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TD 5: PRFs (corrected version)

Exercise 1. CTR Security
Let F: {0,1}" x {0,1}" — {0,1}" be a PRF. To encrypt a message M € {0,1}*", CTR proceeds as
follows:

e Write M = My||M;]| ... ||My_1 with each M; € {0,1}".
e Sample IV uniformly in {0,1}".
e Return IV||Cy||Cy||---||Cy—1 with C; = M; & F(k, IV +i mod 2") for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext
attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
I | et (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments Exp, for b € {0,1}:

e Challenger samples k < KeyGen,

e Adversary makes g encryption queries on messages (Mo, M;1),
o Challenger sends back Enc(k, M) for each i,

e Adversary returns b’ € {0,1}.

We define the advantage of the adversary A against the encryption scheme as

AdvEPA(A) = | Pr(A 225 1) — pr(A 229 1))

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a
non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, g must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at
random, and the advantage is defined as Adv®™(A) = |Pr(A — 1|b=0) —Pr(A —=1|b=1)|.

2. Assume an attacker makes Q encryption queries. Let IV,...,IVy be the corresponding IV’s.
Let Twice denote the event “there exist i,j < Q and k;, k; < d such that IV; + k; = IV; + k; mod 2"

and i # j.” Show that the probability of Twice is bounded from above by Q2d/2"~1.

U5 Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not
interesting for our purpose.

For i,j < Q, let Twice;; be the event “Jk;, k; < d : IV; +k; = IV; +k; (mod 2")", which is equivalent to "3k, [k| < d and IV; —1V; = k
(mod 2"). As the IVs are chosen uniformly and independently, IV; —IV; is uniform modulo 2" and Pr(Twice;;) < 27"(2d —1). (The
inequality is strict when 2d —1 > 2", in which case Pr(Twice;;) = 1.) Then,

Pr(Twice) < Y Pr(Twice;;) = Q(Q—1)27"(2d — 1) < 2" "Q%d.
1<iA<Q

3. Assume the PRF F is replaced by a uniformly chosen function f : {0,1}" — {0,1}". Give an
upper bound on the distinguishing advantage of an adversary A against this idealized version of
CTR, as a function of 4, n and the number of encryption queries Q.
= We write Mi# = M| .. Mi"i with 1 <i < Q and B € {0,1} the encryption queries of the adversary A and C' = IV;||C}||...||C,_

0 -1 0 -1
with 1 <7 < Q the replies. Given the value of b € {0,1} chosen by the challenger, we know that Cji = M;'h @ f(IV; +j (mod 2")) for all
1<i<Qand0<j<d.

If Twice does not occur, then all the IV; 4+ j (mod 2") for 1 <i < Q and 0 < j < d are pairwise distinct. Then the values of f at these
points are independent and uniformly distributed, since f : {0,1}" — {0,1}" is chosen uniformly at random. Therefore, all the C/‘: are also
independent and uniformly distributed regardless of the value of b, so that Pr(—-Twice AVA — 1|b=0) =Pr(-TwiceAA—1|b=1). It
follows that
AdviPA(A) = |Pr(Twice AA — 1| b=0) —Pr(Twice ANA—1|b=1)]
= |Pr(A—1]|b=0,Tuice) —Pr(A —1|b=1,Twice)|Pr(Twice)
< Pr(Twice) < 2'7"Q%d.



4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PREF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.

IS Assume that A is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We
build an adversary B against the underlying PRF F as follows:
1. Choose b € {0,1} uniformly at random.
2. For each encryption query (M°, M"') from A, encrypt M" using the given scheme, that is,
(a) Choose IV € {0,1}" uniformly at random.
(b) Forj=0tod—1, send a query for IV +j and with the reply f; compute C; = M? D fj-
(c) Send IV[|Co|...[|C4-1 back to A.
3. When A finally outputs a bit b’ € {0,1}, output 1 if b’ = b and 0 otherwise.

The advantage of BB against the PRF F is
AdvERF(B) = |Pr(B — 1| PRF) — Pr(B — 1| Unif)|

where PRF is the experiment in which replies to 3 are computed by calling F and Unif is the one in which replies to 3 are computed from
a uniformly chosen random function f.
Considering the two terms separately gives

Pr(B—1|E)= % (Pr(b' =0| E,b=0)+Pr(t) =1|E,b=1))

%(1+Pr(A—>1|E,b=1)—Pr(A—>0\E,b=0))

where E is either PRF or Unif. Therefore

AdvERF(B) >

> % (AdVPA(A) — AdviA(A)) > %AdePA(A) — 2%

using the previous question. Thus, if AdvePA(A) is non-negligible then so is AdvERF(B), which is then about a half of Adv<PA(A).

Exercise 2. PRF from DDH
Let n € N be a security parameter. Let G be a cyclic group of prime order g > 2" which is generated
by a public g € G and for which DDH is presumably hard.

We want to build a secure Pseudo-Random Function (PRF) under the DDH assumption in G. The
following construction was proposed by Naor and Reingold in 1997.

We define the function F : Zg“ x{0,1}" — G as:

F(K,x) = g1

where we parsed K = (ag, ay,...,a,)" and x = (x1,x2,...,%,) "
For an index i € [1,n], we consider an experiment where the adversary is given oracle access to a
hybrid function F) (K, -) such that

/ i . n x]-
Vi € {0,1)", FO (K, x) = g O i)
where R®) : {0,1} — Zgq is a uniformly sampled function and x[1...i] denotes the i first bits of x.

1. Prove that in the adversary’s view, F(O) behaves exactly as the function F if we define x[1...0] = ¢,
the empty string. How does F(") behave in the adversary’s view?

IS Define ap := R(g). This value is uniformly sampled over Z; since R is uniformly sampled. Then for any key K < U(Zf;“) sampled by

the challenger at the beginning, if we define K’ := (ag,K[1,...,n]) T, then K’ is still uniformly sampled and F(% (K, -) = F(K’,-), which does
not change the adversary's view.

In the case of F"), for any x € {0,1}", F")(K,x) = gR™), which is uniformly distributed over G.

2. Let (g% g% ¢°) be a DDH instance, where a,b < U(Zy) and we have to decide whether ¢ = ab or
if ¢ <= U(Zy). Describe a probabilistic polynomial-time algorithm that creates Q randomized in-

stances of DDH {g”, g, g }%:1, where {bg}?zl are uniformly random and independent over Z,,
with the properties that:



e If ¢ = ab mod g, then ¢, = aby for any ¢ € [1,4].
e If c # abmod g, then (by, ¢y, ..., bo,cq) follows the uniform distribution over (Z4)?<.

IS et x¢,y¢ be uniform independent variables over Z, for £ € {1,...,Q}. Let b, := bx; +y; and ¢; := cx; + ay;.

First, we can compute ¢ and g in polynomial time: we compute (g”)¥ - g¥¢ and (g°)* - (g°)¥.

Assume that ¢ = ab. Then ¢; = abx; +ay, = a(bx; +y;) = aby,. Moreover by is uniformly distributed as y; is uniformly distributed, thus we
get DDH samples.

Otherwise, if ¢ # abmod q, we see that we map the vector (x;,1,)" to (}C] i) (x¢,y¢) " Notice that the matrix is invertible since ¢ #

ab mod g. Then the distribution of ¢, and b, is uniform over Z% and is independent from any of the other DDH samples.

3. For each i € [0,#], define the experiment Exp; where A is given oracle access to F()(K, -) for K <=
U(Zg’“). After at most Q evaluation queries, A outputs a bit b’. Prove that for each i € [0, — 1]
it holds that Exp; is computationally indistinguishable from Exp; 1 under the DDH assumption.

IS Assume that there exists some adversary A that distinguishes between Exp; and Exp;,; with non-negligible advantage for some i €
[0,n —1]. Let us build B an adversary against the DDH assumption that does the following.

1. Oninput (g, g%, ¢°), adversary B samples a; <= U(Z,) for j =i+2to n.
2. Adversary B samples (g%, ¢°¢,g°) as in the previous question.
3. Adversary B creates an empty list L and sets a := 1.
4. Adversary B runs A. When A queries an input x, adversary B checks its list L.
o |If there exists (g1, 42,¢3) such that (x[1...7],(81,42,83)) € L, recover (g1,42,$3)-
o Otherwise, set (g1,82,93) := (g%, ¢",¢%) and add (x[1...i],(g1,£2,$3)) to L and increase a by one.

n Xj n xl‘
j=i+2 s

IT
5. It outputs g, if x;y1 = 0. Otherwise it outputs g,

6. Eventually A outputs a bit I’ that B outputs too.

We claim that in the case where ¢ = ab, the view of A is the same as if it were given access to F()(K,-) and in the case where ¢ # ab the

view of A is the same as if it were given access to Fi+1 (K, -) (for uniform K).

Note that we can choose the values of K and R, as long as they are distributed accordingly to Exp;.

We prove the first part of our claim. Assume that ¢ = ab. Since a is uniformly sampled, we can set K = (ag,...a,)" and a;.1 = a: the key

is still uniformly sampled over Zl’;“.

Moreover, we can set b, = R(x[1...i]) where (x[1...i],g",g"%,¢%) € L (by construction, such a & is unique). In that case, since g =
4

i) TT . . a6 .

¢"i+1°% it holds that the output of the query is gR(A[l'"ID =i % , which is exactly F) (K, ).

When ¢ # ab, define R the following way: R(x[1...i]0) := b, and R(x[1...i]1) := c,. This definition of R is valid as every b, and ¢, are
T e .

uniform and independent. Then, it holds that the output of the query is gR(X[L'lH]) Mi—iv2% and this gives oracle access to FUt1(K,-)

to A, with K := (ag,...,a,)" and the first i a; are unused. As such, the advantage of B is:

Adv(B) = |Pr(B outputs 1|DDH) — Pr(B outputs 1|Unif)
> |Pr(B — 1|c = ab) — Pr(B — 1|c # ab)| — 1/q
> Adv(A) —1/4.

Then B has non-negligible advantage.

4. Conclude by giving an upper bound on the advatange of a PRF distinguisher as a function of the
maximal advantage of a DDH distinguisher.

LSy Assuming the advantage of a DDH distinguisher is at most ¢, the advantage of a PRF distinguisher is bounded from above by

Adv(PRF) < n- (e +1/q).

Remark: Contrary to the GGM construction, the advantage loss does not depend on Q. This is a
consequence of the random self-reducibility.
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