TD 9: IND-CCA Security - Signature (corrected version)

Exercise 1.

Recall the ElGamal public key encryption scheme from the lecture.

• KeyGen(1 $^{\lambda}$): Choose a group G with generator g and order $p = O(2^{\lambda})$. Sample $x \leftarrow U(\mathbb{Z}_p)$ and return:

$$pk := (G, g, p, g^x)$$
 and $sk := x$.

- Enc(pk, $m \in G$): Sample $r \leftarrow U(\mathbb{Z}_p)$ and output $(c_1, c_2) = (g^r, (g^x)^r \cdot m)$.
- Dec(sk, c_1, c_2): output $m = c_2 \cdot c_1^{-sk}$.
- **1.** Show that for any $m, m' \in G$, and $(c_1, c_2) := \operatorname{Enc}(\operatorname{pk}, m)$ and $(c'_1, c'_2) := \operatorname{Enc}(\operatorname{pk}, m')$, it holds that $(c_1 \cdot c'_1, c_2 \cdot c'_2)$ is a valid ciphertext for $m \cdot m'$. We say that the scheme is homomorphic for multiplication.

we have $c_2 \cdot c_2' = (c_1 \cdot c_1')^x \cdot m \cdot m'$. This is a valid encryption for mm', i.e. the decryption algorithm called on this ciphertext returns $m \cdot m'$.

2. Provide a modification of the scheme such that it is now *additively* homomorphic instead of multiplicatively. *Hint: you may want to choose* $\mathcal{M} = \{m \in \mathbb{Z}_p, |m| \leq \mathsf{poly}(\lambda)\}$ *as your message space.*

Instead of encrypting an element of G, we choose to encrypt an element of \mathcal{M} . We keep the keygen and change the encryption scheme: $\mathrm{Enc}'(\mathrm{pk},m)=\mathrm{Enc}(\mathrm{pk},g^m)$. However, to decrypt, we need to do more: $\mathrm{Dec}'(\mathrm{sk},c=\mathrm{Enc}'(\mathrm{pk},m))$ recovers g^m with $\mathrm{Dec}(\mathrm{sk},c)$. With our choice of message space, it is possible to brute force in polynomial time the Discrete Logarithm Problem, and recover m from g^m .

With the same trick as in the previous question, we get that our scheme is homomorphic, but this time additively: we get an encryption of m + m', which is still polynomial in λ .

3. Show that the (genuine) ElGamal encryption scheme is not IND-CCA2 secure.

Let $m_0 \neq m_1 \in G$. Let $c_1', c_2' = \operatorname{Enc}(\operatorname{pk}, g)$. When given c_1, c_2 encrypting either m_0 or m_1 , it is still possible to query the decryption oracle for (c_1c_1', c_2c_2') which returns either m_0g or m_1g , which are different. It is then possible to win the IND-CCA2 security game with probability 1.

Remark: No homomorphic encryption scheme can be IND-CCA2 secure.

Exercise 2.

We are looking here at different modifications of the Fujisaki-Okamoto (FO) transform that fail at providing CCA2 security. Let (Gen, Enc, Dec) be a public-key encryption scheme assumed to be IND-CPA secure with message space $\{0,1\}^{k+\ell}$. We recall the FO transform, where H is a hash function that is modeled as a RO.

KeyGen(1 $^{\lambda}$): Sample and return $(pk, sk) \leftarrow \text{Gen}(1^{\lambda})$.

 $\operatorname{Enc}'(pk, m \in \{0,1\}^k)$: Sample $r \leftarrow U(\{0,1\}^\ell)$ and return $c = \operatorname{Enc}(pk, m||r; H(m||r))$, where H(m||r) is the randomness used by the algorithm.

Dec'(sk, c): Compute $m||r \leftarrow \text{Dec}(sk, c)$ and return m if c = Enc(pk, m||r; H(m||r)). Otherwise, return \bot .

1. What happens if $\ell = O(\log(\lambda))$?

One can try to guess r: after a challenge phase where the adversary gets c^* which is an encryption of either m_0 or m_1 , sample $r \leftarrow U(\{0,1\}^\ell)$ and compute $c_0 = \operatorname{Enc}(pk, m_0||r, H(m_0||r))$ and $c_1 = \operatorname{Enc}(pk, m_1||r, H(m_1||r))$. If there exists $b \in \{0,1\}$ such that $c_b = c^*$, return it. Otherwise return a uniform bit.

The advantage of this adversary is equal to the probability of guessing the right r which happens with probability $O(1/\lambda)$, which is non-negligible.

2. Show that there exists an IND-CPA secure encryption scheme such that if we always return *m* in the decryption algorithm, without checking the consistency of the randomness used in the ecnryption, then its FO transform is not IND-CCA2 secure.

We can for instance use the ElGamal encryption scheme. In this case, when we get $c^* = (g^{H(m_b||r)}, pk^{H(m_b||r)} \cdot (m_b||r))$ we can query the decryption algorithm for $g \cdot g^{H(m_b||r)}, pk \cdot pk^{H(m_b||r)} \cdot (m_b||r)$, which will return m_b , letting us win the game with probability 1.

Exercise 3.

In this exercise we show a scheme that can be proven secure in the random oracle model, but is insecure when the random oracle model is instantiated with SHA-3 (or any fixed (unkeyed) hash function $H: \{0,1\}^* \to \{0,1\}^n$). Let Π be a signature scheme that is euCMA-secure in the standard model.

Let $y \in \{0,1\}^n$ and define the following signature scheme Π_y . The signing and verifying keys are obtained by running Π .Gen (1^{λ}) . Signature of a message m is computed out as follows: if H(0) = y then output the secret key, if $H(0) \neq y$ then return a signature computed using Π .Sign. To verify a message, if y = H(0) then accept any signature for any message and otherwise, verify it using Π .Verify.

1. Prove that for any value y, the scheme Π_y is euCMA-secure in the random oracle model.

In the ROM, we can reduce the security of Π_y from the security of Π , as the event y = H(0) happens with negligible probability $(< 2^{-\lambda})$

Let us assume that there exists an adversary $\mathcal A$ that breaks the euCMA security of Π_y in the ROM. We build the following reduction $\mathcal B_y$ that on input a verification key vk does the following. It queries H(0). If H(0)=y, it aborts. Otherwise, it forwards vk to $\mathcal A$ and uses its own signing oracle to sign the messages queried by $\mathcal A$. When $\mathcal A$ outputs a forgery, it forwards it. We then have:

$$Adv(\mathcal{B}) = Pr(\mathcal{A} \text{ wins } \wedge H(0) \neq y).$$

Moreover, it holds that

$$Adv(A) \leq Pr(A \text{ wins } \wedge H(0) \neq y) + \frac{1}{2^n}.$$

Then $Adv(\mathcal{B}) \geq Adv(\mathcal{A}) - 1/2^n$, which is non-negligible.

2. Show that there exists a particular y for which Π_y is insecure when the hash function is not modeled as a random oracle anymore.

Let H be fixed. We look at $\Pi_{H(0)}$. This signature scheme always output its secret key as signature and moreover it accepts any signature for any message. It is then not euCMA-secure.