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Introduction



χ-boundedness

• χ(G ) : chromatic number

• ω(G ) : clique number

• For any graph G , χ(G ) > ω(G ).

Definition
A hereditary class of graphs C is χ-bounded if there exists a function f such that for

any graph G ∈ C, χ(G ) 6 f (ω(G )).

χ-bounded not χ-bounded

Perfect graphs

triangle-free graphs

Chordal graphs

string graphs

Interval graphs

Cographs

Pt-free

Bounded clique-width
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Triangle-free graphs with arbitrarily large chromatic number

Theorem
For any k > 1, there exists a graph G with ω(G ) = 2 and χ(G ) > k.

Many different proofs :

• Zykov’s construction (∼ 1950)

• Blanche Descartes’ (or Tutte’s) construction (∼ 1950)

• Mycielski’s construction (1955)

• Erdős’ random graph (1959)

• Burling’s construction (1965)

• Shift graphs (Erdős, Hajnal, 1968)

• ...

• Twin-Cuts (Bonnet, Bourneuf, Duron, Geniet, Thomassé, Trotignon, 2024)
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Zykov graphs

• Z1 is a single vertex
• For k > 1, constuct Zk+1 as follows :

• Take the disjoint union of Z1,.., Zk

• For each tuple (v1, ..., vk) ∈ V (Z1)× ...× V (Zk), add a vertex adjacent to v1, ..., vk

Z1 Z2

Z3

Z1 Z2

Z3

Z4
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Zykov graphs

Theorem (Zykov, 1950)

For any k > 1,

1. ω(Zk) = 2 (Zk is triangle-free)

2. χ(Zk) = k

Definition
A Zykov graph is an induced subgraph of some Zk (k > 1).

Proposition
Zykov graphs are not χ-bounded, and do not contain all triangle-free graphs.

Problem: The definition of Zykov graphs is difficult to manipulate.

Objective : Better desciption of Zykov graphs
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Structural description of Zykov

graphs and applications



Main result

Definition
A splitting stable set of a graph G is a subset of vertices S ⊆ V (G ) such that

• S is a stable (independent) set

• for every vertex v ∈ S and connected component C of G \ S , v has at most one

neighbor in C
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A splitting stable set of a graph G is a subset of vertices S ⊆ V (G ) such that

• S is a stable (independent) set

• for every vertex v ∈ S and connected component C of G \ S , v has at most one

neighbor in C

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all

induced subgraphs of G contain a non-empty

splitting stable set.
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of ⇒ .

G

H H induced subgraph of G

Goal : finding a non-empty split-

ting stable set in H
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of ⇒ .

G

H
Restrict H to one connected com-

ponent
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of ⇒ .

H

Zk

H is a Zykov graph (since G is

Zykov)

Consider k minimum such that H

is an induced subgraph of Zk .
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of ⇒ .

H

Zk

H has a non-empty intersection

with the maximum splitting stable

set of Zk .
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof idea of ⇐ .
By induction on the number of vertices.

• Take A a non-empty splitting splitting set of G .

• By induction hypothesis, all ` the connected component of G \ A are induced

subgraph of some Zk .

• G is an induced subgraph of Zk+`.
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Application 1 : Zykov or Non-Zykov ?

w1

w2

w3w4

w5

u1

u2

u3u4

u5

Figure 1: Graph F

Proposition
The graph F is not a Zykov graph.
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Application 1 : Zykov or Non-Zykov ?

Proposition
All bipartite graphs are Zykov graphs.

Proposition
All 1-subdivision are Zykov graphs.

Proposition
All twin-cut and Blanche-Descartes graphs are Zykov graphs.

Theorem (M., Thomassé, Trotignon, Watrigant)
There exist non-Zykov graphs of arbitrarily large girth.
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Application 2 : Complexity results

Proposition
Zykov graphs are MSO2-definable.

Corollary
Recognizing Zykov graphs is FPT in the treewidth of the input graph.

Proof.
Direct implication of Courcelle’s theorem.

Theorem (M., Thomassé, Trotignon, Watrigant)
Recognizing Zykov graphs is NP-complete.

Theorem (M., Thomassé, Trotignon, Watrigant)
Maximum Independent Set and 3-Coloring are NP-complete

on Zykov graphs.

11/14



Application 2 : Complexity results

Proposition
Zykov graphs are MSO2-definable.

Corollary
Recognizing Zykov graphs is FPT in the treewidth of the input graph.

Proof.
Direct implication of Courcelle’s theorem.
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Theorem (M., Thomassé, Trotignon, Watrigant)
Recognizing Zykov graphs is NP-complete.
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The case of Blanche-Descartes

graphs



Blanche Descartes graphs

• D1 is a single vertex ;

• For k > 1, construct Dk+1 as follows :

• Take a stable set S of k(n − 1) + 1 vertices where n = |V (Dk)| ;

• For each n-tuple of S , add a copy of Dk and a matching between the n-uple and the

copy.

2× (1− 1) + 1 = 1

D1

3× (2− 1) + 1 = 4
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Characterisation of Blanche Descartes graphs

Definition
A strong splitting stable set of a graph G is a subset of vertices S ⊆ V (G ) such that

• S is a stable set

• every vertex has at most one neighbor in each connected component of G \ S
• every vertex from G \ S has at most one neighbor in S
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Characterisation of Blanche Descartes graphs

Definition
A strong splitting stable set of a graph G is a subset of vertices S ⊆ V (G ) such that

• S is a stable set

• every vertex has at most one neighbor in each connected component of G \ S
• every vertex from G \ S has at most one neighbor in S

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Blanche Descartes graph if and only

if all induced subgraphs of G contain a non-empty

strong splitting stable set.

Theorem (M., Thomassé, Trotignon, Watrigant)
Recognizing Blanche Descartes graphs is

NP-complete.
13/14



Open questions



Open questions

Question 1 Does considering arbitrary matchings or fixed matchings result in the

same class of graphs in the definition of Blanche Descartes graphs?

Question 2 Let C be a hereditary class of graphs with arbitrarily large chromatic

number.

Call C minimal if ∀H ∈ C, ∃cH , ∀G ∈ C, if G is H-induced free, then

χ(G ) 6 cH .

Know minimal classes :

• complete graphs

• Burling graphs (Abrishami, Briański, Davies, Du, Masǎŕıková,

Rzażewski, Walczak ’25+)

Does there exist a minimal class contained within the class of Zykov

graphs (respectively, Blanche-Descartes graphs)?

THANKS
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