

Anthony Busson, <u>Malory Marin</u>, Rémi Watrigant ENS de Lyon, France September 5, 2024

ALGOWIN 2024

Context

First results

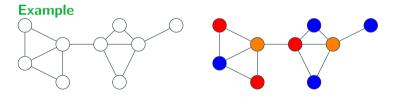
Algorithmic results

Conclusion and further research

Context

Input : A conflict graph G and a number of channels (colors) k

Output : Is it possible to give a channel to each vertex such that there is no conflict in a channel, or equivalently can we find a proper *k*-coloring of the graph ?



Question : What property should verify each color class to :

Question : What property should verify each color class to :

1. Enable conflicts inside

Question : What property should verify each color class to :

- 1. Enable conflicts inside
- 2. Keep a good performance

Question : What property should verify each color class to :

- 1. Enable conflicts inside
- 2. Keep a good performance

Each color class has to be **1-extendable**.

A *Maximum Independent Set* (MIS) of a graph G is a set of pairwise independent vertices of maximum size.

¹Soung Chang Liew, et al. "Back-of-the-Envelope Computation of Throughput Distributions in CSMA Wireless Networks," in 2009 IEEE International Conference on Communications, pp. 1-6, 2007.

R. Laufer, L. Kleinrock. "The capacity of wireless CSMA/CA networks," in IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1518–1532, 2015.

A *Maximum Independent Set* (MIS) of a graph G is a set of pairwise independent vertices of maximum size.

Previous work¹ proved that, under saturation, the performance of a node v in a Wi-Fi network is

 $p_{
m v} \sim {{\rm nb~of~MIS~of~G~containing~v}\over {\rm nb~of~MIS~of~G}}$

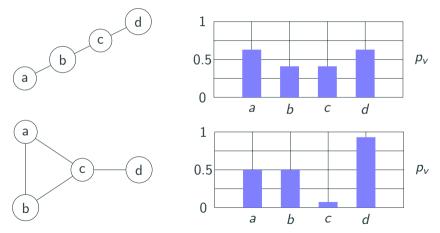
Thus, $p_v > 0$ if and only if v belongs to at least one MIS.

¹Soung Chang Liew, et al. "Back-of-the-Envelope Computation of Throughput Distributions in CSMA Wireless Networks," in 2009 IEEE International Conference on Communications, pp. 1-6, 2007.

R. Laufer, L. Kleinrock. "The capacity of wireless CSMA/CA networks," in IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1518–1532, 2015.

1-extendability and ns-3 simulations

Definition (Berge '78) A graph *G* is 1-*extendable* if each vertex belongs to an MIS.



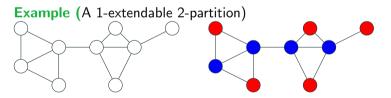
Given a graph G and an integer k, a 1-extendable k-partition of G is a partition $V_1, ..., V_k$ of the vertex set V(G) such that $G[V_i]$ is 1-extendable for all $1 \le i \le k$.

Given a graph G and an integer k, a 1-extendable k-partition of G is a partition $V_1, ..., V_k$ of the vertex set V(G) such that $G[V_i]$ is 1-extendable for all $1 \le i \le k$. We call the 1-extendable chromatic number, $\chi_{1-ext}(G)$, the minimum integer k such

that *G* has a 1-extendable *k*-partition.

Given a graph G and an integer k, a 1-extendable k-partition of G is a partition $V_1, ..., V_k$ of the vertex set V(G) such that $G[V_i]$ is 1-extendable for all $1 \le i \le k$.

We call the 1-extendable chromatic number, $\chi_{1-ext}(G)$, the minimum integer k such that G has a 1-extendable k-partition.



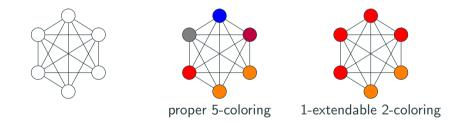
First results

Theorem (Bergé, Busson, Feghali, Watrigant 2022) *Testing* 1-*extendability is NP-hard.* **Theorem (Bergé, Busson, Feghali, Watrigant 2022)** *Testing* 1-*extendability is NP-hard.*

Theorem (Feghali, M., Watrigant 2024) *Testing* 1-extendability is Θ_2^p -complete, where $\Theta_2^p = P^{NP[\log]}$. **Theorem (Bergé, Busson, Feghali, Watrigant 2022)** *Testing* 1-*extendability is NP-hard.*

Theorem (Feghali, M., Watrigant 2024) *Testing* 1-extendability is Θ_2^p -complete, where $\Theta_2^p = P^{NP[\log]}$.

Theorem Deciding if a graph has 1-extendable chromatic number at most $k = \Theta_2^p$ -hard for every fixed $k \ge 1$. **Theorem** For any graph G with n vertices, $\chi_{1-ext}(G) \leq 2\sqrt{n}$.



Lemma For any graph G, $\chi_{1-ext}(G) \leq \alpha(G)$.

Proof.

If $\alpha(G) = 1$, then G is a clique and $\chi_{1-\text{ext}}(G) = 1$. If $\alpha(G) > 1$, let S be the set of vertices of G that are in an MIS. Notice that :

- G[S] is 1-extendable ;
- $\alpha(G-S) \leq \alpha(G) 1.$

By induction hypothesis, $\chi_{1-\text{ext}}(G-S) \leqslant \alpha(G) - 1$ and use one color for S.

Theorem For any graph *G* with *n* vertices, $\chi_{1-ext}(G) \leq 2\sqrt{n}$.

Proof.

While $\alpha(G) > \sqrt{n}$, extract an MIS S, use one color for S and continue with G - S.

If $\alpha(G) \leq \sqrt{n}$, use $\alpha(G)$ colors with the previous lemma.

Algorithmic results

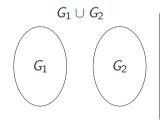
Goal : Design an algorithm to decide if a graph has a 1-extendable *k*-partition.

Goal : Design an algorithm to decide if a graph has a 1-extendable *k*-partition. **Main tool** : Modular decomposition of the graph.

Modular decomposition

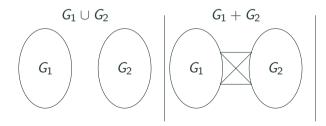
In 1967, Gallai proved that any graph G can be obtained by one of the following three operations :

• disjoint union of two graphs G_1 and G_2 , written $G_1 \cup G_2$;



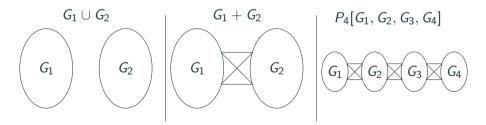
In 1967, Gallai proved that any graph G can be obtained by one of the following three operations :

- disjoint union of two graphs G_1 and G_2 , written $G_1 \cup G_2$;
- complete sum of two graphs G_1 and G_2 , written $G_1 + G_2$;

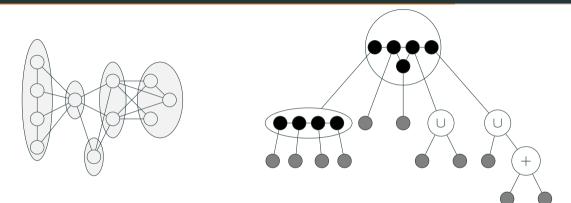


In 1967, Gallai proved that any graph G can be obtained by one of the following three operations :

- disjoint union of two graphs G_1 and G_2 , written $G_1 \cup G_2$;
- complete sum of two graphs G_1 and G_2 , written $G_1 + G_2$;
- substitution of all the *m* vertices of a "prime" graph *H* with *m* graphs *G*₁, ..., *G_m*, written *H*[*G*₁, ..., *G_m*].



Decomposition tree



Definition

The modular-width of G(mw(G)) is smallest number of vertices in a prime graph along the decomposition.

A cograph is a graph of modular-width 0.

Proposition Given two graphs G_1 and G_2 ,

- 1. $G_1 \cup G_2$ is 1-extendable iff both G_1 and G_2 are 1-extendable ;
- 2. $G_1 + G_2$ is 1-extentable iff both G_1 and G_2 are 1-extendable and $\alpha(G_1) = \alpha(G_2)$.

Proposition Given two graphs G_1 and G_2 ,

- 1. $G_1 \cup G_2$ is 1-extendable iff both G_1 and G_2 are 1-extendable ;
- 2. $G_1 + G_2$ is 1-extentable iff both G_1 and G_2 are 1-extendable and $\alpha(G_1) = \alpha(G_2)$.

Idea : This characterization will be good for the design of a recursive algorithm, can we extend the substitution case ?

Notation :

- H: representative graph of G (i.e. the first node of the modular decomposition)
- *H_w* : weighted representative graph (i.e. *H* with the weight function corresponding to the independence number of each modules).

Theorem A graph G is 1-extendable if and only if all its maximal strong modules are 1-extendable and if its weighted representative graph is 1-extendable.

Theorem

Deciding whether a graph G is 1-extendable can be done in time $2^{O(mw(G))} \cdot n$.

Theorem

Deciding whether a graph G is 1-extendable can be done in time $2^{O(mw(G))} \cdot n$.

Theorem

Deciding whether a graph G with n vertices and independence number α has 1-extendable chromatic number at most k can be done in time $\alpha^{O(mw(G)k)} \cdot n$.

Conclusion and further research

Theorem

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$.

On cographs : algorithm in quasi-polynomial time (O(n^{log(n)})) to compute χ_{1-ext}, it is possible to do it in polynomial-time ? (open even in complete multipartite graphs)

Theorem

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$.

- On cographs : algorithm in quasi-polynomial time (O(n^{log(n)})) to compute χ_{1-ext}, it is possible to do it in polynomial-time ? (open even in complete multipartite graphs)
- Is O(√n) the best upper bound possible ? The best counter-example we have requires log(n) colors.

Theorem

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$.

- On cographs : algorithm in quasi-polynomial time (O(n^{log(n)})) to compute χ_{1-ext}, it is possible to do it in polynomial-time ? (open even in complete multipartite graphs)
- Is O(√n) the best upper bound possible ? The best counter-example we have requires log(n) colors.
- Between 1-extendable partition and proper coloring : subcoloring

Theorem

For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$.

- On cographs : algorithm in quasi-polynomial time (O(n^{log(n)})) to compute χ_{1-ext}, it is possible to do it in polynomial-time ? (open even in complete multipartite graphs)
- Is O(√n) the best upper bound possible ? The best counter-example we have requires log(n) colors.
- Between 1-extendable partition and proper coloring : subcoloring

THANKS

Theorem For any cograph G, $\chi_{1-ext}(G) \leq \log_2(\alpha(G)) + 1$.

Idea of the proof. Find a partition of $V(G) = V_1 \sqcup V_2$ with :

- $G[V_1]$ 1-extendable ;
- $\alpha(G[V_2]) \leq \alpha(G)/2$

Lemma

Lemma

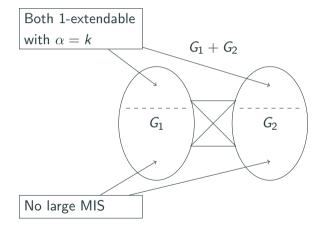
For any cograph G = (V, E) and any $k \in \{0, ..., \alpha(G)\}$, there exists a partition of the vertices into two subsets V_1 and V_2 such that

- $G[V_1]$ is 1-extendable ;
- $\alpha(G[V_1]) = k$;
- $\alpha(G[V_2]) \leq \max(k-1, \alpha(G)-k)$

Proof of the theorem.

Apply the lemma for $k = \frac{\alpha(G)}{2}$, $G[V_1]$ 1-extendable and $\alpha(G[V_2]) \le \frac{\alpha(G)}{2}$. Continue recursively with $G[V_2]$.

Let $k \in \{0, ..., \alpha(G)\}$, we apply the induction hypothesis on (G_1, k) and (G_2, k) .



Proof of the lemma, induction case $G = G_1 \cup G_2$

Let $k \in \{0, ..., \alpha(G)\}$, we apply the induction hypothesis on (G_1, k_1) and (G_2, k_2) , where

$$k_{1} = k \frac{\alpha(G_{1})}{\alpha(G_{1}) + \alpha(G_{2})} \qquad k_{2} = k \frac{\alpha(G_{2})}{\alpha(G_{1}) + \alpha(G_{2})} \qquad k_{1} + k_{2} = k$$
Both 1-extendable with
 $\alpha_{1} = k_{1} \text{ and } \alpha_{2} = k_{2}$

$$G_{1} \cup G_{2}$$

$$G_{1} \cup G_{2}$$
No large MIS