

Beyond recognizing well-covered graphs WG 2024

Carl Feghali, <u>Malory Marin</u>, Rémi Watrigant June 20, 2024

Laboratoire de l'Informatique du Parallélisme, ENS de Lyon, France

Background

Complexity of recognizing 1-extendable graphs

Chordal graphs

Open problems

Background

• 1970, Plummer : what are the graphs for which the greedy algorithm for maximum independent set (MIS) is optimal ?

• 1970, Plummer : what are the graphs for which the greedy algorithm for maximum independent set (MIS) is optimal ?

Definition

A graph is *well-covered* if every maximal independent set is maximum.

• 1970, Plummer : what are the graphs for which the greedy algorithm for maximum independent set (MIS) is optimal ?

Definition

A graph is *well-covered* if every maximal independent set is maximum.

• Chvátal and Slater, and independently Sankaranarayana and Stewart : recognizing well-covered graphs is coNP-complete.

• 1975 : Staples introduced the concept of W_k graphs.

Definition

A graph is W_k if, and only if, for any k disjoint independent sets $(A_i)_{1 \le i \le k}$, there exist a set $(B_i)_{1 \le i \le k}$ of disjoint MIS such that $A_i \subseteq B_i$ for any $1 \le i \le k$.

• 1975 : Staples introduced the concept of W_k graphs.

Definition

A graph is W_k if, and only if, for any k disjoint independent sets $(A_i)_{1 \le i \le k}$, there exist a set $(B_i)_{1 \le i \le k}$ of disjoint MIS such that $A_i \subseteq B_i$ for any $1 \le i \le k$.

 $\bullet~W_1$ graphs are the well-covered, and the sets are nested :

 $\mathsf{W}_1\supseteq\mathsf{W}_2\supseteq\cdots$

• Two questions (Levit and Tankus, 2023) :

• 1975 : Staples introduced the concept of W_k graphs.

Definition

A graph is W_k if, and only if, for any k disjoint independent sets $(A_i)_{1 \le i \le k}$, there exist a set $(B_i)_{1 \le i \le k}$ of disjoint MIS such that $A_i \subseteq B_i$ for any $1 \le i \le k$.

 $\bullet~W_1$ graphs are the well-covered, and the sets are nested :

 $\mathsf{W}_1\supseteq\mathsf{W}_2\supseteq\cdots$

- Two questions (Levit and Tankus, 2023) :
 - What is the complexity of recognizing W_2 graphs ?

• 1975 : Staples introduced the concept of W_k graphs.

Definition

A graph is W_k if, and only if, for any k disjoint independent sets $(A_i)_{1 \leq i \leq k}$, there exist a set $(B_i)_{1 \leq i \leq k}$ of disjoint MIS such that $A_i \subseteq B_i$ for any $1 \leq i \leq k$.

 $\bullet~W_1$ graphs are the well-covered, and the sets are nested :

$$\mathsf{W}_1\supseteq\mathsf{W}_2\supseteq\cdots$$

- Two questions (Levit and Tankus, 2023) :
 - What is the complexity of recognizing *W*₂ graphs ? coNP-complete (Feghali,M., 2024)

• 1975 : Staples introduced the concept of W_k graphs.

Definition

A graph is W_k if, and only if, for any k disjoint independent sets $(A_i)_{1 \le i \le k}$, there exist a set $(B_i)_{1 \le i \le k}$ of disjoint MIS such that $A_i \subseteq B_i$ for any $1 \le i \le k$.

 $\bullet~W_1$ graphs are the well-covered, and the sets are nested :

$$\mathsf{W}_1\supseteq\mathsf{W}_2\supseteq\cdots$$

- Two questions (Levit and Tankus, 2023) :
 - What is the complexity of recognizing *W*₂ graphs ? coNP-complete (Feghali,M., 2024)
 - What is the complexity of recognizing W_2 graphs, when the input graph is well-covered ?

• 1975 : Staples introduced the concept of W_k graphs.

Definition

A graph is W_k if, and only if, for any k disjoint independent sets $(A_i)_{1 \le i \le k}$, there exist a set $(B_i)_{1 \le i \le k}$ of disjoint MIS such that $A_i \subseteq B_i$ for any $1 \le i \le k$.

 $\bullet~W_1$ graphs are the well-covered, and the sets are nested :

$$\mathsf{W}_1\supseteq\mathsf{W}_2\supseteq\cdots$$

- Two questions (Levit and Tankus, 2023) :
 - What is the complexity of recognizing *W*₂ graphs ? coNP-complete (Feghali,M., 2024)
 - What is the complexity of recognizing *W*₂ graphs, when the input graph is well-covered ? coNP-complete

Some historical points : *k***-extendable**

• 1994 : Dean and Zito introduced the concept of k-extendable graphs.

Definition

A graph is k-extendable if any independent set of size k is contained in an MIS.

- (k-extendable for all $k \ge 1$) = well-covered
- Notation : a graph is E_s if k-extendable for any $1 \le k \le s$.
- Nested sets:

 $\mathsf{E}_1 \supseteq \mathsf{E}_2 \supseteq \cdots \supseteq \mathsf{W}_1 \supseteq \mathsf{W}_2 \supseteq \cdots$

• Is it easier to recognize well-covered graphs in 1-extendable graphs ?

Some historical points : *k***-extendable**

• 1994 : Dean and Zito introduced the concept of k-extendable graphs.

Definition

A graph is k-extendable if any independent set of size k is contained in an MIS.

- (k-extendable for all $k \ge 1$) = well-covered
- Notation : a graph is E_s if k-extendable for any $1 \leq k \leq s$.
- Nested sets:

 $\mathsf{E}_1 \supseteq \mathsf{E}_2 \supseteq \cdots \supseteq \mathsf{W}_1 \supseteq \mathsf{W}_2 \supseteq \cdots$

- Is it easier to recognize well-covered graphs in 1-extendable graphs ?
- Global question : What are the relative complexities of this hierarchy ?

Results

• Complete overview of the relative complexities :

Question	E ₁	Es	W_1	W _k
Arbitrary	NP-hard	?	coNP-c	coNP-c
E ₁	-	?	?	?
E_{s-1}	-	?	?	?
W_1	-	-	-	?
W_{k-1}	-	-	-	?
Chordal	?	?	L	?

Previous result Our contribution

Results

• Complete overview of the relative complexities :

Question	E1	Es	W_1	W _k	
Arbitrary	Θ_2^p -c	Θ_2^p -c	coNP-c	coNP-c	
E ₁	-	Θ_2^p -c	coNP-c	coNP-c	Previous result
E_{s-1}	-	Θ_2^p -c	coNP-c	coNP-c	Our contribution
W_1	-	-	-	coNP-c	
W_{k-1}	-	-	-	coNP-c	
Chordal	L	W[2]-h in <i>k</i>	L	L	

Results

• Complete overview of the relative complexities :

Question	E1	Es	W_1	W _k	
Arbitrary	Θ_2^p -c	Θ_2^p -c	coNP-c	coNP-c	
E ₁	-	Θ_2^p -c	coNP-c	coNP-c	Previous result
E_{s-1}	-	Θ_2^p -c	coNP-c	coNP-c	Our contribution
W_1	-	-	-	coNP-c	
W_{k-1}	-	-	-	coNP-c	
Chordal	L	W[2]-h in <i>k</i>	L	L	

• Complete view on chordal graphs : for instance structural characterization of 1-extendable chordal graphs.

Complexity of recognizing 1-extendable graphs

- A graph is **1-extendable** iff every vertex belongs to an MIS.
- In a Wi-Fi network, if an access point does not belong to an MIS of the conflict graph, the throughput is close to zero.

- A graph is **1-extendable** iff every vertex belongs to an MIS.
- In a Wi-Fi network, if an access point does not belong to an MIS of the conflict graph, the throughput is close to zero.

- A graph is **1-extendable** iff every vertex belongs to an MIS.
- In a Wi-Fi network, if an access point does not belong to an MIS of the conflict graph, the throughput is close to zero.

- A graph is **1-extendable** iff every vertex belongs to an MIS.
- In a Wi-Fi network, if an access point does not belong to an MIS of the conflict graph, the throughput is close to zero.

- A graph is **1-extendable** iff every vertex belongs to an MIS.
- In a Wi-Fi network, if an access point does not belong to an MIS of the conflict graph, the throughput is close to zero.

- A graph is 1-extendable iff every vertex belongs to an MIS.
- In a Wi-Fi network, if an access point does not belong to an MIS of the conflict graph, the throughput is close to zero.

not 1-extendable

Theorem (Bergé, Feghali, Busson and Watrigant, 2023) *Recognizing* 1-*extendable graphs is NP-hard, even on unit disk graph.*

1-extendability is in Θ_2^p

- No polynomial certificate for testing 1-extendability ;
- Θ₂^p: class of problems sovable in polynomial time with a logarithmic call to a SAT oracle;

Theorem

The problem of recognizing 1-extendable graphs is Θ_2^p -complete.

Proof of membership in Θ_2^p :

Algorithm to decide if G is 1-extendable :

- 1. Compute $\alpha(G)$ with log(n) call to a SAT oracle.
- Decide if every vertex belongs to an independent set of size α(G) using a unique SAT oracle.

MIS EQUALITY Input : Two *n*-vertex graphs *G* and *H*. Question : $\alpha(G) = \alpha(H)$?

```
Let \pi(G, H) be the graph :
```

Н

G

MIS EQUALITY Input : Two *n*-vertex graphs *G* and *H*. Question : $\alpha(G) = \alpha(H)$?

Let $\pi(G, H)$ be the graph :

MIS EQUALITY Input : Two *n*-vertex graphs *G* and *H*. Question : $\alpha(G) = \alpha(H)$?

Let $\pi(G, H)$ be the graph :

MIS EQUALITY Input : Two *n*-vertex graphs *G* and *H*. Question : $\alpha(G) = \alpha(H)$?

<u>Claim 2</u>: $\alpha(G) = \alpha(H)$ if, and only if $\pi(G, H)$ is 1-extendable. $\implies \text{If } \alpha(G) = \alpha(H), \text{ let } v \in V(\pi(G, H)),$ $G \qquad \pi_G \qquad \pi_H \qquad H$

<u>Claim 2</u>: $\alpha(G) = \alpha(H)$ if, and only if $\pi(G, H)$ is 1-extendable. $\implies \text{If } \alpha(G) = \alpha(H), \text{ let } v \in V(\pi(G, H)),$ $G \qquad \pi_G \qquad \pi_H \qquad H$

<u>Claim 2</u> : $\alpha(G) = \alpha(H)$ if, and only if $\pi(G, H)$ is 1-extendable.

$$\Rightarrow If \alpha(G) = \alpha(H), let v \in V(\pi(G, H)), G \qquad \pi_G \qquad \pi_H \qquad H$$

Thus $\pi(G, H)$ is 1-extendable.

Proof of claim 2

<u>Claim 2</u>: $\alpha(G) = \alpha(H)$ if, and only if $\pi(G, H)$ is 1-extendable. $\stackrel{\frown}{=}$ If $\pi(G, H)$ is 1-extendable, we show that $\alpha(G) = \alpha(H)$. Let $v \in \pi_G$, and S an MIS of $\pi(G, H)$ that contains v.

Proof of claim 2

<u>Claim 2</u>: $\alpha(G) = \alpha(H)$ if, and only if $\pi(G, H)$ is 1-extendable. \Leftarrow If $\pi(G, H)$ is 1-extendable, we show that $\alpha(G) = \alpha(H)$.

Let $v \in \pi_G$, and S an MIS of $\pi(G, H)$ that contains v.

Proof of claim 2

G

<u>Claim 2</u>: $\alpha(G) = \alpha(H)$ if, and only if $\pi(G, H)$ is 1-extendable. \Leftarrow If $\pi(G, H)$ is 1-extendable, we show that $\alpha(G) = \alpha(H)$.

Н

Let $v \in \pi_G$, and S an MIS of $\pi(G, H)$ that contains v.

 $\pi_G \pi_H$

We have $|S \cap V(H)| = \alpha(H)$ and $|S \cap (V(G) \cup \pi(G))| = n$, and thus

 $\alpha(\pi(G,H)) = n + \alpha(H)$

By a symmetric argument, $\alpha(\pi(G, H)) = n + \alpha(G)$, finally $\alpha(G) = \alpha(H)$. 11/13

Chordal graphs

Chordal graphs

Theorem (Prisner, Topp, Vestergaard, 1996) A chordal graph G is well-covered if, and only if there exists a partition of V(G) into simplices.

Theorem

Let G be a chordal graph. G is 1-extendable iff there is a partition of V(G) into $\alpha(G)$ parts such that each of them is a maximal clique in G.

Example

Chordal graphs

Theorem (Prisner, Topp, Vestergaard, 1996) A chordal graph G is well-covered if, and only if there exists a partition of V(G) into simplices.

Theorem

Let G be a chordal graph. G is 1-extendable iff there is a partition of V(G) into $\alpha(G)$ parts such that each of them is a maximal clique in G.

Example

Open problems

- Complexity of recognizing triangle-free well-covered graphs (polynomial for girth 5, Finbow, Hartnell and Nowakowski).
- Complexity of recognizing well-covered and co-well-covered graphs.
- Characterization of 1-extendable graphs of high girth.

- Complexity of recognizing triangle-free well-covered graphs (polynomial for girth 5, Finbow, Hartnell and Nowakowski).
- Complexity of recognizing well-covered and co-well-covered graphs.
- Characterization of 1-extendable graphs of high girth.

THANKS