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Wireless Networks

Wi-Fi Network : S(G): set of independent sets of G.
b i

3 pv : Probability of access of node v.

p, = ZSES(G),VGS 0‘S|
Y ses(e) 01!

where § >> 1 if a“physical parameter”!.

Access Point

'Rafael Laufer and Leonard Kleinrock. “The Capacity of Wireless CSMA/CA Networks” . In:
IEEE/ACM Transactions on Networking 24.3 (2016)
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Wireless Networks

Wi-Fi Network :
b

a When 6 — +o00,
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What'’s the difference between a good and a bad network ?

Definition
A graph G = (V, E) is 1-extendable if any vertex belongs to an MIS.

Example

A 1l-extendable graph.

’If G = (V,E) is l-extendable, for any v € V, p, > 0 — Minimal fairness, Good
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What control do we have ?

If the graph is not 1-extendable, what can we do ?
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1-extendable and well-covered graphs

Definition (Berge 78)
A graph G is l-extendable if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022)
Testing 1-extendability is NP-hard, even on unit disk graph.
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1-extendable and well-covered graphs

Definition (Berge 78)
A graph G is l-extendable if each vertex belongs to an MIS.

Theorem (Bergé, Busson, Feghali, Watrigant 2022)
Testing 1-extendability is NP-hard, even on unit disk graph.

1-EXTENDABLE PARTITION

Input : A graph G = (V, E) and an integer k.

Question : Can we find a partition V = V4 U ... U Vj such that G[V/] is 1-extendable
forany 1 <i<k?

Theorem
1-EXTENDABLE k-PARTITION is NP-hard for any fixed k.
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X1-ext(G) : smallest integer k such that G has a partition into k 1-extendable induced
subgraphs.
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Unit disk graphs : Model for wireless networks

Definition
A graph G = (V, E) is a unit disk graph if there exists a mapping f : V — R? such

that uv € E if, and only if, ||f(u) — f(v)|| < 1.

Theorem
For any unit disk graph G, x1-.ext(G) < 7.

B e
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Unit disk graphs : Model for wireless networks

Definition
A graph G = (V, E) is a unit disk graph if there exists a mapping f : V — R? such

that uv € E if, and only if, ||[f(u) — f(v)|| <1

Theorem
For any unit disk graph G, X1.ext(G) <

g




Extremal properties of Y1ex

Theorem
For any graph G with n vertices, X1.ext(G) < 24/n.
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Extremal properties of Y1ex

Lemma
For any graph G, x1.ext(G) < a(G).

Proof.
If a(G) =1, then G is a clique and X1.ext(G) = 1. If &(G) > 1, let S be the set of

vertices of G that are in an MIS. Notice that :

e GJ[S] is 1-extendable ;
e a(G—-S)<o(G)-1.

By induction hypothesis, x1-ext(G — S) < «(G) — 1 and use one color for S. O
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Extremal properties of Y1ex

Theorem
For any graph G with n vertices, X1.ext(G) < 24/n.

Proof.
If «(G) > /n, extract an MIS S, use one color for S and recursively color G — S.

If «(G) < +/n, use a(G) colors with the previous lemma O
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Is O(y/n) optimal ? Consider the following complete multipartite graph G, :

O

(©) (©)

@ ©) ©) O O

o(y/n) 14/22




Is O(y/n) optimal ? Consider the following complete multipartite graph G, :

ol (o @] (O(v/n)

) ) e e Proposition
X1-ext(Gn) = ©(log(n)).

o o] (o] [o] |o]

o(y/n) 14/22
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Cographs

A cograph is defined recursively as follows :

e A graph with a single vertex is a cograph.

e If Gy and Gy are both cographs, then G; U G, and G; + G, are cographs.

Gy U Gy

X
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1-extendable cographs

Proposition
Given two graphs Gi and Gp,

1. G1 U Gy is 1-extendable iff both Gy and Gy are 1-extendable ;
2. Gi + Gy is I-extentable iff both Gy and G, are 1-extendable and a(Gy) = a(Gy).
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Partition of cographs

Theorem
For any cograph G, Xx1-ext(G) < logy(a(G)) + 1.

Idea of the proof.
Find a partition of V(G) = V4 U V5 with :

e G[V4] l-extendable ;
e o(G[Va]) < a(G)/2
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Lemma

For any cograph G = (V,E) and any k € {0, ...,a(G)}, there exists a partition of the
vertices into two subsets V1 and V5 such that

e G[V4] is 1-extendable ;

e a(G[Vi]) =k ;

e o(G[Vy]) < max(k — 1,a(G) — k)

Proof of the theorem.
Apply the lemma for k = =2 G[Vl] 1-extendable and a(G[V3]) < ) Continue
recursively with G[V5]. O
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Proof of the lemma, induction case G = G; + G,

Let k € {0,...,a(G)}, we apply the induction hypothesis on (G, k) and (G, k).

Both 1-extendable
with o« = k G+ G

X

No large MIS ‘
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Proof of the lemma, induction case G = G; U G,

Let k € {0,...,a(G)}, we apply the induction hypothesis on (G, k1) and ( Gz, k2),
where
o = k) ko= k@)

(G + o(G) 2=k G 1 alG) aTR=k

Both 1-extendable with

G UG
alzkl andOQ:kg ! 2

No large MIS 20/22




Case of cographs

Theorem
For any cograph G, xi1.ext(G) < logy(a(G)) + 1, and the bound is tight.
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graphs.
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Conclusion and further research

o New extremal results on X1.ext, tight on cographs but still a gap on arbitrary
graphs.

e Quasi-polynomial algorithm for solving the partition problem on cographs.
Is polynomial possible?

e More algorithms on geometric graphs (unit disk graphs and disk graphs).
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