RENORMALIZATION GROUP APPROACH TO COMPETING ORDERS AT CHARGE NEUTRALITY IN TBG

Lucile Savary

Univ. Bremen, from Lyon, Monday, Feb. 8th, 2021

COLLABORATORS

• Eric Brillaux

Andrei Fedorenko

CNRS, ENS de Lyon

David Carpentier

This presentation is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 853116, acronym TRANSPORT).

FLAT BAND PREDICTION AT "MAGIC ANGLES"

• prediction that twisted bilayer graphene ought to have flat bands for some specific ("magic") very small twist angles, where v_{Dirac} vanishes

hopping parameter w and twist angle θ in single parameter $\alpha \sim 1/\theta$

important note for later: Tarnopolsky et al find a simple limit where bands *exactly* flat

mBZ

Tarnopolsky et al

2018-NOW: EXPERIMENTAL CONFIRMATION

 appearance of insulating and superconducting behaviors at different fillings

MIT, UCSB, Columbia, Harvard, ICFO, Rutgers, Stanford, Berkeley, Princeton

OUR APPROACH AND RESULTS

- two decoupled twisted sheets of graphene
- coupled in perturbation theory
 - obtain velocity as a function of parameters
- classify contact interactions (find 12)
- weak-coupling RG approach
 - define how flow works
 - obtain flows

$$-\frac{\partial \log g_i}{\partial \log \mu} = -\epsilon + v^{-1} \sum_{l=1}^{12} f_{il}(\alpha, \beta) g_l$$

collapse of fixed points towards origin

nematic phase appears

 H_0

 $H_0' = H_0 + H_\alpha$

 $v_0 \rightarrow v(\alpha, \beta)$

one other RG paper from 09/20 Kang-Vafek which uses Coulomb

DECOUPLED TWISTED LAYERS

two noninteracting sheets of graphene

spin degeneracy (weak SOC) - spin index μ : discard

INTERLAYER COUPLING

Cao et al 2018

aka w_{AB}, w_0, w_1

Nam-Koshino parameter β :

Bistritzer-MacDonald model:

$$w_1 = w_2 \qquad \beta = 1$$

chiral model:

 $w_2=0$ $\beta=0$ Tarnopolsky et al 2018

"standard" approach: solve numerically a Schrödinger equation with thousands of bands

our approach: treat H_{α} as a perturbation to $H_0 \rightarrow$ obtain analytical results, generalizable to other moiré systems

PERTURBATION BY INTERLAYER COUPLING

$$H_{0} = i \left(\boldsymbol{\sigma} \cdot \boldsymbol{\partial} \right) \tau_{0}, \quad H_{\alpha} = \alpha \sum_{j=1}^{3} e^{-i\boldsymbol{q}_{j} \cdot \boldsymbol{r}} T_{j}^{+} + \text{h.c.}$$
$$T_{j}^{+} = \left(\beta \,\sigma_{0} + e^{i(j-1)2\pi/3} \sigma_{+} + e^{-i(j-1)2\pi/3} \sigma_{-} \right) \tau_{+}$$

 $H_0' = H_0 + H_\alpha$

DIRAC CONEVELOCITY AS A FUNCTION OF THE HOPPING PARAMETERS

New! Better! Superbly accurate! Cool numbers!

$$N_{\psi}v(\alpha,\beta) = (1 - 3\alpha^2) + \alpha^4(1 - \beta^2)^2 - \frac{3}{49}\alpha^6(37 - 112\beta^2 + 119\beta^4 - 70\beta^6)$$

note: expression at $\beta = 0$ obtained by Tarnopolsky et al

note: N is wavefunction normalization factor

Dirac velocity as a function of the inverse twist angle for various values of β :

obtained by BM

inverse magic angle as a function of β :

SYMMETRIES

• C₃ rotation around
$$z C_{3z} = e^{\frac{2i\pi}{3}\sigma^z} \tau^0$$

- C₂ rotation around $X M_y = C_{2x} = \sigma^x \tau^x$
- 2d-inversion x time reversal $C_{2z}T = IT = \sigma^x \tau^0 \mathscr{K}$
- (unitary) particle-hole antisymmetry, acts in real space as reflection $x \rightarrow -x$, $P = \sigma^x \tau^z$, $\{P, H'_0\} = 0$

- keep angular dependence in kinetic energy $(\pmb{\sigma}_{\pm heta / 2} \cdot \pmb{k})$
- $O(k^2)$ terms included
- intervalley scattering allowed $(K_{t/b}^{(g)} \leftrightarrow K_{t/b}^{\prime}^{(g)})$

find its irreps and multiplication table

GROUP THEORY ANALYSIS OF COUPLINGS

- call Γ the irrep under which the wavefunction transforms (4d irrep)
- find all copies of the trivial irreps in the product $(\Gamma^{\dagger} \otimes \Gamma) \otimes (\Gamma^{\dagger} \otimes \Gamma)$
- those are the products $\rho \otimes \rho$ of the irreps below:

cf. $(\psi^{\dagger}M\psi)(\psi^{\dagger}M\psi)$

symmetric in sublattices antisymmetric in sublattices

Corep.	A_1^+	a_{1}^{+}	A_2^+	a_{2}^{+}	A_1^-	a_1^-	A_2^-	a_2^-
$\hat{R}^{(i)}$	$\sigma_0 au_0$	$\sigma_0 au_x$	$\sigma_0 au_z$	$\sigma_0 au_y$	$\sigma_z au_y$	$\sigma_z \tau_z$	$\sigma_z au_x$	$\sigma_z \tau_0$
IT	\checkmark	\checkmark	\checkmark	\checkmark				
C_2	\checkmark	\checkmark			\checkmark	\checkmark		
Р		\checkmark		\checkmark		\checkmark		\checkmark
Corep.	j	E_2^+		E_4^+		E_2^-		E_4^-
$\sqrt{2}\hat{M}^{(j)}$	($\sigma \tau_0$		$oldsymbol{\sigma} au_x$		$oldsymbol{\sigma} au_y$		σau_z

eight one-dimensional coreps

$$\rho^{(i)} = \psi^{\dagger} \hat{R}^{(i)} \psi$$

four two-dimensional coreps

$$\boldsymbol{J}^{(j)} = \psi^{\dagger} \hat{\boldsymbol{M}}^{(j)} \psi$$

these

$$S_{\text{int}} = -\sum_{i=1}^{8} g_i \int d^2 r \, d\tau \, \rho^{(i)}(\boldsymbol{r}) \rho^{(i)}(\boldsymbol{r}) - \sum_{j=1}^{4} \lambda_j \int d^2 r \, d\tau \, \boldsymbol{J}^{(j)}(\boldsymbol{r}) \cdot \boldsymbol{J}^{(j)}(\boldsymbol{r}) \quad \text{treat all}$$

RENORMALIZATION GROUP APPROACH

RENORMALIZATION GROUP APPROACH

Semimetal

- 4 couplings with nonzero divergent corrections (discard others), all <u>diagonal in layers</u>, i.e. τ^0 , τ^z
- non-interacting fixed point at origin
- flows controlled by critical points, dominant instabilities are those whose fixed point collapses the fastest towards the origin

Channel	Coupling	$\hat{M_i}$	${\rm FP}g_i^*(\alpha,\beta)$
a_2^-	g_0	$\sigma_z au_0$	$\pi v \epsilon \left(4 \left[1 - 12 \alpha^2 (1 - \beta^2) \right] \right)$
a_1^-	g_z	$\sigma_z au_z$	$\pi v \epsilon / 4$
E_2^+	λ_0	$oldsymbol{\sigma} au_0/\sqrt{2}$	$\pi v \epsilon / (4 \left[1 - 3\alpha^2 (1 - \beta^2) \right])$
E_4^-	λ_z	$\sigma au_z/\sqrt{2}$	$\pi v \epsilon / (4 \left[1 + 3\alpha^2 (1 + \beta^2) \right])$

 σ^0 sublattice structure \rightarrow no pole in ϵ

 τ^{\pm} structure \rightarrow correction vanishes at low energy

flow equations in two-dimensional parameter space:

$$a_1^- \qquad -\mu \frac{\partial g_z}{\partial \mu} = -\epsilon g_z + \frac{4g_z^2}{\pi v} + \frac{4g_z \lambda_z}{\pi v} \left[1 - 6\alpha^2 \left(1 - \beta^2\right)\right] \qquad \qquad \text{Id irrep}$$

$$E_4^- \qquad -\mu \frac{\partial \lambda_z}{\partial \mu} = -\epsilon \lambda_z + \frac{4\lambda_z^2}{\pi v} \left[1 + 3\alpha^2 \left(1 + \beta^2 \right) \right] + \frac{2\lambda_z g_z}{\pi v} \left[1 - 6\alpha^2 \left(1 - \beta^2 \right) \right]$$

2d irrep

ORDER PARAMETERS

• mean-field associated with four of the couplings (important in the RG)

mBZ

mBZ

$$\begin{split} \Delta_{0/z} &= -2g_{0/z} \int \mathrm{d}\omega \int_{\Lambda} \frac{\mathrm{d}^2 q}{(2\pi)^3} \langle \psi_{q,\omega}^{\dagger} \sigma_z \tau_{0/z} \psi_{q,\omega} \rangle \\ \mathcal{G}_{0/z} &= -2\lambda_{0/z} \int \mathrm{d}\omega \int_{\Lambda} \frac{\mathrm{d}^2 q}{(2\pi)^3} \langle \psi_{q,\omega}^{\dagger} \boldsymbol{\sigma} \tau_{0/z} \psi_{q,\omega} \rangle. \end{split}$$

sym/antisym in layers

$$H'_{\rm MF} = H'_0 + \boldsymbol{\sigma} \cdot \left(\boldsymbol{\mathscr{G}}_0 \tau^0 + \boldsymbol{\mathscr{G}}_z \tau^z\right) + \boldsymbol{\sigma}^z (\Delta_0 \tau^0 + \Delta_z \tau^z)$$

FLOW DIAGRAMS

couplings rescaled by v (here v still big)

FLOW DIAGRAMS

couplings rescaled by $v \rightarrow 0$

CONCLUSIONS

- RG procedure which is **perturbative in interlayer coupling**, rather than using band basis.
 - advantage: can **analytically obtain everything**, including magic angle
 - find very **weak dependence on** w_{AB} (β) parameter, esp. below $\beta \sim 0.8$, so chiral model may contain all needed ingredients to recover the physics
- Main result: dominant new instability at magic angle is the C₃symmetry-breaking, i.e. "nematic"
- Technique development:
 - diagrammatic approach to velocity renormalization, alternate to band basis
 - new RG approach to dominant instability when all are important (vanishing kinetic energy)

