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x-boundedness

e x(G) : chromatic number
e w(G) : clique number
e For any graph G, x(G) > w(G).
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x-bounded not y-bounded
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Chordal graphs string graphs
Interval graphs
Cographs
Pi-free
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Triangle-free graphs with arbitrarily large chromatic number

Theorem
For any k > 1, there exists a graph G with w(G) =2 and x(G) > k.
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Triangle-free graphs with arbitrarily large chromatic number

Theorem
For any k > 1, there exists a graph G with w(G) =2 and x(G) > k.

Many different proofs :
e Zykov's construction (~ 1950)
e Blanche Descartes' (or Tutte's) construction (~ 1950)
e Mycielski's construction (1955)
e Erdés’ random graph (1959)
e Burling’s construction (1965)
e Shift graphs (Erdés, Hajnal, 1968)

e Twin-Cuts (Bonnet, Bourneuf, Duron, Geniet, Thomassé, Trotignon, 2024)
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Zykov graphs

e /j is a single vertex
e For k > 1, constuct Z, 1 as follows :
e Take the disjoint union of Zi,.., Zx
e For each tuple (vi,...,v) € V(Z1) x ... x V(Zx), add a vertex adjacent to vy, ..., vk
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Zykov graphs

Theorem (Zykov, 1950)

For any k > 1,
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Zykov graphs

Theorem (Zykov, 1950)

For any k > 1,
1. w(Zk) =2 (Zx is triangle-free)
2. x(Zk) =k

Definition
A Zykov graph is an induced subgraph of some Zj (k > 1).

Proposition
Zykov graphs are not x-bounded, and do not contain all triangle-free graphs.

Problem: The definition of Zykov graphs is difficult to manipulate.

Objective : Better desciption of Zykov graphs
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Structural description of Zykov
graphs and applications




Definition
A splitting stable set of a graph G is a subset of vertices S C V/(G) such that

e S is a stable (independent) set

e for every vertex v € S and connected component C of G\ S, v has at most one
neighbor in C
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Main result

Definition
A splitting stable set of a graph G is a subset of vertices S C V/(G) such that

e S is a stable (independent) set

e for every vertex v € S and connected component C of G\ S, v has at most one
neighbor in C

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all

induced subgraphs of G contain a non-empty

splitting stable set.
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Sketch of the proof
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of = .

G

H induced subgraph of G
Goal : finding a non-empty split- 0J
ting stable set in H
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of = .

G

Restrict H to one connected com-

ponent
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Sketch of the proof

a non-empty splitting stable set.

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

Proof of = .

Z

H is a Zykov graph (since G is
Zykov)
Consider k minimum such that H

is an induced subgraph of Z.
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof of = .

Z

H has a non-empty intersection
with the maximum splitting stable O
set of Zj.
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof idea of < .
By induction on the number of vertices.
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Sketch of the proof

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Zykov graph if and only if all induced subgraphs of G contain

a non-empty splitting stable set.

Proof idea of < .
By induction on the number of vertices.

e Take A a non-empty splitting splitting set of G.

e By induction hypothesis, all ¢ the connected component of G \ A are induced
subgraph of some Z.

e G is an induced subgraph of Zj.,.
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Application 1 : Zykov or Non-Zykov ?

Figure 1: Graph F

Proposition
The graph F is not a Zykov graph.
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Application 1 : Zykov or Non-Zykov ?

Proposition
All bipartite graphs are Zykov graphs.

Proposition
All 1-subdivision are Zykov graphs.

Proposition
All twin-cut and Blanche-Descartes graphs are Zykov graphs.

Theorem (M., Thomassé, Trotignon, Watrigant)
There exist non-Zykov graphs of arbitrarily large girth.
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Application 2 : Complexity results
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Application 2 : Complexity results

Proposition
Zykov graphs are MSO2-definable.

Corollary
Recognizing Zykov graphs is FPT in the treewidth of the input graph.

Proof.
Direct implication of Courcelle’s theorem. O

Theorem (M., Thomassé, Trotignon, Watrigant)
Recognizing Zykov graphs is NP-complete.

Theorem (M., Thomassé, Trotignon, Watrigant)
MAXIMUM INDEPENDENT SET and 3-COLORING are NP-complete

on Zykov graphs.
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The case of Blanche-Descartes
graphs




Blanche Descartes graphs

e Dj is a single vertex ;
e For k > 1, construct Dy, 1 as follows :
e Take a stable set S of k(n— 1) + 1 vertices where n = [V/(Dy)| ;
e For each n-tuple of S, add a copy of Dy and a matching between the n-uple and the

copy.

@2x(1-1)+1=1
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Characterisation of Blanche Descartes graphs

Definition
A strong splitting stable set of a graph G is a subset of vertices S C V/(G) such that

e S is a stable set
e every vertex has at most one neighbor in each connected component of G\ S

e every vertex from G \ S has at most one neighbor in S
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Characterisation of Blanche Descartes graphs

Definition
A strong splitting stable set of a graph G is a subset of vertices S C V/(G) such that
e S is a stable set

e every vertex has at most one neighbor in each connected component of G\ S

e every vertex from G \ S has at most one neighbor in S

Theorem (M., Thomassé, Trotignon, Watrigant)
A graph G is a Blanche Descartes graph if and only

if all induced subgraphs of G contain a non-empty
strong splitting stable set.

Theorem (M., Thomassé, Trotignon, Watrigant)
Recognizing Blanche Descartes graphs is

NP-complete.
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Open questions

Question 1 Does considering arbitrary matchings or fixed matchings result in the
same class of graphs in the definition of Blanche Descartes graphs?
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Open questions

Question 1

Question 2

Does considering arbitrary matchings or fixed matchings result in the
same class of graphs in the definition of Blanche Descartes graphs?
Let C be a hereditary class of graphs with arbitrarily large chromatic
number.
Call C minimal if VH € C,dcy, VG € C, if G is H-induced free, then
X(G) < CH.
Know minimal classes :

e complete graphs

e Burling graphs (Abrishami, Brianiski, Davies, Du, Masafikova,

Rzazewski, Walczak '25+)

Does there exist a minimal class contained within the class of Zykov

graphs (respectively, Blanche-Descartes graphs)?
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