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TD 5: PRFs (corrected version)

Exercise 1. CTR Security
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF. To encrypt a message M ∈ {0, 1}d·n, CTR proceeds as
follows:

• Write M = M0∥M1∥ . . . ∥Md−1 with each Mi ∈ {0, 1}n.

• Sample IV uniformly in {0, 1}n.

• Return IV∥C0∥C1∥ . . . ∥Cd−1 with Ci = Mi ⊕ F(k, IV + i mod 2n) for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext
attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
☞ Let (KeyGen,Enc,Dec) be an encryption scheme. We consider the following experiments Expb for b ∈ {0, 1}:

• Challenger samples k← KeyGen,

• Adversary makes q encryption queries on messages (Mi,0, Mi,1),

• Challenger sends back Enc(k, Mi,b) for each i,

• Adversary returns b′ ∈ {0, 1}.

We define the advantage of the adversary A against the encryption scheme as

AdvCPA(A) =
∣∣Pr(A

Exp1−−→ 1)− Pr(A
Exp0−−→ 1)

∣∣.
Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a
non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, q must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at

random, and the advantage is defined as AdvCPA(A) = |Pr(A → 1 | b = 0)− Pr(A → 1 | b = 1)|.

2. Assume an attacker makes Q encryption queries. Let IV1, . . . , IVQ be the corresponding IV’s.
Let Twice denote the event “there exist i, j ≤ Q and ki, k j < d such that IVi + ki = IVj + k j mod 2n

and i ̸= j.” Show that the probability of Twice is bounded from above by Q2d/2n−1.
☞ Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not
interesting for our purpose.

For i, j ≤ Q, let Twicei,j be the event “∃ki , k j < d : IVi + ki = IVj + k j (mod 2n)”, which is equivalent to “∃k, |k| < d and IVi − IVj = k
(mod 2n). As the IVs are chosen uniformly and independently, IVi − IVj is uniform modulo 2n and Pr(Twicei,j) ≤ 2−n(2d − 1). (The
inequality is strict when 2d− 1 > 2n, in which case Pr(Twicei,j) = 1.) Then,

Pr(Twice) ≤ ∑
1≤i ̸=j≤Q

Pr(Twicei,j) = Q(Q− 1)2−n(2d− 1) ≤ 21−nQ2d.

3. Assume the PRF F is replaced by a uniformly chosen function f : {0, 1}n → {0, 1}n. Give an
upper bound on the distinguishing advantage of an adversary A against this idealized version of
CTR, as a function of d, n and the number of encryption queries Q.
☞ We write Mi,β = Mi,β

0 ∥ . . . ∥Mi,β
d−1 with 1 ≤ i ≤ Q and β ∈ {0, 1} the encryption queries of the adversary A and Ci = IVi∥Ci

0∥ . . . ∥Ci
d−1

with 1 ≤ i ≤ Q the replies. Given the value of b ∈ {0, 1} chosen by the challenger, we know that Ci
j = Mi,b

j ⊕ f (IVi + j (mod 2n)) for all
1 ≤ i ≤ Q and 0 ≤ j < d.

If Twice does not occur, then all the IVi + j (mod 2n) for 1 ≤ i ≤ Q and 0 ≤ j < d are pairwise distinct. Then the values of f at these
points are independent and uniformly distributed, since f : {0, 1}n → {0, 1}n is chosen uniformly at random. Therefore, all the Ci

j are also
independent and uniformly distributed regardless of the value of b, so that Pr(¬Twice∧A → 1 | b = 0) = Pr(¬Twice∧A → 1 | b = 1). It
follows that

AdvCPAU (A) = |Pr(Twice∧A → 1 | b = 0)− Pr(Twice∧A → 1 | b = 1)|
= |Pr(A → 1 | b = 0, Twice)− Pr(A → 1 | b = 1, Twice)|Pr(Twice)

≤ Pr(Twice) ≤ 21−nQ2d.
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4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PRF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.
☞ Assume that A is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We
build an adversary B against the underlying PRF F as follows:

1. Choose b ∈ {0, 1} uniformly at random.

2. For each encryption query (M0, M1) from A, encrypt Mb using the given scheme, that is,

(a) Choose IV ∈ {0, 1}n uniformly at random.
(b) For j = 0 to d− 1, send a query for IV + j and with the reply f j compute Cj = Mb

j ⊕ f j.

(c) Send IV∥C0∥ . . . ∥Cd−1 back to A.

3. When A finally outputs a bit b′ ∈ {0, 1}, output 1 if b′ = b and 0 otherwise.

The advantage of B against the PRF F is

AdvPRFF (B) = |Pr(B → 1 | PRF)− Pr(B → 1 | Unif)|

where PRF is the experiment in which replies to B are computed by calling F and Unif is the one in which replies to B are computed from
a uniformly chosen random function f .

Considering the two terms separately gives

Pr(B → 1 | E) =
1
2
(Pr(b′ = 0 | E, b = 0) + Pr(b′ = 1 | E, b = 1))

=
1
2
(1 + Pr(A → 1 | E, b = 1)− Pr(A → 0 | E, b = 0))

where E is either PRF or Unif. Therefore

AdvPRFF (B) ≥ 1
2
(
AdvCPA(A)−AdvCPAU (A)

)
≥ 1

2
AdvCPA(A)− 21−nQ2d

using the previous question. Thus, if AdvCPA(A) is non-negligible then so is AdvPRFF (B), which is then about a half of AdvCPA(A).

Exercise 2. PRF from DDH
Let n ∈ N be a security parameter. Let G be a cyclic group of prime order q > 2n which is generated
by a public g ∈ G and for which DDH is presumably hard.
We want to build a secure Pseudo-Random Function (PRF) under the DDH assumption in G. The
following construction was proposed by Naor and Reingold in 1997.
We define the function F : Zn+1

q × {0, 1}n → G as:

F(K, x) = ga0·∏n
j=1 a

xj
j ,

where we parsed K = (a0, a1, . . . , an)⊤ and x = (x1, x2, . . . , xn)⊤.
For an index i ∈ [1, n], we consider an experiment where the adversary is given oracle access to a
hybrid function F(i)(K, ·) such that

∀x ∈ {0, 1}n, F(i)(K, x) = gR(i)(x[1...i])·∏n
j=i+1 a

xj
j ,

where R(i) : {0, 1}i → Zq is a uniformly sampled function and x[1 . . . i] denotes the i first bits of x.

1. Prove that in the adversary’s view, F(0) behaves exactly as the function F if we define x[1 . . . 0] = ε,
the empty string. How does F(n) behave in the adversary’s view?
☞ Define a0 := R(ε). This value is uniformly sampled over Zq since R is uniformly sampled. Then for any key K ←↩ U(Zn+1

q ) sampled by
the challenger at the beginning, if we define K′ := (a0, K[1, . . . , n])⊤, then K′ is still uniformly sampled and F(0)(K, ·) = F(K′ , ·), which does
not change the adversary’s view.

In the case of F(n), for any x ∈ {0, 1}n, F(n)(K, x) = gR(x), which is uniformly distributed over G.

2. Let (ga, gb, gc) be a DDH instance, where a, b←↩ U(Zq) and we have to decide whether c = ab or
if c ←↩ U(Zq). Describe a probabilistic polynomial-time algorithm that creates Q randomized in-
stances of DDH {ga, gbℓ , gcℓ}Q

ℓ=1, where {bℓ}Q
ℓ=1 are uniformly random and independent over Zq,

with the properties that:
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• If c = ab mod q, then cℓ = abℓ for any ℓ ∈ [1, q].

• If c ̸= ab mod q, then (b1, c1, . . . , bQ, cQ) follows the uniform distribution over (Zq)2Q.

☞ Let xℓ , yℓ be uniform independent variables over Zq for ℓ ∈ {1, . . . , Q}. Let bℓ := bxℓ + yℓ and cℓ := cxℓ + ayℓ.

First, we can compute gbℓ and gcℓ in polynomial time: we compute (gb)xℓ · gyℓ and (gc)xℓ · (ga)yℓ .

Assume that c = ab. Then cℓ = abxℓ + ayℓ = a(bxℓ + yℓ) = abℓ. Moreover bℓ is uniformly distributed as yℓ is uniformly distributed, thus we
get DDH samples.

Otherwise, if c ̸= ab mod q, we see that we map the vector (xℓ , yℓ)⊤ to
(

b 1
c a

)
(xℓ , yℓ)⊤. Notice that the matrix is invertible since c ̸=

ab mod q. Then the distribution of cℓ and bℓ is uniform over Z2
q and is independent from any of the other DDH samples.

3. For each i ∈ [0, n], define the experiment Expi where A is given oracle access to F(i)(K, ·) for K ←↩
U(Zn+1

q ). After at most Q evaluation queries, A outputs a bit b′. Prove that for each i ∈ [0, n− 1]
it holds that Expi is computationally indistinguishable from Expi+1 under the DDH assumption.
☞ Assume that there exists some adversary A that distinguishes between Expi and Expi+1 with non-negligible advantage for some i ∈
[0, n− 1]. Let us build B an adversary against the DDH assumption that does the following.

1. On input (ga , gb , gc), adversary B samples aj ←↩ U(Zq) for j = i + 2 to n.

2. Adversary B samples (ga , gbℓ , gcℓ ) as in the previous question.

3. Adversary B creates an empty list L and sets α := 1.

4. Adversary B runs A. When A queries an input x, adversary B checks its list L.

• If there exists (g1, g2, g3) such that (x[1 . . . i], (g1, g2, g3)) ∈ L, recover (g1, g2, g3).

• Otherwise, set (g1, g2, g3) := (ga , gbα , gcα ) and add (x[1 . . . i], (g1, g2, g3)) to L and increase α by one.

5. It outputs g
∏n

j=i+2 a
xj
j

2 if xi+1 = 0. Otherwise it outputs g
∏n

j=i+2 a
xj
j

3 .

6. Eventually A outputs a bit b′ that B outputs too.

We claim that in the case where c = ab, the view of A is the same as if it were given access to F(i)(K, ·) and in the case where c ̸= ab the
view of A is the same as if it were given access to F(i+1)(K, ·) (for uniform K).

Note that we can choose the values of K and R, as long as they are distributed accordingly to Expi.

We prove the first part of our claim. Assume that c = ab. Since a is uniformly sampled, we can set K = (a0, . . . an)⊤ and ai+1 = a: the key
is still uniformly sampled over Zn+1

q .

Moreover, we can set bα = R(x[1 . . . i]) where (x[1 . . . i], ga , gbα , gcα ) ∈ L (by construction, such a α is unique). In that case, since gcα =

gai+1 ·bα , it holds that the output of the query is g
R(x[1...i])·∏n

j=i+1 a
xj
j , which is exactly F(i)(K, ·).

When c ̸= ab, define R the following way: R(x[1 . . . i]0) := bα and R(x[1 . . . i]1) := cα. This definition of R is valid as every bα and cα are

uniform and independent. Then, it holds that the output of the query is g
R(x[1...i+1])·∏n

j=i+2 a
xj
j and this gives oracle access to F(i+1)(K, ·)

to A, with K := (a0, . . . , an)⊤ and the first i ak are unused. As such, the advantage of B is:

Adv(B) = |Pr(B outputs 1|DDH)− Pr(B outputs 1|Uni f )|
≥ |Pr(B → 1|c = ab)− Pr(B → 1|c ̸= ab)| − 1/q

≥ Adv(A)− 1/q.

Then B has non-negligible advantage.

4. Conclude by giving an upper bound on the advatange of a PRF distinguisher as a function of the
maximal advantage of a DDH distinguisher.
☞ Assuming the advantage of a DDH distinguisher is at most ε, the advantage of a PRF distinguisher is bounded from above by

Adv(PRF) ≤ n · (ε + 1/q).

Remark: Contrary to the GGM construction, the advantage loss does not depend on Q. This is a
consequence of the random self-reducibility.
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