TD 6: Message Authentication Codes

Exercise 1. Insecure MACs

Let $F: \{0,1\}^t \times \{0,1\}^n \to \{0,1\}^n$ be a secure pseudo-random function (PRF). Show that each one of the following message authentication codes (MAC) is insecure:

- **1.** To authenticate $m = m_1 \| \dots \| m_d$ where $m_i \in \{0,1\}^n$ for all i, compute $t = F(k, m_1) \oplus \dots \oplus F(k, m_d)$.
- **2.** To authenticate $m = m_1 \parallel \ldots \parallel m_d$ with $d < 2^{n/2}$ and $m_i \in \{0,1\}^{n/2}$ for all i, compute

$$t = F(k, 1 \parallel m_1) \oplus \ldots \oplus F(k, d \parallel m_d),$$

where *i* is an n/2-bit long representation of *i*, for all $i \le d$.

Exercise 2. CCA Insecurity

Let us consider the following symmetric encryption scheme, where $F: \{0,1\}^s \times \{0,1\}^n \to \{0,1\}^\ell$ is a secure PRF. To encrypt a message $m \in \{0,1\}^\ell$ for $\ell \in \mathbb{N}$:

KeyGen(1^{λ}): Output $k \leftarrow U(\{0,1\}^s)$.

Enc(k, m): Sample $r \leftarrow U(\{0,1\}^n)$ and output $c := (r, F(k, r) \oplus m)$.

Dec($k, c := (c_1, c_2)$): Output $m = c_2 \oplus F(k, c_1)$.

- 1. Recall the security definition of the CCA-security of an encryption scheme.
- 2. Is this scheme CCA-secure?

Exercise 3. CBC-MAC

Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a PRF, d > 0 and L = nd. Prove that the following modifications of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC. Define $t_i := F(K, t_{i-1} \oplus m_i)$ for $i \in [1,d]$ and $t_0 := IV = 0$.

1. Modify CBC-MAC so that a random $IV \leftarrow U(\{0,1\}^n)$ (rather than $IV = \mathbf{0}$) is used each time a tag is computed, and the output is (IV, t_d) instead of t_d alone.

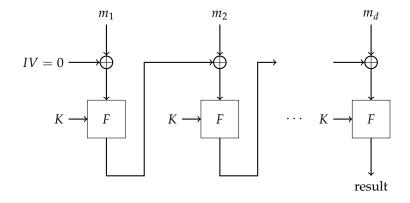


Figure 1: CBC-MAC

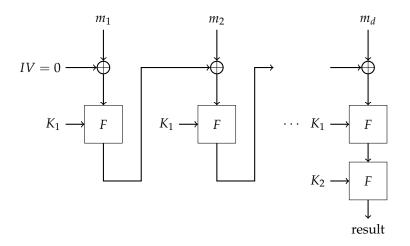


Figure 2: ECBC-MAC

2. Modify CBC-MAC so that all the outputs of *F* are output, rather than just the last one.

We now consider the following ECBC-MAC scheme: let $F: K \times X \to X$ be a PRF, we define $F_{ECBC}: K^2 \times X^{\leq L} \to X$ as in Figure 2, where K_1 and K_2 are two independent keys. If the message length is not a multiple of the block length n, we add a pad to the last block: m =

If the message length is not a multiple of the block length n, we add a pad to the last block: $m = m_1 | \dots | m_{d-1} | (m_d || pad(m))$.

3. Show that there exists a padding for which this scheme is not secure.

For the security of the scheme, the padding must be invertible, and in particular for any message $m_0 \neq m_1$ we need to have $m_0 || \operatorname{pad}(m_0) \neq m_1 || \operatorname{pad}(m_1)$. In practice, the ISO norm is to pad with $10 \cdots 0$, and if the message length is a multiple of the block length, to add a new "dummy" block $10 \cdots 0$ of length n.

4. Prove that this scheme is not secure if the padding does not add a new "dummy" block if the message length is a multiple of the block length.

Remark: The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k_1, k_2) . If the message length is not a multiple of the block length, then we append the ISO padding to it and then we also XOR this last block with the key k_1 . If the message length is a multiple of the block length, then we XOR this last block with the key k_2 . After that, we perform a last encryption with F(k,.) to obtain the tag.