TD 9: IND-CCA Security - Signature

Exercise 1.

Recall the ElGamal public key encryption scheme from the lecture.

• KeyGen(1 $^{\lambda}$): Choose a group G with generator g and order $p = O(2^{\lambda})$. Sample $x \leftarrow U(\mathbb{Z}_p)$ and return:

$$pk := (G, g, p, g^x)$$
 and $sk := x$.

- Enc(pk, $m \in G$): Sample $r \leftarrow U(\mathbb{Z}_p)$ and output $(c_1, c_2) = (g^r, (g^x)^r \cdot m)$.
- Dec(sk, c_1, c_2): output $m = c_2 \cdot c_1^{-sk}$.
- **1.** Show that for any $m, m' \in G$, and $(c_1, c_2) := \operatorname{Enc}(\operatorname{pk}, m)$ and $(c'_1, c'_2) := \operatorname{Enc}(\operatorname{pk}, m')$, it holds that $(c_1 \cdot c'_1, c_2 \cdot c'_2)$ is a valid ciphertext for $m \cdot m'$. We say that the scheme is homomorphic for multiplication.
- **2.** Provide a modification of the scheme such that it is now *additively* homomorphic instead of multiplicatively. *Hint: you may want to choose* $\mathcal{M} = \{m \in \mathbb{Z}_p, |m| \leq \mathsf{poly}(\lambda)\}$ *as your message space.*
- **3.** Show that the (genuine) ElGamal encryption scheme is not IND-CCA2 secure. *Remark:* No homomorphic encryption scheme can be IND-CCA2 secure.

Exercise 2.

We are looking here at different modifications of the Fujisaki-Okamoto (FO) transform that fail at providing CCA2 security. Let (Gen, Enc, Dec) be a public-key encryption scheme assumed to be IND-CPA secure with message space $\{0,1\}^{k+\ell}$. We recall the FO transform, where H is a hash function that is modeled as a RO.

KeyGen(1^{λ}): Sample and return (pk, sk) ← Gen(1^{λ}).

Enc'($pk, m \in \{0,1\}^k$): Sample $r \leftarrow U(\{0,1\}^\ell)$ and return c = Enc(pk, m||r; H(m||r)), where H(m||r) is the randomness used by the algorithm.

 $\mathsf{Dec}'(sk,c)$: Compute $m||r \leftarrow \mathsf{Dec}(sk,c)$ and return m if $c = \mathsf{Enc}(pk,m||r;H(m||r))$. Otherwise, return \bot .

- **1.** What happens if $\ell = O(\log(\lambda))$?
- **2.** Show that there exists an IND-CPA secure encryption scheme such that if we always return *m* in the decryption algorithm, without checking the consistency of the randomness used in the ecnryption, then its FO transform is not IND-CCA2 secure.

Exercise 3.

In this exercise we show a scheme that can be proven secure in the random oracle model, but is insecure when the random oracle model is instantiated with SHA-3 (or any fixed (unkeyed) hash function $H: \{0,1\}^* \to \{0,1\}^n$). Let Π be a signature scheme that is euCMA-secure in the standard model.

Let $y \in \{0,1\}^n$ and define the following signature scheme Π_y . The signing and verifying keys are obtained by running Π .Gen (1^{λ}) . Signature of a message m is computed out as follows: if H(0) = y then output the secret key, if $H(0) \neq y$ then return a signature computed using Π .Sign. To verify a message, if y = H(0) then accept any signature for any message and otherwise, verify it using Π .Verify.

- **1.** Prove that for any value y, the scheme Π_y is euCMA-secure in the random oracle model.
- **2.** Show that there exists a particular y for which Π_y is insecure when the hash function is not modeled as a random oracle anymore.