TD 8: Public Key Encryption

Exercise 1.

Let (Gen, Enc, Dec) be a Public-Key encryption scheme. Let us define the following experiments for $b \in \{0,1\}$ and $Q = \text{poly}(\lambda)$.

$$\begin{array}{c} \text{Exp}_b^{\text{many-CPA}} \\ \mathcal{C} \\ \hline (pk,sk) \leftarrow \text{KeyGen}(1^{\lambda}) \\ & \xrightarrow{pk} \\ & \text{Choose adaptively } (m_0^{(i)},m_1^{(i)})_{i=1}^Q \\ & \overset{(m_0^{(i)},m_1^{(i)})_{i=1}^Q}{\xrightarrow{(c_i)_{i=1}^Q}} \\ \hline (c_i = \text{Enc}(pk,m_b^{(i)}))_{i=1}^Q \\ & \xrightarrow{\underbrace{(c_i)_{i=1}^Q}_{i=1}} \\ \hline & \text{Output } b' \in \{0,1\} \end{array}$$

The advantage of A in the many-time CPA game is defined as

$$\mathsf{Adv}^{many\text{-}CPA}(\mathcal{A}) = |Pr(\mathcal{A} \xrightarrow{\mathsf{Exp}_1^{many\text{-}CPA}} 1) - Pr(\mathcal{A} \xrightarrow{\mathsf{Exp}_0^{many\text{-}CPA}} 1)|.$$

- 1. Recall the definition of CPA-security that was given during the lecture. What is the difference?
- 2. Show that these two definitions are equivalent.
- 3. Do we have a similar equivalence in the secret-key setting?

Exercise 2.

Recall the (Lyubashevsky-Palacio-Segev) LWE-based encryption scheme from the lecture.

• KeyGen(1 $^{\lambda}$): Let m, n, q, B be integers such that $m \ge n$ and $q > 12mB^2$. Sample $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$, $\mathbf{s} \leftarrow U((-B, B]^n)$ and $\mathbf{e} \leftarrow U((-B, B]^m)$. Return

$$pk := (A, b = As + e)$$
 and $sk := s$.

• Enc(pk, $\mu \in \{0,1\}$): Sample $(\mathbf{t},\mathbf{f},g) \leftarrow U((-B,B]^m \times (-B,B]^n \times (-B,B])$ and output

$$(c_1, c_2) = (\mathbf{t}^{\top} \mathbf{A} + \mathbf{f}^{\top}, \mathbf{t}^{\top} \mathbf{b} + g + \lfloor \frac{q}{2} \rfloor \mu).$$

- Dec(sk, c_1 , c_2): take the representative of $\mu' = c_2 c_1 \cdot \text{sk}$ in (-q/2, q/2] and return 0 if it has norm < q/4, 1 otherwise.
- 1. Prove correctness and IND-CPA security of this scheme.
- 2. Show that this scheme is not IND-CCA2 secure.

Exercise 3.

Let $\Pi_0 = (\mathsf{Keygen}_0, \mathsf{Encrypt}_0, \mathsf{Decrypt}_0)$ be an IND-CCA2-secure public-key encryption scheme which only encrypts single bits (i.e., the message space is $\{0,1\}$). We consider the following multi-bit encryption scheme $\Pi_1 = (\mathsf{Keygen}_1, \mathsf{Encrypt}_1, \mathsf{Decrypt}_1)$, where the message space is $\{0,1\}^L$ for some L polynomial in the security parameter λ .

Keygen₁(1^{λ}): Generate a key pair (PK, SK) $\leftarrow \Pi_0$. Keygen₀(1^{λ}). Output (PK, SK).

Encrypt₁(PK, M): In order to encrypt $M = M[1] \dots M[L] \in \{0,1\}^L$, do the following.

- 1. For i = 1 to L, compute $C[i] \leftarrow \Pi_0$. Encrypt₀(PK, M[i]).
- 2. Output C = (C[1], ..., C[L]).
- **Decrypt**₁(SK, C) Parse the ciphertext C as $C = (C[1], \ldots, C[L])$. Then, for each $i \in \{1, \ldots, L\}$, compute $M[i] = \Pi_0$. Decrypt₀(SK, C[i]). If there exists $i \in \{1, \ldots, L\}$ such that $M[i] = \bot$, output \bot . Otherwise, output $M = M[1] \ldots M[L] \in \{0, 1\}^L$.
 - **1.** Show that Π_1 does not provide IND-CCA2 security, even if Π_0 is secure in the IND-CCA2 sense.

Let $\Pi=(\text{Keygen}, \text{Encrypt}, \text{Decrypt})$ be an IND-CCA2-secure public-key encryption scheme with message space $\{0,1\}^L$ for some $L\in\mathbb{N}$. We consider the modified public-key encryption scheme $\Pi'=(\text{Keygen'}, \text{Encrypt'}, \text{Decrypt'})$ where the message space is $\{0,1\}^{L-1}$ and which works as follows.

Keygen'(1 $^{\lambda}$): Generate two key pairs $(PK_0, SK_0) \leftarrow \text{Keygen}(1^{\lambda}), (PK_1, SK_1) \leftarrow \text{Keygen}(1^{\lambda}).$ Define $PK := (PK_0, PK_1), SK := (SK_0, SK_1).$

Encrypt'(PK, M): In order to encrypt $M \in \{0,1\}^{L-1}$, do the following.

- 1. Choose a random string $R \leftarrow U(\{0,1\}^{L-1})$ and define $M_L = M \oplus R \in \{0,1\}^{L-1}$ and $M_R = R$.
- 2. Compute $C_L \leftarrow \Pi.\mathsf{Encrypt}(PK_0,0||M_L)$ and $C_1 \leftarrow \Pi.\mathsf{Encrypt}(PK_1,1||M_R)$.

Output $C = (C_L, C_R)$.

- **Decrypt**'(SK,C) Parse C as (C_L,C_R) . Then, compute $\tilde{M}_L = \Pi. \text{Decrypt}(SK_0,C_L)$ and $\tilde{M}_R = \Pi. \text{Decrypt}(SK_1,C_R)$. If $\tilde{M}_L = \bot$ or $\tilde{M}_R = \bot$, output \bot . If the first bit of M_L (resp. M_R) is not 0 (resp. 1), return \bot . Otherwise, parse \tilde{M}_L as $0 || M_L$ and \tilde{M}_R as $1 || M_R$, respectively, where $M_L, M_R \in \{0,1\}^{L-1}$, and output $M = M_L \oplus M_R \in \{0,1\}^{L-1}$.
 - 2. Show that the modified scheme Π' does not provide IND-CCA2 security, even if the underlying scheme Π does.
 - 3. Show that, if Π provides IND-CCA1 security, so does the modified scheme Π' . Namely, show that an IND-CCA1 adversary against Π' implies an IND-CCA1 adversary againt Π .