
M1 – Cryptography and Security (2025/2026) A. Passelègue and L. Gaillard

TD 9: IND-CCA Security - Signature (corrected version)

Exercise 1.
Recall the ElGamal public key encryption scheme from the lecture.

• KeyGen(1λ): Choose a group G with generator g and order p = O(2λ). Sample x ←↩ U(Zp) and
return:

pk := (G, g, p, gx) and sk := x.

• Enc(pk, m ∈ G): Sample r ←↩ U(Zp) and output (c1, c2) = (gr, (gx)r ·m).

• Dec(sk, c1, c2): output m = c2 · c−sk1 .

1. Show that for any m, m′ ∈ G, and (c1, c2) := Enc(pk, m) and (c′1, c′2) := Enc(pk, m′), it holds
that (c1 · c′1, c2 · c′2) is a valid ciphertext for m · m′. We say that the scheme is homomorphic for
multiplication.

☞ we have c2 · c′2 = (c1 · c′1)x ·m ·m′. This is a valid encryption for mm′, i.e. the decryption algorithm called on this ciphertext returns m ·m′.

2. Provide a modification of the scheme such that it is now additively homomorphic instead of
multiplicatively. Hint: you may want to chooseM = {m ∈ Zp, |m| ≤ poly(λ)} as your message space.
☞ Instead of encrypting an element of G, we choose to encrypt an element of M. We keep the keygen and change the encryption
scheme: Enc′(pk, m) = Enc(pk, gm). However, to decrypt, we need to do more: Dec′(sk, c = Enc′(pk, m)) recovers gm with Dec(sk, c).
With our choice of message space, it is possible to brute force in polynomial time the Discrete Logarithm Problem, and recover m from gm.

With the same trick as in the previous question, we get that our scheme is homomorphic, but this time additively: we get an encryption

of m + m′, which is still polynomial in λ.

3. Show that the (genuine) ElGamal encryption scheme is not IND-CCA2 secure.

☞ Let m0 ̸= m1 ∈ G. Let c′1, c′2 = Enc(pk, g). When given c1, c2 encrypting either m0 or m1, it is still possible to query the decryption

oracle for (c1c′1, c2c′2) which returns either m0g or m1g, which are different. It is then possible to win the IND-CCA2 security game with

probability 1.

Remark: No homomorphic encryption scheme can be IND-CCA2 secure.

Exercise 2.
We are looking here at different modifications of the Fujisaki-Okamoto (FO) transform that fail at
providing CCA2 security. Let (Gen,Enc,Dec) be a public-key encryption scheme assumed to be IND-
CPA secure with message space {0, 1}k+ℓ. We recall the FO transform, where H is a hash function that
is modeled as a RO.

KeyGen(1λ): Sample and return (pk, sk)← Gen(1λ).

Enc′(pk, m ∈ {0, 1}k): Sample r ←↩ U({0, 1}ℓ) and return c = Enc(pk, m||r; H(m||r)), where H(m||r) is
the randomness used by the algorithm.

Dec′(sk, c): Compute m||r ← Dec(sk, c) and return m if c = Enc(pk, m||r; H(m||r)). Otherwise, re-
turn ⊥.

1. What happens if ℓ = O(log(λ))?
☞ One can try to guess r: after a challenge phase where the adversary gets c⋆ which is an encryption of either m0 or m1, sample r ←↩
U({0, 1}ℓ) and compute c0 = Enc(pk, m0||r, H(m0||r)) and c1 = Enc(pk, m1||r, H(m1||r)). If there exists b ∈ {0, 1} such that cb = c⋆, return
it. Otherwise return a uniform bit.

The advantage of this adversary is equal to the probability of guessing the right r which happens with probability O(1/λ), which is

non-negligible.

1

2. Show that there exists an IND-CPA secure encryption scheme such that if we always return m
in the decryption algorithm, without checking the consistency of the randomness used in the
ecnryption, then its FO transform is not IND-CCA2 secure.

☞ We can for instance use the ElGamal encryption scheme. In this case, when we get c⋆ = (gH(mb ||r) , pkH(mb ||r) · (mb ||r)) we can query

the decryption algorithm for g · gH(mb ||r) , pk · pkH(mb ||r) · (mb ||r), which will return mb, letting us win the game with probability 1.

Exercise 3.
In this exercise we show a scheme that can be proven secure in the random oracle model, but is
insecure when the random oracle model is instantiated with SHA-3 (or any fixed (unkeyed) hash
function H : {0, 1}∗ → {0, 1}n). Let Π be a signature scheme that is euCMA-secure in the standard
model.
Let y ∈ {0, 1}n and define the following signature scheme Πy. The signing and verifying keys are
obtained by running Π.Gen(1λ). Signature of a message m is computed out as follows: if H(0) = y
then output the secret key, if H(0) ̸= y then return a signature computed using Π.Sign. To verify a
message, if y = H(0) then accept any signature for any message and otherwise, verify it using Π.Verify.

1. Prove that for any value y, the scheme Πy is euCMA-secure in the random oracle model.

☞ In the ROM, we can reduce the security of Πy from the security of Π, as the event y = H(0) happens with negligible probability
(< 2−λ).

Let us assume that there exists an adversary A that breaks the euCMA security of Πy in the ROM. We build the following reduction By
that on input a verification key vk does the following. It queries H(0). If H(0) = y, it aborts. Otherwise, it forwards vk to A and uses its
own signing oracle to sign the messages queried by A. When A outputs a forgery, it forwards it. We then have:

Adv(B) = Pr(A wins∧ H(0) ̸= y).

Moreover, it holds that

Adv(A) ≤ Pr(A wins∧ H(0) ̸= y) +
1
2n .

Then Adv(B) ≥ Adv(A)− 1/2n, which is non-negligible.

2. Show that there exists a particular y for which Πy is insecure when the hash function is not
modeled as a random oracle anymore.

☞ Let H be fixed. We look at ΠH(0). This signature scheme always output its secret key as signature and moreover it accepts any

signature for any message. It is then not euCMA-secure.

2

	1.
	2.
	3.

