M1

— Cryptography and Security (2025/2026) A. Passelegue and L. Gaillard

TD g9: IND-CCA Security - Signature (corrected version)

Exercise 1.
Recall the ElGamal public key encryption scheme from the lecture.

1.

e KeyGen(1"): Choose a group G with generator g and order p = O(2"). Sample x > U(Z,) and
return:
pk := (G, g, p,&*) and sk := x.

e Enc(pk,m € G): Sample r <= U(Zp) and output (c1,c2) = (g, (g*)" - m).

o Dec(sk,cq,¢2): output m = ¢y - C;Sk.
Show that for any m,m’ € G, and (c1,¢2) = Enc(pk,m) and (c},c5) := Enc(pk,m’), it holds
that (cq - ¢}, ¢ - ¢}) is a valid ciphertext for m - m’. We say that the scheme is homomorphic for
multiplication.

IS we have ¢y - ¢y = (1 -¢})¥ -m-m'. Thisis a valid encryption for mm’, i.e. the decryption algorithm called on this ciphertext returns m -’

Provide a modification of the scheme such that it is now additively homomorphic instead of
multiplicatively. Hint: you may want to choose M = {m € Zy, |m| < poly(A)} as your message space.

IS |nstead of encrypting an element of G, we choose to encrypt an element of M. We keep the keygen and change the encryption
scheme: Enc’(pk,m) = Enc(pk,g™). However, to decrypt, we need to do more: Dec'(sk,c = Enc’(pk,m)) recovers ¢" with Dec(sk,c).

With our choice of message space, it is possible to brute force in polynomial time the Discrete Logarithm Problem, and recover m from g".

With the same trick as in the previous question, we get that our scheme is homomorphic, but this time additively: we get an encryption

of m + m’, which is still polynomial in A.

Show that the (genuine) ElGamal encryption scheme is not IND-CCA2 secure.

I et my # my € G. Let ¢}, cb = Enc(pk,g). When given ¢y, ¢, encrypting either mg or my, it is still possible to query the decryption
oracle for (cic}, coch) which returns either mog or mig, which are different. It is then possible to win the IND-CCA2 security game with

probability 1.

Remark: No homomorphic encryption scheme can be IND-CCA2 secure.

Exercise 2.

We
pro

are looking here at different modifications of the Fujisaki-Okamoto (FO) transform that fail at
viding CCA2 security. Let (Gen, Enc, Dec) be a public-key encryption scheme assumed to be IND-

CPA secure with message space {0, 1}*¢. We recall the FO transform, where H is a hash function that
is modeled as a RO.

KeyGen(1*): Sample and return (pk, sk) < Gen(1).

Enc’(pk,m € {0,1}%): Sample r +> U({0,1}") and return ¢ = Enc(pk, m||r; H(m||r)), where H(m]||r) is

the randomness used by the algorithm.

Dec/(sk,c): Compute m||r < Dec(sk,c) and return m if ¢ = Enc(pk, m||r; H(m||r)). Otherwise, re-

1.

turn L.

What happens if £ = O(log(A))?

IS One can try to guess r: after a challenge phase where the adversary gets ¢* which is an encryption of either mgy or my, sample r <=
U({0,1}") and compute cy = Enc(pk, mo||r, H(mo||r)) and c1 = Enc(pk, m1||r, H(m1||r)). If there exists b € {0,1} such that ¢, = c*, return
it. Otherwise return a uniform bit.

The advantage of this adversary is equal to the probability of guessing the right r which happens with probability O(1/A), which is

non-negligible.

2. Show that there exists an IND-CPA secure encryption scheme such that if we always return m
in the decryption algorithm, without checking the consistency of the randomness used in the
ecnryption, then its FO transform is not IND-CCAz2 secure.

IS We can for instance use the ElGamal encryption scheme. In this case, when we get ¢* = (g""/I" pkH 1) . (1, || 7)) we can query

the decryption algorithm for g - gH('”bH’),pk . pkH("’bH” - (mp|]r), which will return m;, letting us win the game with probability 1.

Exercise 3.

In this exercise we show a scheme that can be proven secure in the random oracle model, but is
insecure when the random oracle model is instantiated with SHA-3 (or any fixed (unkeyed) hash
function H : {0,1}* — {0,1}"). Let IT be a signature scheme that is euCMA-secure in the standard
model.

Let y € {0,1}" and define the following signature scheme IT,. The signing and verifying keys are
obtained by running IT.Gen(1%). Signature of a message m is computed out as follows: if H(0) = y
then output the secret key, if H(0) # y then return a signature computed using I1.Sign. To verify a
message, if y = H(0) then accept any signature for any message and otherwise, verify it using IT.Verify.

1. Prove that for any value y, the scheme I1; is euCMA-secure in the random oracle model.

IS |y the ROM, we can reduce the security of II, from the security of II, as the event y = H(0) happens with negligible probability
(<27M).

Let us assume that there exists an adversary A that breaks the euCMA security of IT, in the ROM. We build the following reduction By
that on input a verification key vk does the following. It queries H(0). If H(0) =y, it aborts. Otherwise, it forwards vk to A and uses its
own signing oracle to sign the messages queried by A. When A outputs a forgery, it forwards it. We then have:

Adv(B) = Pr(A wins A H(0) # y).

Moreover, it holds that
1
Adv(A) < Pr(A wins AH(0) # y) + 5,

Then Adv(B) > Adv(A) —1/2", which is non-negligible.

2. Show that there exists a particular y for which II, is insecure when the hash function is not
modeled as a random oracle anymore.

=" et H be fixed. We look at ITh(o). This signature scheme always output its secret key as signature and moreover it accepts any

signature for any message. It is then not euCMA-secure.

	1.
	2.
	3.

