

Subcoloring of (unit) disk graphs

Malory Marin, Rémi Watrigant LIP, ENS de Lyon, France November 22, 2024

JGA 2024

Context

Subcoloring of unit disk graphs

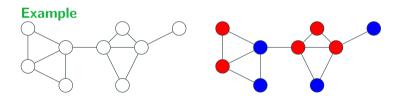
Complexity results

Subcoloring of disks graphs

Context

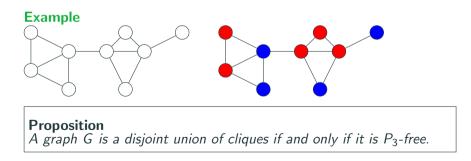
Definitions :

• A *k*-subcoloring of a graph G is a partition of V(G) into $V_1, ..., V_k$ such that $G[V_i]$ is a disjoint union of cliques for all $1 \le i \le k$.



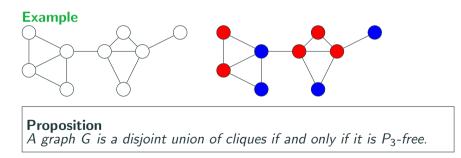
Definitions :

• A *k*-subcoloring of a graph G is a partition of V(G) into $V_1, ..., V_k$ such that $G[V_i]$ is a disjoint union of cliques for all $1 \le i \le k$.



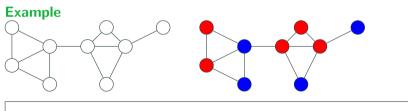
Definitions :

- A *k*-subcoloring of a graph G is a partition of V(G) into $V_1, ..., V_k$ such that $G[V_i]$ is a disjoint union of cliques for all $1 \le i \le k$.
- $\chi_s(G)$: minimum k such that G has a k-subcoloring.



Definitions :

- A *k*-subcoloring of a graph G is a partition of V(G) into $V_1, ..., V_k$ such that $G[V_i]$ is a disjoint union of cliques for all $1 \le i \le k$.
- $\chi_s(G)$: minimum k such that G has a k-subcoloring.
- *k*-SUBCOLORING : Given a graph *G*, does $\chi_s(G) \leq k$ hold ?



Proposition A graph G is a disjoint union of cliques if and only if it is P_3 -free.

Theorem (Fiala, Jansen, Le, and Seidel, '2001) 2-SUBCOLORING *is NP-complete, even on triangle-free planar graph of maximum degree* 4.

Theorem (Fiala, Jansen, Le, and Seidel, '2001) 2-SUBCOLORING *is NP-complete, even on triangle-free planar graph of maximum degree* 4.

Theorem (Broersma, Fomin, Nešetřil, and Woeginger, '2002) k-SUBCOLORING is decidable in time $n^{O(k)}$ on n-vertex interval graphs.

Theorem (Fiala, Jansen, Le, and Seidel, '2001) 2-SUBCOLORING *is NP-complete, even on triangle-free planar graph of maximum degree* 4.

Theorem (Broersma, Fomin, Nešetřil, and Woeginger, '2002) k-SUBCOLORING is decidable in time $n^{O(k)}$ on n-vertex interval graphs.

```
Theorem (Stacho, '2008)
k-SUBCOLORING is NP-complete on chordal graphs for k \ge 3 and polynomial for k = 2.
```

Open questions

The two remaining open questions from Broesma et al. have a geometric aspect:

• What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?

Objective of this work: Investigate the *k*-SUBCOLORING problem on (unit) disk graphs.

Why ?

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?

Objective of this work: Investigate the *k*-SUBCOLORING problem on (unit) disk graphs.

Why ? 1. Practical application to Wi-Fi networks.

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?

- Why ? 1. Practical application to Wi-Fi networks.
 - 2. Disk graphs generalize interval graphs and planar graphs.

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?

- Why ? 1. Practical application to Wi-Fi networks.
 - 2. Disk graphs generalize interval graphs and planar graphs.
 - 3. Unit disk graphs "look like" planar graphs with large cliques, and have links with co-comparability graphs.

- What is the complexity of *k*-SUBCOLORING on interval graphs when *k* is part of the input?
- What is the complexity of *k*-SUBCOLORING on co-comparability graphs?
 NP-complete when *k* ≥ 3

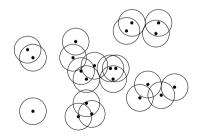
- Why ? 1. Practical application to Wi-Fi networks.
 - 2. Disk graphs generalize interval graphs and planar graphs.
 - 3. Unit disk graphs "look like" planar graphs with large cliques, and have links with co-comparability graphs.

Subcoloring of unit disk graphs

Definitions

Definition

A unit disk graph is the intersection graph of unit disks on the plane.

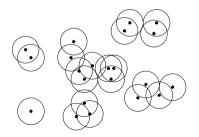


Definitions

Definition

A unit disk graph is the intersection graph of unit disks on the plane.

Observation For any unit disk graph G, $\chi_s(G) \leq 7$.



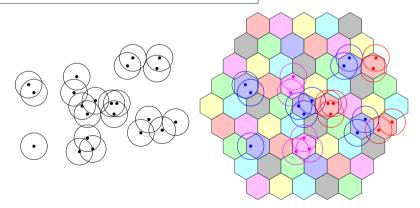
Definitions

Definition

A unit disk graph is the intersection graph of unit disks on the plane.

Observation

For any unit disk graph G, $\chi_s(G) \leqslant 7$.



Corollary

There exists a 3.5-approximation algorithm for SUBCOLORING on unit disk graphs.

Corollary

There exists a 3.5-approximation algorithm for SUBCOLORING on unit disk graphs.

Proof. Check if $\chi_s(G) = 1$. If $\chi_s(G) \ge 2$, return a 7-subcoloring.

Corollary

There exists a 3.5-approximation algorithm for SUBCOLORING on unit disk graphs.

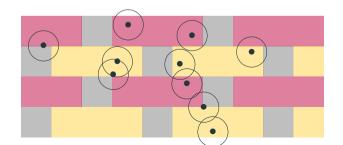
Proof. Check if $\chi_s(G) = 1$. If $\chi_s(G) \ge 2$, return a 7-subcoloring.

Theorem *There exists a 3-approximation algorithm for* SUBCOLORING *on unit disk graphs.*

Proof.

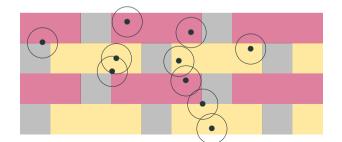
Proof.

1. Divide the plane into three parts, such that each part induces a disjoint union of graphs with bounded independence number α .



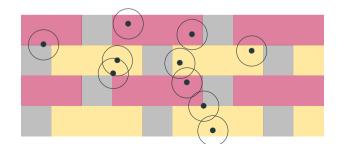
Proof.

- 1. Divide the plane into three parts, such that each part induces a disjoint union of graphs with bounded independence number α .
- 2. When α is bounded, 2-Subcoloring can be solved in polynomial time.



Proof.

- 1. Divide the plane into three parts, such that each part induces a disjoint union of graphs with bounded independence number α .
- 2. When α is bounded, 2-Subcoloring can be solved in polynomial time.
- 3. If $\chi_s(G) = 2$, we can return a 6-subcoloring, otherwise return a 7-subcoloring.



Complexity results

Theorem

2-SUBCOLORING is NP-complete on triangle-free unit disk graphs.

Theorem 2-SUBCOLORING *is NP-complete on triangle-free unit disk graphs.*

Corollary

There is no $(1.5 - \varepsilon)$ -approximation algorithm for SUBCOLORING on unit disk graphs (unless P=NP).

Theorem 2-SUBCOLORING *is NP-complete on triangle-free unit disk graphs.*

Corollary

There is no $(1.5 - \varepsilon)$ -approximation algorithm for SUBCOLORING on unit disk graphs (unless P=NP).

Theorem

2-SUBCOLORING is NP-complete, even on unit disk with a representation of bounded height.

Theorem 2-SUBCOLORING *is NP-complete on triangle-free unit disk graphs.*

Corollary

There is no $(1.5 - \varepsilon)$ -approximation algorithm for SUBCOLORING on unit disk graphs (unless P=NP).

Theorem

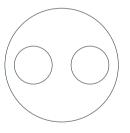
2-SUBCOLORING is NP-complete, even on unit disk with a representation of bounded height.

Theorem

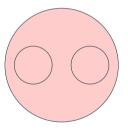
k-SUBCOLORING is NP-complete on co-comparability graphs for all $k \ge 3$.

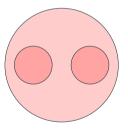
Subcoloring of disks graphs

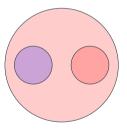
 $\chi_s(G) = 1$

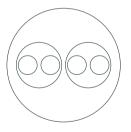


$$\chi_s(G)=2$$









$$\chi_s(G)=3$$

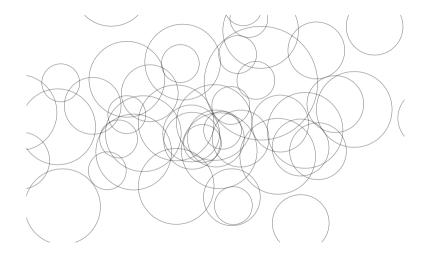
Theorem For every $n \ge 1$, there exists a *n*-vertex disk graph such that $\chi_s(G) \ge \log_2(n)$.

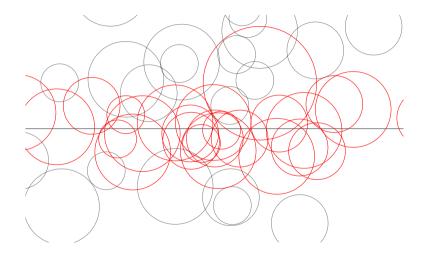
Theorem For any *n*-vertex disk graph with $n \ge 1$, $\chi_s(G) = O(\log^3(n))$.

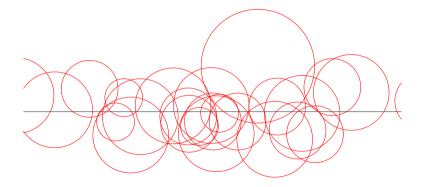
Theorem

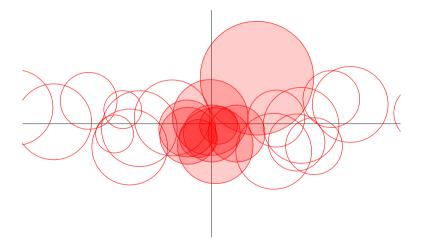
For any n-vertex disk graph with $n \ge 1$, $\chi_s(G) = O(\log^3(n))$.

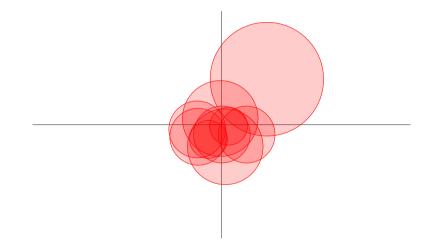
Proof using Divide-And-Conquer.









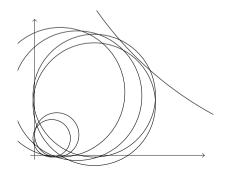


Δ -disk graphs

Definition

A disk graph G is a Δ -disk graph if it has a disk representation where :

- each disk center has positive coordinate ;
- no disk cross the origin ;
- each disk intersects both axis.



Lemma

Each disk graph can be partionned into $O(\log^2(n))$ disjoint union of Δ -disk graphs.

Lemma

For any n-vertex Δ -disk graphs G, $\chi_s(G) = O(\log_2(n))$.

Theorem

For any n-vertex disk graph with $n \ge 1$, $\chi_s(G) = O(\log^3(n))$.

Theorem Any Δ -disk graph is a co-comparability graph, and thus is perfect.

Theorem Any \triangle -disk graph is a co-comparability graph, and thus is perfect.

Lemma

There exists a c-approximation for SUBCOLORING of Δ -disk graphs.

Theorem Any \triangle -disk graph is a co-comparability graph, and thus is perfect.

Lemma

There exists a c-approximation for SUBCOLORING of Δ -disk graphs.

Theorem

There exists a $O(\log^2(n))$ -approximation algorithm for

SUBCOLORING on *n*-vertex disk graphs.

- Broesma et al : What is the complexity of *k*-SUBCOLORING of interval graphs, when *k* is part of the input ?
- Broesma et al : What is the complexity of 2-SUBCOLORING of co-comparability graphs ?

- Broesma et al : What is the complexity of *k*-SUBCOLORING of interval graphs, when *k* is part of the input ?
- Broesma et al : What is the complexity of 2-SUBCOLORING of co-comparability graphs ?
- Can we improve the 3-approximation on unit disk graphs ?

- Broesma et al : What is the complexity of *k*-SUBCOLORING of interval graphs, when *k* is part of the input ?
- Broesma et al : What is the complexity of 2-SUBCOLORING of co-comparability graphs ?
- Can we improve the 3-approximation on unit disk graphs ?
- Close the extremal values of $\chi_s(G)$ on disk graphs (between $\log(n)$ and $\log^3(n)$).

- Broesma et al : What is the complexity of *k*-SUBCOLORING of interval graphs, when *k* is part of the input ?
- Broesma et al : What is the complexity of 2-SUBCOLORING of co-comparability graphs ?
- Can we improve the 3-approximation on unit disk graphs ?
- Close the extremal values of $\chi_s(G)$ on disk graphs (between $\log(n)$ and $\log^3(n)$).
- Can we find a f(OPT)-approximation for SUBCOLORING of disk graphs ?

- Broesma et al : What is the complexity of *k*-SUBCOLORING of interval graphs, when *k* is part of the input ?
- Broesma et al : What is the complexity of 2-SUBCOLORING of co-comparability graphs ?
- Can we improve the 3-approximation on unit disk graphs ?
- Close the extremal values of $\chi_s(G)$ on disk graphs (between $\log(n)$ and $\log^3(n)$).
- Can we find a f(OPT)-approximation for SUBCOLORING of disk graphs ?
- What is the complexity of k-SUBCOLORING of Δ -disk graphs ?

Open questions and future research :

- Broesma et al : What is the complexity of *k*-SUBCOLORING of interval graphs, when *k* is part of the input ?
- Broesma et al : What is the complexity of 2-SUBCOLORING of co-comparability graphs ?
- Can we improve the 3-approximation on unit disk graphs ?
- Close the extremal values of $\chi_s(G)$ on disk graphs (between $\log(n)$ and $\log^3(n)$).
- Can we find a f(OPT)-approximation for SUBCOLORING of disk graphs ?
- What is the complexity of k-SUBCOLORING of Δ -disk graphs ?

THANKS