Solving parameter-dependent semi-algebraic systems with Hermite matrices

Louis Gaillard¹ Mohab Safey El Din²

¹ENS de Lyon, LIP, Lyon

²Sorbonne Université, LIP6, Paris

ISSAC 2024, Raleigh NC, USA - February 17, 2025

Solving parametric polynomial systems with inequalities

$$f_1(\boldsymbol{y},\boldsymbol{x}) = \dots = f_p(\boldsymbol{y},\boldsymbol{x}) = 0, \quad g_1(\boldsymbol{y},\boldsymbol{x}) > 0, \dots, g_s(\boldsymbol{y},\boldsymbol{x}) > 0$$

- $\mathbf{y} = (y_1, \dots, y_t)$ are parameters
- $\mathbf{x} = (x_1, \dots, x_n)$ are variables
- π : $(y, x) \mapsto y$ the y-coordinate projection

Solving parametric polynomial systems with inequalities

$$f_1(y, x) = \cdots = f_p(y, x) = 0, \quad g_1(y, x) > 0, \ldots, g_s(y, x) > 0$$

- $\mathbf{y} = (y_1, \dots, y_t)$ are parameters
- $\mathbf{x} = (x_1, \dots, x_n)$ are variables
- π : $(y, x) \mapsto y$ the y-coordinate projection

Assumption: For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Solving parametric polynomial systems with inequalities

$$f_1(y,x) = \cdots = f_p(y,x) = 0, \quad g_1(y,x) > 0, \ldots, g_s(y,x) > 0$$

- $\mathbf{y} = (y_1, \dots, y_t)$ are parameters
- $\mathbf{x} = (x_1, \dots, x_n)$ are variables
- $\pi: (y, x) \mapsto y$ the y-coordinate projection

Assumption: For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Goals

- Classify the possible number of real roots
- Describe the regions where these numbers are achieved
- → **Applications** in Robotics, Computer Vision, Physics,...

Given a semi-algebraic (s.a) set $\mathcal{S} \subseteq \mathbb{R}^{t+n}$ defined by

$$\textit{f}_1=\cdots=\textit{f}_p=0,\quad \textit{g}_1>0,\ldots,\textit{g}_s>0$$

For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Given a semi-algebraic (s.a) set $S \subseteq \mathbb{R}^{t+n}$ defined by

$$\textit{f}_1=\cdots=\textit{f}_p=0,\quad \textit{g}_1>0,\ldots,\textit{g}_s>0$$

For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Example:

$$x^2 + ax + b = 0, \quad x > 0$$

$$\Delta := a^2 - 4b$$

Given a semi-algebraic (s.a) set $\mathcal{S} \subseteq \mathbb{R}^{t+n}$ defined by

$$f_1=\cdots=f_p=0,\quad g_1>0,\ldots,g_s>0$$

For generic $\eta \in \mathbb{C}^t$, $extbf{\textit{f}}(\eta, \cdot) = 0$ is zero-dim

Example:

$$x^{2} + ax + b = 0, \quad x > 0$$

$$\Delta := a^{2} - 4b$$

Example:

Given a semi-algebraic (s.a) set
$$\mathcal{S} \subseteq \mathbb{R}^{t+n}$$
 defined by

$$x^{2} + ax + b = 0, \quad x > 0$$
$$\Delta := a^{2} - 4b$$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0$$

For generic $\eta \in \mathbb{C}^t$, $\boldsymbol{f}(\eta,\cdot) = 0$ is zero-dim

Valid Classification:

r	η	Ф
0	(1,1)	$\Delta < 0 \lor (a > 0 \land b > 0)$
1	(1,1) $(1,-1)$ $(-3,1)$	b < 0
2	(-3, 1)	$\Delta > 0 \land a < 0 \land b > 0$

Example:

Given a semi-algebraic (s.a) set
$$S \subseteq \mathbb{R}^{t+n}$$
 defined by

$$x^{2} + ax + b = 0, \quad x > 0$$
$$\Delta := a^{2} - 4b$$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0$$

For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Problem

Compute $(\Phi_i, \eta_i, r_i)_{1 \leq i \leq \ell}$ with Φ_i a s.a formula in $\mathbb{Q}[\mathbf{y}]$ defining the s.a set $\overline{\mathcal{T}_i} \subseteq \mathbb{R}^t$, $\eta_i \in \mathcal{T}_i$ and $r_i \geq 0$ st,

- for all $\eta \in \mathcal{T}_i$, $\sharp \mathcal{S} \cap \pi^{-1}(\eta) = r_i$
- $\bigcup_{i=1}^{\ell} \mathcal{T}_i$ is dense in \mathbb{R}^t

Valid Classification:

,	r	η	Ф
()	(1,1)	$\Delta < 0 \lor (a > 0 \land b > 0)$
1	1	(1, -1)	
2	2	(-3,1)	$\Delta > 0 \land a < 0 \land b > 0$

a

Border/Discriminant Polynomials [Yang, Xia 2005] [Liang, Jeffrey, Maza 2008] [Moroz 2006] [Lazard, Rouillier 2007]

State of the art

Input System

Louis Gaillard

CAD

Border/Discriminant Polynomials [Yang, Xia 2005] [Liang, Jeffrey, Maza 2008]

[Moroz 2006] [Lazard, Rouillier 2007]

State of the art

Input System

• Cost of CAD: doubly exponential in the number of variables

• When S is a real algebraic set: [Le, Safey El Din 2022] Under genericity assumptions, an algorithm with a singly exponential cost

• When S is a **real algebraic set**: [Le, Safey El Din 2022]

Under *genericity assumptions*, an algorithm with a **singly** exponential cost

Question: Can we achieve a singly exponential complexity for semi-algebraic sets?

$$f_1 = \dots = f_p = 0, \quad g_1 > 0, \dots, g_s > 0, \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t)$$

$$\mathbf{d} := \max (\deg f_i, \deg g_j)$$

Results

Contributions

$$f_1 = \dots = f_p = 0, \quad g_1 > 0, \dots, g_s > 0, \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t)$$

$$\mathbf{d} := \max (\deg f_i, \deg g_j)$$

• Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets Need to handle the inequalities

$$f_1 = \dots = f_p = 0, \quad g_1 > 0, \dots, g_s > 0, \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t)$$

$$\mathbf{d} := \max (\deg f_i, \deg g_j)$$

- Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets
 Need to handle the inequalities
- New algorithm solving Real Solution Classification

$$f_1 = \dots = f_p = 0, \quad g_1 > 0, \dots, g_s > 0, \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t)$$

$$d := \max \left(\deg f_i, \deg g_j \right)$$

$$\rho := \sharp \text{ sign conditions } \sigma \in \{0, 1, -1\}^s \text{ satisfied by } \mathbf{g} \text{ on } \mathbf{f} = 0$$

$$\text{Theorem [Basu, Pollack, Roy 2005]} : \rho \leq s^t d^{O(n+t)}$$

- Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets Need to handle the inequalities
- New algorithm solving Real Solution Classification
- Complexity Analysis under genericity assumptions on fArithmetic cost in $\rho^{t+1}d^{4nt+O(n+t)}s^{4t+O(1)}n^{3t+O(1)}$

$$f_1 = \dots = f_p = 0, \quad g_1 > 0, \dots, g_s > 0, \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t)$$

$$\mathbf{d} \coloneqq \max \left(\deg f_i, \deg g_j \right)$$

$$\rho := \sharp \text{ sign conditions } \sigma \in \{0, 1, -1\}^s \text{ satisfied by } \mathbf{g} \text{ on } \mathbf{f} = 0$$

Theorem [Basu, Pollack, Roy 2005] : $\rho \leq s^t d^{O(n+t)}$

- Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets Need to handle the inequalities
- New algorithm solving Real Solution Classification
- Complexity Analysis under *genericity* assumptions on *f*

Arithmetic cost in $ho^{t+1}d^{4nt+O(n+t)}s^{4t+O(1)}n^{3t+O(1)}$

• Formulas contain polynomials of degree $\leq (2s + n)d^{n+1}$ with a determinantal structure

$$f_1 = \dots = f_p = 0, \quad g_1 > 0, \dots, g_s > 0, \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t)$$

$$\mathbf{d} \coloneqq \max \left(\deg f_i, \deg g_i \right)$$

$$\rho \coloneqq \sharp \text{ sign conditions } \sigma \in \{0, 1, -1\}^s \text{ satisfied by } \mathbf{g} \text{ on } \mathbf{f} = 0$$

Theorem [Basu, Pollack, Roy 2005] : $\rho \leq s^t d^{O(n+t)}$

- Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets Need to handle the inequalities
- New algorithm solving Real Solution Classification
- Complexity Analysis under genericity assumptions on fArithmetic cost in $\rho^{t+1}d^{4nt+O(n+t)}s^{4t+O(1)}n^{3t+O(1)}$
- Formulas contain polynomials of degree $\leq (2s+n)d^{n+1}$ with a determinantal structure
- Implementation solving instances that were out of reach

For $f=(f_1,\ldots,f_p)\subset \mathbb{K}[x]$ s.t $\langle f
angle_\mathbb{K}\subseteq \mathbb{K}[x]$ zero-dim and $g\in \mathbb{K}[x]$

For $f=(f_1,\ldots,f_p)\subset \mathbb{K}[x]$ s.t $\langle f
angle_\mathbb{K}\subseteq \mathbb{K}[x]$ zero-dim and $g\in \mathbb{K}[x]$

 $A_{\mathbb{K}}:=\mathbb{K}[\mathbf{x}]/\left\langle \mathbf{f}
ight
angle _{\mathbb{K}}$ is a finite dimensional \mathbb{K} -vectorspace.

For $q \in \mathbb{K}[x]$, denote by \overline{q} the class of q in $A_{\mathbb{K}}$.

For $f = (f_1, \dots, f_p) \subset \mathbb{K}[x]$ s.t $\langle f \rangle_{\mathbb{K}} \subseteq \mathbb{K}[x]$ zero-dim and $g \in \mathbb{K}[x]$

 $A_{\mathbb{K}}:=\mathbb{K}[\mathbf{x}]/\left\langle \mathbf{f}
ight
angle _{\mathbb{K}}$ is a finite dimensional \mathbb{K} -vectorspace.

For $q \in \mathbb{K}[x]$, denote by \overline{q} the class of q in $A_{\mathbb{K}}$.

• Multiplication map $L_q : \overline{p} \in A_{\mathbb{K}} \mapsto \overline{p \cdot q} \in A_{\mathbb{K}}$

For $f = (f_1, \ldots, f_p) \subset \mathbb{K}[x]$ s.t $\langle f \rangle_{\mathbb{K}} \subseteq \mathbb{K}[x]$ zero-dim and $g \in \mathbb{K}[x]$

 $A_{\mathbb{K}}:=\mathbb{K}[\mathbf{x}]/\left\langle \mathbf{f}
ight
angle _{\mathbb{K}}$ is a finite dimensional \mathbb{K} -vectorspace.

For $q \in \mathbb{K}[x]$, denote by \overline{q} the class of q in $A_{\mathbb{K}}$.

- Multiplication map $L_q \colon \overline{p} \in A_{\mathbb{K}} \mapsto \overline{p \cdot q} \in A_{\mathbb{K}}$
- Hermite's quadratic form

$$\mathsf{Herm}(f,g)\colon A_\mathbb{K} o \mathbb{K}$$
 $p\mapsto \mathsf{Tr}(L_{gp^2})$

For $f=(f_1,\ldots,f_p)\subset \mathbb{K}[x]$ s.t $\langle f
angle_\mathbb{K}\subseteq \mathbb{K}[x]$ zero-dim and $g\in \mathbb{K}[x]$

 $A_{\mathbb{K}}:=\mathbb{K}[x]/\left\langle f
ight
angle _{\mathbb{K}}$ is a finite dimensional \mathbb{K} -vectorspace.

For $q \in \mathbb{K}[x]$, denote by \overline{q} the class of q in $A_{\mathbb{K}}$.

- Multiplication map $L_q \colon \overline{p} \in A_{\mathbb{K}} \mapsto \overline{p \cdot q} \in A_{\mathbb{K}}$
- Hermite's quadratic form

$$\mathsf{Herm}(oldsymbol{f},g)\colon A_{\mathbb{K}} o \mathbb{K}$$
 $p\mapsto \mathsf{Tr}(L_{gp^2})$

Tarski-queries

When
$$\mathbb{K} = \mathbb{R}$$
 or \mathbb{Q}

TaQ(
$$g$$
, f) :=

$$\sharp \{x \in \mathbb{R}^n \mid f(x) = 0 \land g(x) > 0\}$$

$$-\sharp \{x \in \mathbb{R}^n \mid f(x) = 0 \land g(x) < 0\}$$

For ${\it f}=({\it f}_1,\ldots,{\it f}_p)\subset {\mathbb K}[{\it x}]$ s.t $\langle {\it f} \rangle_{\mathbb K}\subseteq {\mathbb K}[{\it x}]$ zero-dim and ${\it g}\in {\mathbb K}[{\it x}]$

 $A_{\mathbb{K}}:=\mathbb{K}[x]/\left\langle f
ight
angle _{\mathbb{K}}$ is a finite dimensional \mathbb{K} -vectorspace.

For $q \in \mathbb{K}[x]$, denote by \overline{q} the class of q in $A_{\mathbb{K}}$.

- Multiplication map $L_q \colon \overline{p} \in A_{\mathbb{K}} \mapsto \overline{p \cdot q} \in A_{\mathbb{K}}$
- Hermite's quadratic form

$$\mathsf{Herm}(f,g)\colon A_\mathbb{K} o \mathbb{K}$$
 $p\mapsto \mathsf{Tr}(L_{gp^2})$

For $f = (f_1, \dots, f_p) \subset \mathbb{K}[x]$ s.t $\langle f \rangle_{\mathbb{K}} \subseteq \mathbb{K}[x]$ zero-dim and $g \in \mathbb{K}[x]$

 $A_{\mathbb{K}} := \mathbb{K}[\mathbf{x}]/\langle \mathbf{f} \rangle_{\mathbb{K}}$ is a finite dimensional \mathbb{K} -vectorspace.

For $q \in \mathbb{K}[x]$, denote by \overline{q} the class of q in $A_{\mathbb{K}}$.

- Multiplication map $L_q: \overline{p} \in A_{\mathbb{K}} \mapsto \overline{p \cdot q} \in A_{\mathbb{K}}$
- Hermite's quadratic form

$$\mathsf{Herm}(f,g)\colon A_\mathbb{K} o \mathbb{K}$$
 $p\mapsto \mathsf{Tr}(L_{gp^2})$

Tarski-queries

When
$$\mathbb{K} = \mathbb{R}$$
 or \mathbb{Q}

$$TaQ(g, f) :=$$

$$\sharp\{x \in \mathbb{R}^n \mid \mathbf{f}(x) = 0 \land \mathbf{g}(x) > 0\}$$

-\!\!\!\!\!\!\\ \in \mathbb{R}^n \| \mathbf{f}(x) = 0 \land \mathbf{g}(x) < 0\!\!

Theorem

$$\mathsf{Sign}(\mathsf{Herm}(m{f},g)) = \mathsf{TaQ}(g,m{f})$$

Remark:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} c(g=0) \\ c(g>0) \\ c(g<0) \end{bmatrix} = \begin{bmatrix} \mathsf{TaQ}(1,f) \\ \mathsf{TaQ}(g,f) \\ \mathsf{TaQ}(g^2,f) \end{bmatrix} \text{ where } c(g \diamondsuit 0) \coloneqq \sharp \{x \mid f(x) = 0 \land g(x) \diamondsuit 0\}$$

where
$$c(g \diamondsuit 0) := \sharp \{x \mid f(x) = 0 \land g(x) \diamondsuit 0\}$$

Assumption: For generic $\eta \in \mathbb{C}^t$, ${m f}(\eta,\cdot)=0$ is zero-dim

• $\mathbb{K} = \mathbb{Q}(y)$

Assumption: For generic $\eta \in \mathbb{C}^t$, $\mathbf{f}(\eta,\cdot) = 0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.

Assumption: For generic $\eta \in \mathbb{C}^t$, ${m f}(\eta,\cdot)=0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.
 - $\bullet \ \ \mathsf{A} \ \mathsf{matrix} \ \mathcal{H}_g \in \mathbb{K}^{\delta \times \delta} \ \mathsf{once} \ \mathsf{a} \ \mathsf{basis} \ B = (b_1, \dots, b_\delta) \ \mathsf{of} \ A_\mathbb{K} = \mathbb{K}[\mathbf{x}]/\left<\mathbf{f}\right>_\mathbb{K} \ \mathsf{is} \ \mathsf{fixed}$

Assumption: For generic $\eta \in \mathbb{C}^t$, ${m f}(\eta,\cdot)=0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.
 - $\bullet \ \ \mathsf{A} \ \mathsf{matrix} \ \mathcal{H}_g \in \mathbb{K}^{\delta \times \delta} \ \mathsf{once a basis} \ B = (b_1, \dots, b_\delta) \ \mathsf{of} \ A_\mathbb{K} = \mathbb{K}[\mathbf{x}]/\left< \mathbf{f} \right>_\mathbb{K} \ \mathsf{is fixed}$
 - ullet \mathcal{H}_g enjoys nice specialization properties

Assumption: For generic $\eta \in \mathbb{C}^t$, $\mathbf{f}(\eta,\cdot) = 0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.
 - A matrix $\mathcal{H}_g \in \mathbb{K}^{\delta imes \delta}$ once a basis $B = (b_1, \dots, b_\delta)$ of $A_\mathbb{K} = \mathbb{K}[\mathbf{x}]/\langle \mathbf{f} \rangle_\mathbb{K}$ is fixed
- ullet \mathcal{H}_g enjoys nice specialization properties

Proposition

For **generic** $\eta \in \mathbb{C}^t$, $\mathcal{H}_g(\eta)$ coincides with the **Hermite matrix** associated to $(f(\eta,\cdot),g(\eta,\cdot))$.

Assumption: For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.
 - A matrix $\mathcal{H}_g \in \mathbb{K}^{\delta imes \delta}$ once a basis $B = (b_1, \dots, b_\delta)$ of $A_\mathbb{K} = \mathbb{K}[\mathbf{x}]/\left< f \right>_\mathbb{K}$ is fixed
- \mathcal{H}_g enjoys nice specialization properties

Proposition

For generic $\eta \in \mathbb{C}^t$, $\mathcal{H}_g(\eta)$ coincides with the **Hermite matrix** associated to $(f(\eta,\cdot),g(\eta,\cdot))$.

Choice of basis (Le, Safey El Din 2022)

• G a Gröbner basis of $\langle f \rangle \subseteq \mathbb{Q}[x,y]$ wrt the elimination ordering grevlex $(x) \succ$ grevlex(y) (with $x_1 \succ \cdots \succ x_n$ and $y_1 \succ \cdots \succ y_t$)

Assumption: For generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.
- A matrix $\mathcal{H}_g \in \mathbb{K}^{\delta imes \delta}$ once a basis $B = (b_1, \dots, b_\delta)$ of $A_\mathbb{K} = \mathbb{K}[\mathbf{x}]/\langle \mathbf{f} \rangle_\mathbb{K}$ is fixed
- \mathcal{H}_g enjoys nice specialization properties

Proposition

For **generic** $\eta \in \mathbb{C}^t$, $\mathcal{H}_g(\eta)$ coincides with the **Hermite matrix** associated to $(f(\eta,\cdot),g(\eta,\cdot))$.

Choice of basis (Le, Safey El Din 2022)

- G a Gröbner basis of ⟨f⟩ ⊆ ℚ[x, y] wrt the elimination ordering grevlex(x) > grevlex(y) (with x₁ > · · · > xn and y₁ > · · · > yt)
- ightarrow G is also a Gröbner basis of $\langle f
 angle_{\mathbb{K}} \subseteq \mathbb{K}[x]$ wrt $\mathtt{grevlex}(x)$

d'ametric mermite matrices

Assumption: For generic $\eta \in \mathbb{C}^t$, $f(\eta,\cdot) = 0$ is zero-dim

- $\mathbb{K} = \mathbb{Q}(y)$
- $\rightarrow \langle f \rangle_{\mathbb{K}}$ is zero-dim of degree δ . Can define $\operatorname{Herm}(f,g)$.
 - A matrix $\mathcal{H}_g \in \mathbb{K}^{\delta imes \delta}$ once a basis $B = (b_1, \dots, b_\delta)$ of $A_\mathbb{K} = \mathbb{K}[\mathbf{x}]/\left< f \right>_\mathbb{K}$ is fixed
- \mathcal{H}_g enjoys nice specialization properties

Proposition

For generic $\eta \in \mathbb{C}^t$, $\mathcal{H}_g(\eta)$ coincides with the **Hermite matrix** associated to $(f(\eta,\cdot),g(\eta,\cdot))$.

Choice of basis (Le, Safey El Din 2022)

- G a Gröbner basis of $\langle f \rangle \subseteq \mathbb{Q}[x, y]$ wrt the elimination ordering grevlex $(x) \succ$ grevlex(y) (with $x_1 \succ \cdots \succ x_n$ and $y_1 \succ \cdots \succ y_t$)
- $\to G$ is also a Gröbner basis of $\langle f \rangle_{\mathbb{K}} \subseteq \mathbb{K}[x]$ wrt grevlex(x)
- \rightarrow The set B of all monomials in x that are not reducible by Im(G) is a basis of $A_{\mathbb{K}}$

$$f_1=\cdots=f_p=0, \quad g>0$$

$$f_1=\cdots=f_p=0, \quad g>0$$

Recall: For η in a Zariski dense subset of \mathbb{C}^t

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}}_{M} \cdot \underbrace{\begin{bmatrix} c(g(\eta, \cdot)) = 0) \\ c(g(\eta, \cdot)) > 0) \\ c(g(\eta, \cdot)) < 0 \end{bmatrix}}_{C} = \begin{bmatrix} \mathsf{TaQ}(1, f(\eta, \cdot)) \\ \mathsf{TaQ}(g(\eta, \cdot), f(\eta, \cdot)) \\ \mathsf{TaQ}(g^{2}(\eta, \cdot), f(\eta, \cdot)) \end{bmatrix} = \begin{bmatrix} \mathsf{Sign}(\mathcal{H}_{1}(\eta)) \\ \mathsf{Sign}(\mathcal{H}_{g}(\eta)) \\ \mathsf{Sign}(\mathcal{H}_{g^{2}}(\eta)) \end{bmatrix}$$

$$f_1=\cdots=f_p=0,\quad g>0$$

Recall: For η in a Zariski dense subset of \mathbb{C}^t

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}}_{M} \cdot \underbrace{\begin{bmatrix} c(g(\eta, \cdot)) = 0) \\ c(g(\eta, \cdot)) > 0) \\ c(g(\eta, \cdot)) < 0 \end{bmatrix}}_{C} = \begin{bmatrix} \mathsf{TaQ}(1, f(\eta, \cdot)) \\ \mathsf{TaQ}(g(\eta, \cdot), f(\eta, \cdot)) \\ \mathsf{TaQ}(g^{2}(\eta, \cdot), f(\eta, \cdot)) \end{bmatrix} = \begin{bmatrix} \mathsf{Sign}(\mathcal{H}_{1}(\eta)) \\ \mathsf{Sign}(\mathcal{H}_{g}(\eta)) \\ \mathsf{Sign}(\mathcal{H}_{g^{2}}(\eta)) \end{bmatrix}$$

Lemma

For H a real symmetric matrix of rank r having its r first leading principal minors M_1, \ldots, M_r nonzero, $\operatorname{Sign}(H) = r - 2v$ with $v = \operatorname{Var}(1, M_1, \ldots, M_r)$.

$$f_1=\cdots=f_p=0,\quad g>0$$

Recall: For η in a Zariski dense subset of \mathbb{C}^t

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}}_{M} \cdot \underbrace{\begin{bmatrix} c(g(\eta, \cdot)) = 0) \\ c(g(\eta, \cdot)) > 0) \\ c(g(\eta, \cdot)) < 0) \end{bmatrix}}_{C} = \begin{bmatrix} \mathsf{TaQ}(1, \mathbf{f}(\eta, \cdot)) \\ \mathsf{TaQ}(g(\eta, \cdot), \mathbf{f}(\eta, \cdot)) \\ \mathsf{TaQ}(g^{2}(\eta, \cdot), \mathbf{f}(\eta, \cdot)) \end{bmatrix} = \begin{bmatrix} \mathsf{Sign}(\mathcal{H}_{1}(\eta)) \\ \mathsf{Sign}(\mathcal{H}_{g}(\eta)) \\ \mathsf{Sign}(\mathcal{H}_{g^{2}}(\eta)) \end{bmatrix}$$

Lemma

For H a real symmetric matrix of rank r having its r first leading principal minors M_1, \ldots, M_r nonzero, Sign(H) = r - 2v with $v = Var(1, M_1, \ldots, M_r)$.

Key idea

- Over a connected component of the s-a set defined by the non-vanishing locus of the leading principal minors of $\mathcal{H}_1,\mathcal{H}_g,\mathcal{H}_{g^2},$ c_η is invariant
- → Sample one point in every connected component using [Le, Safey El Din 2022]
- → Deduce formulas for the classification from the sign patterns of these minors

Input: $f_1 = \cdots = f_p = 0$, g > 0 s.t for generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Output: Descriptions of s.a sets \mathcal{T}_i solving the **Real Solution Classification**

Input: $f_1 = \cdots = f_p = 0$, g > 0 s.t for generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Output: Descriptions of s.a sets \mathcal{T}_i solving the **Real Solution Classification**

1 Compute the Hermite matrices $\mathcal{H}_1,\mathcal{H}_g,\mathcal{H}_{g^2}\in\mathbb{Q}(\mathbf{y})^{\delta imes\delta}$

Input: $f_1 = \cdots = f_p = 0$, g > 0 s.t for generic $\eta \in \mathbb{C}^t$, $f(\eta, \cdot) = 0$ is zero-dim

Output: Descriptions of s.a sets \mathcal{T}_i solving the **Real Solution Classification**

- 1 Compute the Hermite matrices $\mathcal{H}_1,\mathcal{H}_g,\mathcal{H}_{g^2}\in\mathbb{Q}(\mathbf{\emph{y}})^{\delta imes\delta}$
- 2 Choose a random matrix $U \in \mathbb{Q}^{\delta \times \delta}$
- 3 Minors \leftarrow LeadPrincMinors $(U^t\mathcal{H}_1U, U^t\mathcal{H}_gU, U^t\mathcal{H}_{g^2}U)$

Algorithm 1: Real Solution Classification for 1 inequality

Input : $f_1=\cdots=f_p=0, \quad g>0$ s.t for generic $\eta\in\mathbb{C}^t, \ f(\eta,\cdot)=0$ is zero-dim

Output: Descriptions of s.a sets T_i solving the Real Solution Classification

- 1 Compute the Hermite matrices $\mathcal{H}_1,\mathcal{H}_g,\mathcal{H}_{g^2}\in\mathbb{Q}(\mathbf{y})^{\delta imes\delta}$
- 2 Choose a random matrix $U \in \mathbb{Q}^{\delta imes \delta}$
- $\mathbf{3} \ \operatorname{Minors} \leftarrow \textbf{LeadPrincMinors}(U^t \mathcal{H}_1 U, U^t \mathcal{H}_g U, U^t \mathcal{H}_{g^2} U)$
- 4 $L \leftarrow SamplePoints(Minors \neq 0)$

Input :
$$f_1=\cdots=f_p=0, \quad g>0$$
 s.t for generic $\eta\in\mathbb{C}^t, \ f(\eta,\cdot)=0$ is zero-dim

Output: Descriptions of s.a sets \mathcal{T}_i solving the **Real Solution Classification**

- 1 Compute the Hermite matrices $\mathcal{H}_1,\mathcal{H}_g,\mathcal{H}_{\sigma^2}\in\mathbb{Q}(\mathbf{y})^{\delta imes\delta}$
- 2 Choose a random matrix $U \in \mathbb{Q}^{\delta \times \delta}$
- 3 Minors \leftarrow LeadPrincMinors $(U^t\mathcal{H}_1U, U^t\mathcal{H}_gU, U^t\mathcal{H}_{\sigma^2}U)$
- 4 $L \leftarrow SamplePoints(Minors \neq 0)$
- 5 for $\eta \in L$ do

$$\mathsf{G} \quad \mid \quad \mathsf{T}_{\eta} \leftarrow \left(\mathsf{Sign}(\mathcal{H}_{1}(\eta)), \mathsf{Sign}(\mathcal{H}_{g}(\eta)), \mathsf{Sign}(\mathcal{H}_{g^{2}}(\eta))\right)^{t}$$

- Solve $M \cdot c_n = T_n$ to compute $r_n := c(g(\eta, \cdot) > 0)$
- 8 $\Phi_{\eta} \leftarrow \text{sign pattern of Minors evaluated in } \eta$
- 9 end
- 10 return $(\Phi_{\eta}, \eta, r_{\eta})_{\eta \in L}$

$$f_1=\cdots=f_p=0,\quad g_1>0,\ldots,g_s>0$$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0$$

Let $\mathcal Z$ be the finite set of roots of $f(\eta,\cdot)$ and $\mathcal Q=(Q_1,\ldots,Q_s)\coloneqq g(\eta,\cdot)$ For $\sigma\in\{-1,0,1\}^s$, let

$$c(\sigma, \mathcal{Z}) := \sharp \{x \in \mathcal{Z} \mid \bigwedge_{i=1}^{s} \operatorname{sign}(Q_{i}(x)) = \sigma_{i}\}$$

Interested in $c(1...1, \mathbb{Z})$

$$f_1=\cdots=f_p=0,\quad g_1>0,\ldots,g_s>0$$

Let $\mathcal Z$ be the finite set of roots of $f(\eta,\cdot)$ and $\mathcal Q=(Q_1,\ldots,Q_s)\coloneqq g(\eta,\cdot)$ For $\sigma\in\{-1,0,1\}^s$, let

$$c(\sigma, \mathcal{Z}) \coloneqq \sharp \{x \in \mathcal{Z} \mid \bigwedge_{i=1}^s \mathsf{sign}(Q_i(x)) = \sigma_i \}$$

Interested in $c(1...1, \mathbb{Z})$

Generalize the identity for s=1 to a tensor identity [Ben-Or, Kozen, Reif 1984] [Basu, Pollack, Roy 2006]

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$M \cdot \begin{bmatrix} c(0, \mathcal{Z}) \\ c(1, \mathcal{Z}) \\ c(-1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \mathsf{TaQ}(1, \mathcal{Z}) \\ \mathsf{TaQ}(Q_1, \mathcal{Z}) \\ \mathsf{TaQ}(Q_1^2, \mathcal{Z}) \end{bmatrix}$$

Classification for $s \geq 1$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0$$

Let $\mathcal Z$ be the finite set of roots of $f(\eta,\cdot)$ and $\mathcal Q=(Q_1,\ldots,Q_s)\coloneqq g(\eta,\cdot)$ For $\sigma \in \{-1,0,1\}^s$, let

$$c(\sigma, \mathcal{Z}) := \sharp \{x \in \mathcal{Z} \mid \bigwedge_{i=1}^{s} \operatorname{sign}(Q_{i}(x)) = \sigma_{i}\}$$

Interested in $c(1...1, \mathbb{Z})$

Generalize the identity for s = 1 to a tensor identity [Ben-Or, Kozen, Reif 1984] [Basu, Pollack, Roy 2006]

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$M^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \operatorname{TaQ}(1, \mathcal{Z}) \\ \vdots \\ \operatorname{TaQ}(Q_1^{\alpha_1} \dots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \operatorname{TaQ}(Q_1^2 \dots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_i \in \{0, 1, 2\}$$

$$\alpha_i \in \{0, 1, 2\}$$

Classification for $s \geq 1$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0$$

Let $\mathcal Z$ be the finite set of roots of $f(\eta,\cdot)$ and $\mathcal Q=(Q_1,\ldots,Q_s)\coloneqq g(\eta,\cdot)$ For $\sigma \in \{-1, 0, 1\}^s$, let

$$c(\sigma, \mathcal{Z}) \coloneqq \sharp\{x \in \mathcal{Z} \mid \bigwedge_{i=1}^s \operatorname{sign}(Q_i(x)) = \sigma_i\}$$

Interested in $c(1...1, \mathbb{Z})$

Generalize the identity for s = 1 to a tensor identity [Ben-Or, Kozen, Reif 1984] [Basu, Pollack, Roy 2006]

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$M^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} TaQ(1, \mathcal{Z}) \\ \vdots \\ TaQ(Q_1^{\alpha_1} \dots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ TaQ(Q_1^2 \dots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_i \in \{0, 1, 2\}$$

$$\begin{array}{c} \vdots \\ \mathsf{TaQ}(Q_1^{\alpha_1} \cdots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \vdots \\ \mathsf{TaQ}(Q_1^{\alpha_1} \cdots Q_s^{\alpha_s}, \mathcal{Z}) \end{array}$$

$$\alpha_i \in \{0,1,2\}$$

Problem

Need to compute 3^s Hermite matrices \rightarrow exceed our target complexity (polynomial in s)

 $d := \max (\deg f_i, \deg g_j)$

$$f_1=\cdots=f_p=0,\quad g_1>0,\ldots,g_s>0,\quad \textbf{\textit{x}}=(x_1,\ldots,x_n),\quad \textbf{\textit{y}}=(y_1,\ldots,y_t)$$

 $d := \max(\deg f_i, \deg g_i)$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0, \quad \mathbf{x} = (x_1, \ldots, x_n), \quad \mathbf{y} = (y_1, \ldots, y_t)$$

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by $\rho := {s \choose t} 4^{t+1} d(2d-1)^{n+t-1} = d^{O(n+t)} s^t.$

 $d := \max(\deg f_i, \deg g_i)$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0, \quad \mathbf{x} = (x_1, \ldots, x_n), \quad \mathbf{y} = (y_1, \ldots, y_t)$$

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by $\rho := \binom{s}{t} 4^{t+1} d(2d-1)^{n+t-1} = \frac{d^{O(n+t)} s^t}{s^t}.$

$$\boldsymbol{M}^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \operatorname{TaQ}(1, \mathcal{Z}) \\ \vdots \\ \operatorname{TaQ}(Q_1^{\alpha_1} \dots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \operatorname{TaQ}(Q_1^2 \dots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_i \in \{0,$$

 $d := \max (\deg f_i, \deg g_j)$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0, \quad \mathbf{x} = (x_1, \ldots, x_n), \quad \mathbf{y} = (y_1, \ldots, y_t)$$

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by $\rho := \binom{s}{t} 4^{t+1} d(2d-1)^{n+t-1} = d^{O(n+t)} s^t$.

$$M^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \mathsf{TaQ}(1, \mathcal{Z}) \\ \vdots \\ \mathsf{TaQ}(Q_1^{\alpha_1} \cdots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \mathsf{TaQ}(Q_1^2 \cdots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_j \in \{0\}$$

 $\alpha_i \in \{0,1,2\}$

Strategy: Delete useless rows using an incremental approach

• Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]

 $d := \max (\deg f_i, \deg g_j)$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0, \quad \mathbf{x} = (x_1, \ldots, x_n), \quad \mathbf{y} = (y_1, \ldots, y_t)$$

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by \mathbf{g} on the roots of \mathbf{f} is bounded by $\rho := \binom{s}{t} 4^{t+1} d(2d-1)^{n+t-1} = \frac{d^{O(n+t)} \mathbf{s}^t}{t}$.

$$M^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \mathsf{TaQ}(1, \mathcal{Z}) \\ \vdots \\ \mathsf{TaQ}(Q_1^{\alpha_1} \cdots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \mathsf{TaQ}(Q_1^2 \cdots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_i \in \{0, \dots, \infty\}$$

 $\alpha_i \in \{0,1,2\}$

- Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]
- At each step, add a new inequality g_i and use the sample points routine to determine the unrealizable sign conditions

 $d := \max (\deg f_i, \deg g_j)$

$$f_1 = \cdots = f_p = 0, \quad g_1 > 0, \ldots, g_s > 0, \quad \mathbf{x} = (x_1, \ldots, x_n), \quad \mathbf{y} = (y_1, \ldots, y_t)$$

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by \mathbf{g} on the roots of \mathbf{f} is bounded by $\rho := \binom{s}{t} 4^{t+1} d(2d-1)^{n+t-1} = \frac{d^{O(n+t)} \mathbf{s}^t}{t}$.

$$M^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \mathsf{TaQ}(1, \mathcal{Z}) \\ \vdots \\ \mathsf{TaQ}(Q_1^{\alpha_1} \dots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \mathsf{TaQ}(Q_1^2 \dots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_i \in \{0, \dots, \infty\}$$

 $\alpha_i \in \{0,1,2\}$

- Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]
- At each step, add a new inequality g_i and use the sample points routine to determine the unrealizable sign conditions
- → Control the needed number of Hermite matrices.

 $d := \max(\deg f_i, \deg g_i)$

$$f_1 = \cdots = f_p = 0$$
, $g_1 > 0$, ..., $g_s > 0$, $\mathbf{x} = (x_1, \ldots, x_n)$, $\mathbf{y} = (y_1, \ldots, y_t)$

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by $\rho := \binom{s}{t} 4^{t+1} d(2d-1)^{n+t-1} = \frac{d^{O(n+t)} s^t}{s^t}.$

$$M^{\otimes s} \cdot \begin{bmatrix} c(0 \dots 0, \mathcal{Z}) \\ \vdots \\ c(\sigma, \mathcal{Z}) \\ \vdots \\ c(-1 \dots -1, \mathcal{Z}) \end{bmatrix} = \begin{bmatrix} \operatorname{TaQ}(1, \mathcal{Z}) \\ \vdots \\ \operatorname{TaQ}(Q_1^{\alpha_1} \dots Q_s^{\alpha_s}, \mathcal{Z}) \\ \vdots \\ \operatorname{TaQ}(Q_1^2 \dots Q_s^2, \mathcal{Z}) \end{bmatrix}$$

$$\alpha_i \in \{$$

 $\alpha_i \in \{0, 1, 2\}$

- Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]
- At each step, add a new inequality g_i and use the sample points routine to determine the unrealizable sign conditions
- Control the needed number of Hermite matrices.
- Formulas given by sign patterns of minors of remaining Hermite matrices

$$f_1(y, x) = \dots = f_n(y, x) = 0, \quad g_1(y, x) > 0, \dots, g_s(y, x) > 0$$

 $x = (x_1, \dots, x_n), \quad y = (y_1, \dots, y_t), \quad d = \max(\deg f_i, \deg g_j)$

$$f_1(y, x) = \dots = f_n(y, x) = 0, \quad g_1(y, x) > 0, \dots, g_s(y, x) > 0$$

 $x = (x_1, \dots, x_n), \quad y = (y_1, \dots, y_t), \quad d = \max(\deg f_i, \deg g_j)$

				Hermite	RF	RRC
n	t	5	d			
2	2	2	2			
2	2	3	2			
3	2	1	2			
3	2	2	2			
2	3	2	2			
3	3	1	2			
2	2	1	3			
2	2	2	3			

Table: Generic dense system

$$f_1(y, x) = \dots = f_n(y, x) = 0, \quad g_1(y, x) > 0, \dots, g_s(y, x) > 0$$

 $x = (x_1, \dots, x_n), \quad y = (y_1, \dots, y_t), \quad d = \max(\deg f_i, \deg g_j)$

					Hermite	RF	RRC
n	t	S	d	hm	det	dv	bp
2	2	2	2	0.15 s	0.1 s	0.14 s	0.11 s
2	2	3	2	0.7 s	0.1 s	0.9 s	1 s
3	2	1	2	0.5 s	0.4 s	10 mn	7 mn
3	2	2	2	3 s	0.4 s	10 mn	14 mn
2	3	2	2	0.3 s	0.1 s	0.7 s	0.2 s
3	3	1	2	1 s	6 s	>50 h	>50 h
2	2	1	3	0.9 s	0.8 s	52 mn	47 s
2	2	2	3	5 s	1 s	57 mn	2 mn

Table: Generic dense system

$$f_1(\mathbf{y}, \mathbf{x}) = \dots = f_n(\mathbf{y}, \mathbf{x}) = 0, \quad g_1(\mathbf{y}, \mathbf{x}) > 0, \dots, g_s(\mathbf{y}, \mathbf{x}) > 0$$

 $\mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{y} = (y_1, \dots, y_t), \quad d = \max(\deg f_i, \deg g_j)$

				Hermite				RF		RRC
	t	S	d	hm	det	min	sp	dv	cad	bp
2	2	2	2	0.15 s	0.1 s	0.4 s	5 s	0.14 s	2 s	0.11 s
2	2	3	2	0.7 s	0.1 s	2 s	10 s	0.9 s	10 s	1 s
3	2	1	2	0.5 s	0.4 s	9 s	33 s	10 mn	11 mn	7 mn
3	2	2	2	3 s	0.4 s	1 mn	57 s	10 mn	13 mn	14 mn
2	3	2	2	0.3 s	0.1 s	4 s	18mn	0.7 s	>50 h	0.2 s
3	3	1	2	1 s	6 s	4 mn	>50 h	>50 h	>50 h	>50 h
2	2	1	3	0.9 s	0.8 s	30 s	3mn	52 mn	57 mn	47 s
2	2	2	3	5 s	1 s	5 mn	6 mn	57 mn	1h 16 mn	2 mn

Table: Generic dense system

Perspective-3-Point Problem

Perspective-3-Point Problem

$$\begin{cases} 1 &= A^2 + B^2 - ABu \\ t &= B^2 + C^2 - BCv \\ x &= A^2 + C^2 - ACw \end{cases}, \quad A, B, C > 0$$

with the constraints:

$$x, t > 0, -2 < u, v, w < 2$$

- 3 variables : A, B, C
- 5 parameters : x, t, u, v, w

Perspective-3-Point Problem

$$\begin{cases} 1 &= A^2 + B^2 - ABu \\ t &= B^2 + C^2 - BCv \\ x &= A^2 + C^2 - ACw \end{cases}, \quad A, B, C > 0$$

with the constraints:

$$x, t > 0, -2 < u, v, w < 2$$

- 3 variables : A, B, C
- 5 parameters : x, t, u, v, w

Results

- A complete classification in less than one hour in the isosceles case (t = 1)
- In the general case: able to compute the Hermite matrices and derive the semi-algebraic conditions from their minors.
- → Next step: compute all the possible number of solutions and determine which conditions are feasible using the sample points routine

Conclusion

New Algorithm for One-block Quantifier Elimination?

$$\exists \textbf{x}, \ f_1(\textbf{y},\textbf{x}) = \dots = f_p(\textbf{y},\textbf{x}) = 0 \land g_1(\textbf{y},\textbf{x}) > 0 \ \dots \ g_s(\textbf{y},\textbf{x}) > 0 \iff \Phi(\textbf{y})$$

Conclusion

New Algorithm for One-block Quantifier Elimination?

$$\exists \mathbf{x}, \ f_1(\mathbf{y}, \mathbf{x}) = \cdots = f_p(\mathbf{y}, \mathbf{x}) = 0 \land g_1(\mathbf{y}, \mathbf{x}) > 0 \ \ldots \ g_s(\mathbf{y}, \mathbf{x}) > 0 \iff \Phi(\mathbf{y})$$

Thank you for your attention!

