_i + k_i = IV_j + k_j \mod 2^n$ and  $i \neq j$ ." Show that the probability of Twice is bounded from above by  $Q^2d/2^{n-1}$ .
- **3.** Assume the PRF *F* is replaced by a uniformly chosen function  $f: \{0,1\}^n \to \{0,1\}^n$ . Give an upper bound on the distinguishing advantage of an adversary A against this idealized version of CTR, as a function of d, n and the number of encryption queries Q.
- 4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on PRF F, then there exists a probabilistic polynomial-time adversary  $\mathcal{B}$  against the PRF F. Give a lower bound on the advantage degradation of the reduction.

Exercise 2. PRF from DDH

Let  $n \in \mathbb{N}$  be a security parameter. Let  $\mathbb{G}$  be a cyclic group of prime order  $q > 2^n$  which is generated by a public  $g \in \mathbb{G}$  and for which DDH is presumably hard.

We want to build a secure Pseudo-Random Function (PRF) under the DDH assumption in G. The following construction was proposed by Naor and Reingold in 1997. We define the function  $F:\mathbb{Z}_q^{n+1}\times\{0,1\}^n\to\mathbb{G}$  as:

$$F(K,x) = g^{a_0 \cdot \prod_{j=1}^n a_j^{x_j}},$$

where we parsed  $K = (a_0, a_1, \dots, a_n)^{\top}$  and  $x = (x_1, x_2, \dots, x_n)^{\top}$ . For an index  $i \in [1, n]$ , we consider an experiment where the adversary is given oracle access to a hybrid function  $F^{(i)}(K,\cdot)$  such that

$$\forall x \in \{0,1\}^n, F^{(i)}(K,x) = g^{R^{(i)}(x[1...i]) \cdot \prod_{j=i+1}^n a_j^{x_j}},$$

where  $R^{(i)}: \{0,1\}^i \to \mathbb{Z}_q$  is a uniformly sampled function and x[1...i] denotes the *i* first bits of *x*.

- **1.** Prove that in the adversary's view,  $F^{(0)}$  behaves exactly as the function F if we define  $x[1...0] = \varepsilon$ , the empty string. How does  $F^{(n)}$  behave in the adversary's view?
- **2.** Let  $(g^a, g^b, g^c)$  be a DDH instance, where  $a, b \leftarrow U(\mathbb{Z}_q)$  and we have to decide whether c = ab or if  $c \leftarrow U(\mathbb{Z}_q)$ . Describe a probabilistic polynomial-time algorithm that creates Q randomized instances of DDH  $\{g^a,g^{b_\ell},g^{c_\ell}\}_{\ell=1}^Q$ , where  $\{b_\ell\}_{\ell=1}^Q$  are uniformly random and independent over  $\mathbb{Z}_q$ , with the properties that:

- If  $c = ab \mod q$ , then  $c_{\ell} = ab_{\ell}$  for any  $\ell \in [1, q]$ .
- If  $c \neq ab \mod q$ , then  $(b_1, c_1, \dots, b_Q, c_Q)$  follows the uniform distribution over  $(\mathbb{Z}_q)^{2Q}$ .
- **3.** For each  $i \in [0, n]$ , define the experiment  $\operatorname{Exp}_i$  where  $\mathcal A$  is given oracle access to  $F^{(i)}(K, \cdot)$  for  $K \hookleftarrow \mathcal U(\mathbb Z_q^{n+1})$ . After at most Q evaluation queries,  $\mathcal A$  outputs a bit b'. Prove that for each  $i \in [0, n-1]$  it holds that  $\operatorname{Exp}_i$  is computationally indistinguishable from  $\operatorname{Exp}_{i+1}$  under the DDH assumption.
- **4.** Conclude by giving an upper bound on the advatange of a PRF distinguisher as a function of the maximal advantage of a DDH distinguisher.

*Remark:* Contrary to the GGM construction, the advantage loss does not depend on *Q*. This is a consequence of the random self-reducibility.