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(NI Problem Statement

Solving parametric polynomial systems with inequalities

Aly,x) = =fly,x) =0, gi(y,x)>0,...,8(y,x)>0
e y=(y1,...,¥t) are parameters
e x = (x1,...,xn) are variables

e m: (y,x) — y the y-coordinate projection
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(NI Problem Statement

Solving parametric polynomial systems with inequalities

| S x :
| |
|
"‘].(.Y7X):-~~:fp(_y7x):07 gl(y,x)>0,...,gs(y,x)>0 EEERCS |
o y=(y1,-..,yt) are parameters
e x = (x1,...,xn) are variables

e m: (y,x) — y the y-coordinate projection

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim

Goals
e Classify the possible number of real roots

e Describe the regions where these numbers are achieved

— Applications in Robotics, Computer Vision, Physics,...
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Introduction

Real Solution Classification

Given a semi-algebraic (s.a) set S C R**" defined by

Ai=-=f=0, g>0,...,86>0

For generic n € Ct, f(n,-) = 0 is zero-dim
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Real Solution Classification Example:
x2+ax+b:O, x>0
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Louis Gaillard Solving parametric semi-algebraic systems



Introduction

Real Solution Classification Example:

x2+ax+b:O, x>0
Given a semi-algebraic (s.a) set S C R**" defined by A=a®—4b

i=--=f=0 g>0,...,86>0 b
For generic n € Ct, f(n,-) = 0 is zero-dim 5/
0
2
a
1

Louis Gaillard Solving parametric semi-algebraic systems



(NI Problem Statement

Real Solution Classification Example:
x2+ax+b:O, x>0

Given a semi-algebraic (s.a) set S C R‘*" defined by A=a®—4b
fi=---=f=0 g>0,...,86>0 b
For generic n € Ct, f(n,-) = 0 is zero-dim 5/
0
2
a
1

Valid Classification:

r ‘ n ‘ O]

0] (L,1) | A<OV(a>0ADb>0)
1] (1,-1) b<0

21 (=31 | A>0Aa<0Ab>0
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(NI Problem Statement

Real Solution Classification Example:
x2+ax+b:0, x>0
Given a semi-algebraic (s.a) set S C R‘*" defined by A=a®—4b
fi=---=f=0 g>0,...,86>0 b
For generic n € Ct, f(n,-) = 0 is zero-dim 5/
Problem
0
Compute (®;,7;, ri)1<i<¢ with ®; a s.a formula in Q[y]
defining the s.a set 7; C Rt, ; € 7; and r; > O st, 2 o
o foralln e 7;, 4SNa~t(n) =r
° Ule 7; is dense in Rt 1
Valid Classification:
r n O]
0 (1,1) A<OV(a>0Ab>0)
1| (@-1) b<0
21 (=31 | A>0Aa<0Ab>0
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o Cost of CAD: doubly exponential in the number of variables

@ When S is a real algebraic set: [Le, Safey EI Din 2022]

Under genericity assumptions, an algorithm with a singly exponential cost
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Introduction

Contributions

fi==f=0 g>0,....,86>0, x=(x1,...,x0), y=U1,---,¥)
d := max (deg f;, deg g;)
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Introduction [SGESTIE

Contributions

i=-=f=0 g>0,...,8>0, x=(x1,-.-,%n), Y= 1,-,¥t)
d = max (deg f;, deg g;)

e Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets

Need to handle the inequalities
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Introduction [SGESTIE

Contributions

f1:"':fp:07 g >0,...,8 >0, X:(le"'r)(”)? y:(y]-’""yt)
d := max (deg f;, deg gj)
p =t sign conditions o € {0,1, —1}° satisfied by g on f =0

Theorem [Basu, Pollack, Roy 2005] : p < stgdOntt)

e Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets

Need to handle the inequalities

e New algorithm solving Real Solution Classification
e Complexity Analysis under genericity assumptions on f

Al @k i pt+1d4nt+O(n+t)S4t+O(1)n3t+0(1)
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Introduction [SGESTIE

Contributions

f1:"':fp:07 g >0,...,8 >0, X:(le"'r)(”)? y:(y]-’""yt)
d := max (deg f;, deg gj)
p =t sign conditions o € {0,1, —1}° satisfied by g on f =0

Theorem [Basu, Pollack, Roy 2005] : p < stgdOntt)

e Extend the algorithm of [Le, Safey El Din 2022] to semi-algebraic sets

Need to handle the inequalities

e New algorithm solving Real Solution Classification
e Complexity Analysis under genericity assumptions on f

Al @k i pt+1d4nt+O(n+t)S4t+O(1)n3t+0(1)

Formulas contain polynomials of degree < (2s + n)d"*!
with a determinantal structure

e |Implementation solving instances that were out of reach
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Algorithm

Hermite's quadratic forms
For f = (f1,...,fp) C K[x] s.t (f)x C K[x] zero-dim and g € K[x]
Ak = K[x]/ (f)k is a finite dimensional K-vectorspace.

For g € K[x], denote by q the class of ¢ in Agk.
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L\ECIALT  Real root counting

Hermite's quadratic forms
For f = (f1,...,fp) C K[x] s.t (f)x C K[x] zero-dim and g € K[x]
Ak = K[x]/ (f)g is a finite dimensional K-vectorspace.

For g € K[x], denote by q the class of ¢ in Agk.

e Multiplication map
Lq:ﬁEA]K?—)p'QEA]K
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Algorithm Real root counting

Hermite's quadratic forms
For f = (f1,...,fp) C K[x] s.t (f)x C K[x] zero-dim and g € K[x]
Ak = K[x]/ (f)g is a finite dimensional K-vectorspace.

For g € K[x], denote by q the class of ¢ in Agk.

e Multiplication map
Lq:ﬁGAK?—)p'quK
e Hermite's quadratic form

Herm(f,g): Ax — K

p = Tr(Ly2)
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Algorithm Real root counting

Hermite's quadratic forms
For f = (f1,...,fp) C K[x] s.t (f)x C K[x] zero-dim and g € K[x]
Ak = K[x]/ (f)g is a finite dimensional K-vectorspace.

e Multiplication map When K =R or Q
Lg:pPeEA - A
Hq p_tG’ K Hdp t_qf K TaQ(e, ) =
e Hermite's quadratic form
d #{x €R" | f(x) = 0 A g(x) > 0}
—t{x e R"| f(x) =0A g(x) < 0}
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p = Tr(Ly2)
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Algorithm Real root counting

Hermite's quadratic forms
For f = (f1,...,fp) C K[x] s.t (f)x C K[x] zero-dim and g € K[x]
Ak = K[x]/ (f)g is a finite dimensional K-vectorspace.

e Multiplication map When K =R or Q
Lg:pPeEA - A
Hq p_tG’ K Hdp t_qf K TaQ(e, ) =
e Hermite's quadratic form
d #{x €R" | f(x) = 0 A g(x) > 0}
—t{x e R"| f(x) =0A g(x) < 0}

For g € K[x], denote by @ the class of q in Ak.

Herm(f,g): Ax — K
p = Tr(Ly2)

Theorem
Sign(Herm(f, g)) = TaQ(g, f) J
Remark:
11 1 c(g = 0) TaQ(1, f)
0 1 —1|-|c(g>0)| =|TaQ(g,f) | where c(g & 0):=#{x| f(x) =0Ag(x) {0}
01 1 c(g < 0) TaQ(g?, f)
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Parametric Hermite matrices

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim

o K=Q(y)
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Parametric Hermite matrices

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim

o K=Q(y)

— (f)g is zero-dim of degree §. Can define Herm(f, g).
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L\ECIALT  Real root counting

Parametric Hermite matrices

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim
e K=Q(y)

— (f) is zero-dim of degree ¢. Can define Herm(f, g).
e A matrix Hg € K%%? once a basis B = (by,.. ., bs) of Ag = K[x]/ (F)y is fixed
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Algorithm Real root counting

Parametric Hermite matrices

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim
e K=Q(y)

— (f) is zero-dim of degree ¢. Can define Herm(f, g).
e A matrix Hg € K%%? once a basis B = (by,.. ., bs) of Ag = K[x]/ (F)y is fixed
e 7. enjoys nice specialization properties

Proposition
For generic n € Ct, Hg(n) coincides with the Hermite matrix associated to (f(n,-), g(n,-))- J

Choice of basis (Le, Safey El Din 2022)

e G a Grébner basis of (f) C Q[x, y] wrt the elimination ordering
grevlex(x) > grevlex(y) (with x; > -+ > xp and y1 > -+ > yt)
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Algorithm Real root counting

Parametric Hermite matrices

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim
e K=Q(y)

— (f) is zero-dim of degree ¢. Can define Herm(f, g).
e A matrix Hg € K%%? once a basis B = (by,.. ., bs) of Ag = K[x]/ (F)y is fixed
e 7. enjoys nice specialization properties

Proposition
For generic n € Ct, Hg(n) coincides with the Hermite matrix associated to (f(n,-), g(n,-))- J

Choice of basis (Le, Safey El Din 2022)

e G a Grobner basis of (f) C Q[x,y] wrt the elimination ordering
grevlex(x) > grevlex(y) (with x; > -+ > xp and y1 > -+ > yt)

— G is also a Grébner basis of (f); C K[x] wrt grevlex(x)
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Algorithm Real root counting

Parametric Hermite matrices

Assumption: For generic n € Ct, f(n,-) = 0 is zero-dim

e K=Q(y)

— (f) is zero-dim of degree ¢. Can define Herm(f, g).
e A matrix Hg € K%%? once a basis B = (by,.. ., bs) of Ag = K[x]/ (F)y is fixed
e 7. enjoys nice specialization properties

Proposition
For generic n € Ct, Hg(n) coincides with the Hermite matrix associated to (f(n,-), g(n,-))- J

Choice of basis (Le, Safey El Din 2022)

e G a Grobner basis of (f) C Q[x,y] wrt the elimination ordering
grevlex(x) > grevlex(y) (with x; > -+ > xp and y1 > -+ > yt)

— G is also a Grébner basis of (f); C K[x] wrt grevlex(x)

— The set B of all monomials in x that are not reducible by Im(G) is a basis of Ag
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Classification for s =1
fi=-=f=0, g>0
Recall: For 7 in a Zariski dense subset of Ct
11 1 c(g(n,-)) =0) TaQ(1, f(n, ")) Sign(H1(n))
0 1 —1|-|c(g(n,-))>0)| = |TaQ(g(n,),f(n,-)) | = | Sign(He(n))
01 1 c(g(n,-)) <0) TaQ(g?(n,-), f(n,-)) Sign(H,2(n))

M cn
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Classification for s = 1
fi=--=f=0 g>0

Recall: For 7 in a Zariski dense subset of Ct

11 1 c(g(n,-)) =0) TaQ(1, f(n,-)) Sign(#1(n))
0 1 —1|-|c(g(n,-)>0)| =| TaQ(g(n,"):f(n,")) | = | Sign(Hg(n))
01 1 c(g(n,-)) <0) TaQ(g>(n, ), f(n,-)) Sign(H,z2(n))
M cn
Lemma
For H a real symmetric matrix of rank r having its r first leading principal minors My, ..., M,

nonzero, Sign(H) = r — 2v with v = Var(1, My, ..., M,).
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Classification for s =1
fi:.u:fp:O7 g>0

Recall: For 7 in a Zariski dense subset of C!

11 1 c(g(n,-)) =0) TaQ(1, £(n, ")) Sign(#1(n))
0 1 —1f-|c(g(n,-))>0)| = |TaQ(g(n,-);f(n,")) | = | Sign(Hg(n))
0 1 1] [c(g(n,)<0) TaQ(g?(n, ), f(n,-)) Sign(H,2(n))
M cn
Lemma
For H a real symmetric matrix of rank r having its r first leading principal minors My, ..., M,

nonzero, Sign(H) = r — 2v with v = Var(1, My, ..., M,).

Key idea

e Over a connected component of the s-a set defined by the non-vanishing locus of
the leading principal minors of Hi, Hg, Hg2, ¢y is invariant

—» Sample one point in every connected component using [Le, Safey El Din 2022]

— Deduce formulas for the classification from the sign patterns of these minors

Louis Gaillard Solving parametric semi-algebraic systems ISSAC 2024 8/14



Algorithm for s = 1

Algorithm 1: Real Solution Classification for 1 inequality
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Algorithm for s = 1

Input : f=---=£f=0, g>0 st forgenericn € Ct, f(n,-) =0 is zero-dim

Output: Descriptions of s.a sets 7; solving the Real Solution Classification

Algorithm 1: Real Solution Classification for 1 inequality
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Algorithm for s = 1

Input : f=---=£f=0, g>0 st forgenericn € Ct, f(n,-) =0 is zero-dim
Output: Descriptions of s.a sets 7; solving the Real Solution Classification

1 Compute the Hermite matrices H1, Hg, H,2 € Q(y)%*?

Algorithm 1: Real Solution Classification for 1 inequality
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Algorithm for s = 1

Input : f=---=£f=0, g>0 st forgenericn € Ct, f(n,-) =0 is zero-dim
Output: Descriptions of s.a sets 7; solving the Real Solution Classification

1 Compute the Hermite matrices H1, Hg, H,2 € Q(y)%*?

2 Choose a random matrix U € Q%8

3 Minors < LeadPrincMinors(U'H1 U, U'Hg U, U*H 2 U)

Algorithm 1: Real Solution Classification for 1 inequality
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Algorithm for s = 1

3

Input : f=---=£f=0, g>0 st forgenericn € Ct, f(n,-) =0 is zero-dim
Output: Descriptions of s.a sets 7; solving the Real Solution Classification

Compute the Hermite matrices H1, Hg, Hz2 € Q(y)%*?

Choose a random matrix U € Q%%

Minors « LeadPrincMinors(U*H1 U, U'HgU, U*H 52 U)

L < SamplePoints(Minors # 0)

Algorithm 1: Real Solution Classification for 1 inequality
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Algorithm for s = 1

-

w

IS

3]

o

10

Input : f=---=£f=0, g>0 st forgenericn € Ct, f(n,-) =0 is zero-dim

Output: Descriptions of s.a sets 7; solving the Real Solution Classification
Compute the Hermite matrices H1, Hg, Hz2 € Q(y)%*?
Choose a random matrix U € Q%%
Minors « LeadPrincMinors(U*H1 U, U'HgU, U*H 52 U)
L < SamplePoints(Minors # 0)
for n € L do
T,y + (Sign(H1(n)), Sign(Hg(n)), Sign(Hz2(n)))*
Solve M - ¢;; = Ty, to compute r, := c(g(n,-) > 0)
®,, < sign pattern of Minors evaluated in 7

end

return (&, 7, ry)neL

Algorithm 1: Real Solution Classification for 1 inequality
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Classification for s > 1
ﬂ:"'sz:Oa g>0,...,8>0
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Classification for s > 1
ﬂ:"'sz:Oa g>0,...,8>0

Let Z be the finite set of roots of f(n,-) and Q = (Q1,...,Qs) = g(n,-)
For o € {—1,0,1}%, let

o(0,2) =t{x € Z| [\ sign(Qi(x)) = o1}

i=1
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AT Sign determination

Classification for s > 1
f1:"':fP:0a g >0,...,8s>0

Let Z be the finite set of roots of f(n,-) and Q = (Q1,...,Qs) = g(n,-)
For o € {—1,0,1}°, let

(0, 2) = tx € 2| [\ sign(Qi(x)) = o1}

i=1
Interested in ¢(1...1, Z)

Generalize the identity for s = 1 to a tensor identity [Ben-Or, Kozen, Reif 1984] [Basu, Pollack, Roy 2006]

[1 1 1]
M=o 1 -1
0 1 1

c(0, 2) TaQ(1, 2)

M- | c(1,2) | = |TaQ(Q1, 2)

c(—1, 2) TaQ(@?, 2)
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Algorithm Sign determination

Classification for s > 1
f1:"':fP:0a g >0,...,8s>0

Let Z be the finite set of roots of f(n,-) and Q = (Q1,...,Qs) = g(n,-)
For o € {—1,0,1}°, let

(0, 2) = tx € 2| [\ sign(Qi(x)) = o1}

i=1
Interested in ¢(1...1, Z)

Generalize the identity for s = 1 to a tensor identity [Ben-Or, Kozen, Reif 1984] [Basu, Pollack, Roy 2006]

1 1 1
M_[g ) _11] c(0...0,2) TaQ(1, 2)
Mo | c(ez) | = | Tt Qe 2| b
o(-1...—1,2) TaQ(Q2 - @2, Z) i €1{0,1,2}
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Algorithm Sign determination

Classification for s > 1
f1:"':fp:Oa g >0,...,8s>0

Let Z be the finite set of roots of f(n,-) and Q = (Q1,...,Qs) = g(n,-)
For o € {~1,0,1}", let

c(0,2) =t{x € Z| [\ sign(Qi(x)) = o:}
i=1
Interested in ¢(1...1, Z)

Generalize the identity for s = 1 to a tensor identity [Ben-Or, Kozen, Reif 1984] [Basu, Pollack, Roy 2006]

1 1 1
M_{g ) 11] c(0...0, ) TaQ(1, 2)
M®s . e(o, Z) = | TaQ(Q* Qe z)| b3
o(-1...—1,2) TaQ(Q2 - @2, Z) i €1{0,1,2}

Problem

Need to compute 3° Hermite matrices — exceed our target complexity (polynomial in s)
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Algorithm

How to avoid unrealizable sign conditions d := max (deg f;, deg g))

i=--=f=0 g>0,...,8>0, x=(x1,--.,%), y=(¥1,-.-,¥t)
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Algorithm

How to avoid unrealizable sign conditions d := max (deg f;, deg g))
fi=-=f=0, g>0,...,8>0, x=0a,.--,xn), ¥y=1,---,¥)

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by
p = (§)4f+1d(2d —1)rtt=1l = dO(n+t) gt
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AT Sign determination

How to avoid unrealizable sign conditions d := max (deg f;, deg g))
fi=-=f=0, g>0,...,8>0, x=0a,.--,xn), ¥y=1,---,¥)

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by
p = (J)at+ld(2d — 1)t = OOt

c(0...0, 2) TaQ(1, 2)
M®s . (o, 2) — | TeQ(Qt - QP%, 2)
o(-1...-1,2) TaQ(Q@ - @, Z)

o € {0,1,2}

Strategy: Delete useless rows using an incremental approach
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Strategy: Delete useless rows using an incremental approach

e Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]

e At each step, add a new inequality g; and use the sample points routine to determine the
unrealizable sign conditions
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ai €40,1,2}
Strategy: Delete useless rows using an incremental approach
e Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]

e At each step, add a new inequality g; and use the sample points routine to determine the
unrealizable sign conditions

— Control the needed number of Hermite matrices.
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Algorithm Sign determination

How to avoid unrealizable sign conditions d := max (deg f;, deg g))

i=--=f=0 g>0,...,8>0, x=(x1,--.,%), y=(¥1,-.-,¥t)

Theorem (Basu, Pollack, Roy 2005)

The number of sign conditions realized by g on the roots of f is bounded by
p = (J)at+ld(2d — 1)t = OOt

c(0...0, 2) TaQ(1, 2)
M®s . (o, 2) — [maeert - aos, 2)
o(-1...-1,2) TaQ(Q@ - @, Z)

ai €40,1,2}
Strategy: Delete useless rows using an incremental approach
e Adaptation of the Sign Determination algorithm of [Basu, Pollack, Roy 2006]

e At each step, add a new inequality g; and use the sample points routine to determine the
unrealizable sign conditions

— Control the needed number of Hermite matrices.

e Formulas given by sign patterns of minors of remaining Hermite matrices
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Practical Results

fi(y,x)=---=faly,x) =0, gi(y,x)>0,...,85(y,x) >0
X:(Xl,...,X"), y:(}’17~--7)’t)7 d:max(degf,-,deggj)
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Practical Results

f1(y,x):~~=fn(y,x):0, gl(y7x)>07'~-
X = (Xl,-..,Xn), y= (YI7~--7Yt)7 d= max(deg flvdeggj)

,8s(y,x) >0

Hermite RF RRC
n t s d
2 2 2 2
2 2 3 2
3 2 1 2
3 2 2 2
2 3 2 2
3 3 1 2
2 2 1 3
2 2 2 3
Table: Generic dense system
(e ) Y



Practical Results

fl(yrx) == f”(yzx) =0, gl(y7x) >0,...,gs(y,x) >0
x=(x1,...,%n), Y=W1,.-.,yt), d=max(degf;, degg;)
Hermite RF RRC
n t s d hm det dv bp
2 2 2 21015s 0.1s 0.14 s 0.11 s
2 2 3 2 07s O0.1s 09s 1ls
3 2 1 2] 05s 04s 10 mn 7 mn
3 2 2 2 3s 0.4s 10 mn 14 mn
2 3 2 2 03s O0.1s 0.7s 0.2s
3 3 1 2 1ls 6s >50 h >50 h
2 2 1 3] 09s 08s 52 mn 47 s
2 2 2 3 5s ls 57 mn 2 mn
Table: Generic dense system
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Practical Results

fi(y,x)=---=faly,x) =0, gi(y,x)>0,...,85(y,x) >0
X:(Xl,...,X"), y:(}’17~--7)’t)7 d:max(degf,-,deggj)

Hermite RF RRC
hm det min sp dv cad bp
0.15s 0.1s 04s 5s 0.14 s 2s 0.11 s
0.7s 0.1s 2s 10 s 09s 10 s 1ls

05s 04s 9s 33s 10 mn 11 mn 7 mn
0.4s 1mn b7 s 10 mn 13 mn 14 mn
03s 01s 4s 18mn 0.7s >50 h 02s
1ls 6s 4mn >50h | >50h >50 h >50 h
09s 08s 30s 3mn 52 mn 57 mn 47 s

5s 1ls 5mn 6mn | 57 mn 1h 16 mn 2 mn

NN WNWWND NS
NN WWN NN N+
N EFENNRFEWND WY
WWNNNDNDNDN Q]
w
(2]

Table: Generic dense system
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Perspective-3-Point Problem

u = 2cos(a)
v = 2cos(B)
w = 2cos(y)
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Perspective-3-Point Problem

1 =A%+ B? - ABu
t =B2+C2-—BCv, AB,C>0
x =A24+C?2 - ACw

with the constraints:

X, t>0, —2<uv,w<?2

e 3 variables : A, B, C

e 5 parameters : x,t,u,v,w
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Perspective-3-Point Problem

1 = A2+ B?— ABu
t =B2+C2-—BCv, AB,C>0
x =A%24 C2 - ACw

with the constraints:

X, t>0, —2<uv,w<?2

e 3 variables : A, B, C

e 5 parameters : x,t,u,v,w

e A complete classification in less than one hour in the isosceles case (t = 1)

e In the general case: able to compute the Hermite matrices and derive the
semi-algebraic conditions from their minors.

— Next step: compute all the possible number of solutions and determine which
conditions are feasible using the sample points routine
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Conclusion

Conclusion

New Algorithm for One-block Quantifier Elimination?

Ix, A(y,x)=---=f(y,x) =0Ag1(y,x) >0 ... gs(y,x) >0 <= P(y)
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Conclusion

Conclusion

New Algorithm for One-block Quantifier Elimination?

Ix, A(y,x) = =f(y,x) =0Agi(y,x) >0 ... gs(y,x) >0 < (y)

Thank you for your attention!
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