TD 5: PRFs (corrected version)

Exercise 1. CTR Security

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample IV uniformly in $\{0,1\}^n$.
- Return $IV ||C_0||C_1|| \dots ||C_{d-1}|$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.

Let (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments Exp_h for $b \in \{0,1\}$:

- Challenger samples $k \leftarrow \mathsf{KeyGen}$,
- Adversary makes q encryption queries on messages $(M_{i,0}, M_{i,1})$,
- Challenger sends back $Enc(k, M_{i,b})$ for each i,
- Adversary returns $b' \in \{0,1\}$.

We define the advantage of the adversary ${\cal A}$ against the encryption scheme as

$$\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) = \big| \Pr(\mathcal{A} \xrightarrow{\mathsf{Exp}_1} 1) - \Pr(\mathcal{A} \xrightarrow{\mathsf{Exp}_0} 1) \big|.$$

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, q must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at random, and the advantage is defined as $Adv^{CPA}(\mathcal{A}) = |Pr(\mathcal{A} \to 1 \mid b = 0) - Pr(\mathcal{A} \to 1 \mid b = 1)|$.

2. Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2d/2^{n-1}$.

Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not interesting for our purpose.

For $i,j \leq Q$, let $\mathtt{Twice}_{i,j}$ be the event " $\exists k_i, k_j < d : \mathrm{IV}_i + k_i = \mathrm{IV}_j + k_j \pmod{2^n}$ ", which is equivalent to " $\exists k, |k| < d$ and $\mathrm{IV}_i - \mathrm{IV}_j = k \pmod{2^n}$. As the IVs are chosen uniformly and independently, $\mathrm{IV}_i - \mathrm{IV}_j$ is uniform modulo 2^n and $\mathrm{Pr}(\mathtt{Twice}_{i,j}) \leq 2^{-n}(2d-1)$. (The inequality is strict when $2d-1>2^n$, in which case $\mathrm{Pr}(\mathtt{Twice}_{i,j})=1$.) Then,

$$\Pr(\mathtt{Twice}) \leq \sum_{1 \leq i \neq j \leq Q} \Pr(\mathtt{Twice}_{i,j}) = Q(Q-1)2^{-n}(2d-1) \leq 2^{1-n}Q^2d.$$

3. Assume the PRF F is replaced by a uniformly chosen function $f: \{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of d,n and the number of encryption queries Q.

We write $M^{i,\beta} = M_0^{i,\beta} \| \dots \| M_{d-1}^{i,\beta}$ with $1 \le i \le Q$ and $\beta \in \{0,1\}$ the encryption queries of the adversary $\mathcal A$ and $C^i = \mathrm{IV}_i \| C_0^i \| \dots \| C_{d-1}^i$ with $1 \le i \le Q$ the replies. Given the value of $b \in \{0,1\}$ chosen by the challenger, we know that $C_j^i = M_j^{i,b} \oplus f(\mathrm{IV}_i + j \pmod{2^n})$ for all $1 \le i \le Q$ and $0 \le j < d$.

If Twice does not occur, then all the $\mathrm{IV}_i + j \pmod{2^n}$ for $1 \leq i \leq Q$ and $0 \leq j < d$ are pairwise distinct. Then the values of f at these points are independent and uniformly distributed, since $f: \{0,1\}^n \to \{0,1\}^n$ is chosen uniformly at random. Therefore, all the C^i_j are also independent and uniformly distributed regardless of the value of b, so that $\Pr(\neg \mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 0) = \Pr(\neg \mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 1)$. It follows that

$$\begin{split} \mathsf{Adv}^\mathsf{CPA}_{\mathcal{U}}(\mathcal{A}) &= |\mathsf{Pr}(\mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 0) - \mathsf{Pr}(\mathsf{Twice} \land \mathcal{A} \to 1 \mid b = 1)| \\ &= |\mathsf{Pr}(\mathcal{A} \to 1 \mid b = 0, \mathsf{Twice}) - \mathsf{Pr}(\mathcal{A} \to 1 \mid b = 1, \mathsf{Twice})| \, \mathsf{Pr}(\mathsf{Twice}) \\ &\leq \mathsf{Pr}(\mathsf{Twice}) \leq 2^{1-n} O^2 d. \end{split}$$

4. Show that if there exists a probabilistic polynomial-time adversary $\mathcal A$ against CTR based on PRF F, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF F. Give a lower bound on the advantage degradation of the reduction.

🖾 Assume that ${\cal A}$ is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We build an adversary ${\cal B}$ against the underlying PRF F as follows:

- 1. Choose $b \in \{0,1\}$ uniformly at random.
- 2. For each encryption query (M^0, M^1) from \mathcal{A} , encrypt M^b using the given scheme, that is,
 - (a) Choose IV $\in \{0,1\}^n$ uniformly at random.
 - (b) For j=0 to d-1, send a query for IV+j and with the reply f_i compute $C_i=M_i^b\oplus f_i$.
 - (c) Send $IV ||C_0|| \dots ||C_{d-1}||$ back to A.
- 3. When \mathcal{A} finally outputs a bit $b' \in \{0,1\}$, output 1 if b' = b and 0 otherwise.

The advantage of ${\cal B}$ against the PRF F is

$$\mathsf{Adv}^{\mathsf{PRF}}_{\scriptscriptstyle{F}}(\mathcal{B}) = |\Pr(\mathcal{B} \to 1 \mid \mathsf{PRF}) - \Pr(\mathcal{B} \to 1 \mid \mathsf{Unif})|$$

where PRF is the experiment in which replies to \mathcal{B} are computed by calling F and Unif is the one in which replies to \mathcal{B} are computed from a uniformly chosen random function f

Considering the two terms separately gives

$$\begin{split} \Pr(\mathcal{B} \rightarrow 1 \mid E) &= \frac{1}{2} \left(\Pr(b' = 0 \mid E, b = 0) + \Pr(b' = 1 \mid E, b = 1) \right) \\ &= \frac{1}{2} \left(1 + \Pr(\mathcal{A} \rightarrow 1 \mid E, b = 1) - \Pr(\mathcal{A} \rightarrow 0 \mid E, b = 0) \right) \end{split}$$

where E is either PRF or Unif. Therefore

$$\mathsf{Adv}_F^{\mathsf{PRF}}(\mathcal{B}) \geq \frac{1}{2} \left(\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - \mathsf{Adv}_{\mathcal{U}}^{\mathsf{CPA}}(\mathcal{A}) \right) \geq \frac{1}{2} \mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - 2^{1-n} Q^2 d$$

using the previous question. Thus, if $Adv^{CPA}(A)$ is non-negligible then so is $Adv^{PRF}_{E}(B)$, which is then about a half of $Adv^{CPA}(A)$.

Exercise 2. PRF from DDH

Let $n \in \mathbb{N}$ be a security parameter. Let \mathbb{G} be a cyclic group of prime order $q > 2^n$ which is generated by a public $g \in \mathbb{G}$ and for which DDH is presumably hard.

We want to build a secure Pseudo-Random Function (PRF) under the DDH assumption in G. The following construction was proposed by Naor and Reingold in 1997. We define the function $F: \mathbb{Z}_q^{n+1} \times \{0,1\}^n \to \mathbb{G}$ as:

$$F(K,x) = g^{a_0 \cdot \prod_{j=1}^n a_j^{x_j}},$$

where we parsed $K = (a_0, a_1, ..., a_n)^{\top}$ and $x = (x_1, x_2, ..., x_n)^{\top}$.

For an index $i \in [1, n]$, we consider an experiment where the adversary is given oracle access to a hybrid function $F^{(i)}(K, \cdot)$ such that

$$\forall x \in \{0,1\}^n, F^{(i)}(K,x) = g^{R^{(i)}(x[1...i]) \cdot \prod_{j=i+1}^n a_j^{x_j}},$$

where $R^{(i)}: \{0,1\}^i \to \mathbb{Z}_q$ is a uniformly sampled function and x[1...i] denotes the i first bits of x.

1. Prove that in the adversary's view, $F^{(0)}$ behaves exactly as the function F if we define $x[1...0] = \varepsilon$, the empty string. How does $F^{(n)}$ behave in the adversary's view?

Define $a_0 := R(\varepsilon)$. This value is uniformly sampled over \mathbb{Z}_q since R is uniformly sampled. Then for any key $K \hookleftarrow U(\mathbb{Z}_q^{n+1})$ sampled by the challenger at the beginning, if we define $K' := (a_0, K[1, \dots, n]) \top$, then K' is still uniformly sampled and $F^{(0)}(K, \cdot) = F(K', \cdot)$, which does not change the adversary's view.

In the case of $F^{(n)}$, for any $x \in \{0,1\}^n$, $F^{(n)}(K,x) = g^{R(x)}$, which is uniformly distributed over \mathbb{G} .

2. Let (g^a, g^b, g^c) be a DDH instance, where $a, b \leftarrow U(\mathbb{Z}_q)$ and we have to decide whether c = ab or if $c \leftarrow U(\mathbb{Z}_q)$. Describe a probabilistic polynomial-time algorithm that creates Q randomized instances of DDH $\{g^a,g^{b_\ell},g^{c_\ell}\}_{\ell=1}^Q$, where $\{b_\ell\}_{\ell=1}^Q$ are uniformly random and independent over \mathbb{Z}_q , with the properties that:

- If $c = ab \mod q$, then $c_{\ell} = ab_{\ell}$ for any $\ell \in [1, q]$.
- If $c \neq ab \mod q$, then $(b_1, c_1, \dots, b_O, c_O)$ follows the uniform distribution over $(\mathbb{Z}_q)^{2Q}$.

Let x_ℓ, y_ℓ be uniform independent variables over \mathbb{Z}_q for $\ell \in \{1, \dots, Q\}$. Let $b_\ell := bx_\ell + y_\ell$ and $c_\ell := cx_\ell + ay_\ell$.

First, we can compute g^{b_ℓ} and g^{c_ℓ} in polynomial time: we compute $(g^b)^{x_\ell} \cdot g^{y_\ell}$ and $(g^c)^{x_\ell} \cdot (g^a)^{y_\ell}$.

Assume that c=ab. Then $c_\ell=abx_\ell+ay_\ell=a(bx_\ell+y_\ell)=ab_\ell$. Moreover b_ℓ is uniformly distributed as y_ℓ is uniformly distributed, thus we get DDH samples.

Otherwise, if $c \neq ab \mod q$, we see that we map the vector $(x_\ell, y_\ell)^\top$ to $\begin{pmatrix} b & 1 \\ c & a \end{pmatrix} (x_\ell, y_\ell)^\top$. Notice that the matrix is invertible since $c \neq ab \mod q$. Then the distribution of c_ℓ and b_ℓ is uniform over \mathbb{Z}_q^2 and is independent from any of the other DDH samples.

3. For each $i \in [0, n]$, define the experiment Exp_i where \mathcal{A} is given oracle access to $F^{(i)}(K, \cdot)$ for $K \hookrightarrow \mathcal{U}(\mathbb{Z}_q^{n+1})$. After at most Q evaluation queries, \mathcal{A} outputs a bit b'. Prove that for each $i \in [0, n-1]$ it holds that Exp_i is computationally indistinguishable from Exp_{i+1} under the DDH assumption.

Assume that there exists some adversary $\mathcal A$ that distinguishes between Exp_i and Exp_{i+1} with non-negligible advantage for some $i \in [0,n-1]$. Let us build $\mathcal B$ an adversary against the DDH assumption that does the following.

- 1. On input (g^a, g^b, g^c) , adversary \mathcal{B} samples $a_i \leftarrow U(\mathbb{Z}_q)$ for j = i + 2 to n.
- 2. Adversary \mathcal{B} samples $(g^a, g^{b\ell}, g^{c\ell})$ as in the previous question.
- 3. Adversary \mathcal{B} creates an empty list L and sets $\alpha := 1$.
- 4. Adversary $\mathcal B$ runs $\mathcal A$. When $\mathcal A$ queries an input x, adversary $\mathcal B$ checks its list L.
 - If there exists (g_1, g_2, g_3) such that $(x[1 ... i], (g_1, g_2, g_3)) \in L$, recover (g_1, g_2, g_3) .
 - Otherwise, set $(g_1,g_2,g_3):=(g^a,g^{b\alpha},g^{c\alpha})$ and add $(x[1\ldots i],(g_1,g_2,g_3))$ to L and increase α by one.
- 5. It outputs $g_2^{\prod_{j=i+2}^n a_j^{x_j}}$ if $x_{i+1}=0$. Otherwise it outputs $g_3^{\prod_{j=i+2}^n a_j^{x_j}}$
- 6. Eventually ${\mathcal A}$ outputs a bit b' that ${\mathcal B}$ outputs too

We claim that in the case where c=ab, the view of $\mathcal A$ is the same as if it were given access to $F^{(i)}(K,\cdot)$ and in the case where $c\neq ab$ the view of $\mathcal A$ is the same as if it were given access to $F^{(i+1)}(K,\cdot)$ (for uniform K).

Note that we can choose the values of K and R, as long as they are distributed accordingly to Exp_i .

We prove the first part of our claim. Assume that c=ab. Since a is uniformly sampled, we can set $K=(a_0,\ldots a_n)^{\top}$ and $a_{i+1}=a$: the key is still uniformly sampled over \mathbb{Z}_a^{n+1} .

Moreover, we can set $b_{\alpha}=R(x[1\dots i])$ where $(x[1\dots i],g^a,g^{b\alpha},g^{e\alpha})\in L$ (by construction, such a α is unique). In that case, since $g^{e\alpha}=g^{a_{i+1}\cdot b_{\alpha}}$, it holds that the output of the query is $g^{R(x[1\dots i])\cdot \prod_{j=i+1}^n a_j^{x_j}}$, which is exactly $F^{(i)}(K,\cdot)$.

When $c \neq ab$, define R the following way: $R(x[1 \dots i]0) := b_{\alpha}$ and $R(x[1 \dots i]1) := c_{\alpha}$. This definition of R is valid as every b_{α} and c_{α} are uniform and independent. Then, it holds that the output of the query is $g^{R(x[1\dots i+1])\cdot\prod_{j=i+2}^n a_j^{x_j}}$ and this gives oracle access to $F^{(i+1)}(K,\cdot)$ to \mathcal{A} , with $K:=(a_0,\dots,a_n)^{\top}$ and the first i a_k are unused. As such, the advantage of \mathcal{B} is:

$$\begin{split} \mathsf{Adv}(\mathcal{B}) &= |\Pr(\mathcal{B} \text{ outputs } 1|DDH) - \Pr(\mathcal{B} \text{ outputs } 1|Unif)| \\ &\geq |\Pr(\mathcal{B} \to 1|c = ab) - \Pr(\mathcal{B} \to 1|c \neq ab)| - 1/q \\ &\geq \mathsf{Adv}(\mathcal{A}) - 1/q. \end{split}$$

Then \mathcal{B} has non-negligible advantage.

4. Conclude by giving an upper bound on the advatange of a PRF distinguisher as a function of the maximal advantage of a DDH distinguisher.

Assuming the advantage of a DDH distinguisher is at most ε , the advantage of a PRF distinguisher is bounded from above by

$$Adv(PRF) \le n \cdot (\varepsilon + 1/q).$$

Remark: Contrary to the GGM construction, the advantage loss does not depend on *Q*. This is a consequence of the random self-reducibility.