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Throughout the practical sessions [travaux dirigés] of this class, you will work on exercises
on paper and implement some of the algorithms encountered during the lectures.

(a) Make sure you have a working Python setup on your computer and you have the libraries
Matplotlib, NumPy and NetworkX installed. Having Jupyer Notebook will also be useful.

(b) The optional exercises marked with [*] are pour aller plus loin.

(c) A classic and widely-used reference on algorithms is the “CLRS” first published in 1990:

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (4th ed.), MIT Press and McGraw-Hill, 2022, 1312 pp.

The library (Monod) has several copies. A French translation of the 3rd edition also exists.
Exercise 2 is based on the corresponding chapter of this book.

(d) Many of these exercises were provided by the previous teaching assistants, Pegah Pourna-
jafi and Kristóf Huszár.

Exercise 1. Heaps, max-heaps, heapsort [tri par tas]

The goal of this exercise is to (re)view the binary heap data structure, the procedure for turning
a heap into a max-heap, and then extend this procedure to the full Heapsort algorithm.

A heap is an array A[1...A.length] that we can view as a nearly complete binary tree. The parent
of a node i in the tree is bi/2c, its left child 2i and its right child 2i + 1. A max-heap is a heap
where the value of each internal node is greater than or equal to the values of its left and right
children.

(a) Basic properties of heaps and max-heaps (warm-up)

(i) What are the minimum and maximum numbers of elements in a heap of height h?

(ii) Show that an n-element heap has height blog(n)c.
(iii) Show that in any subtree of a max-heap, the root of the subtree contains the largest

value occurring anywhere in that subtree.

(iv) Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?

(v) Is the array with values 〈23; 17; 14; 6; 13; 10; 1; 5; 7; 12〉 a max-heap?

(vi) Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by bn/2c+ 1, bn/2c+ 2, . . . , n.

(b) From heaps to max-heaps: the Max-Heapify and Build-Max-Heap procedures

Given an array A – which we intend to sort using Heapsort – we consider two attributes:

• A.length, to denote the number of elements in A;
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• A.heap-size, where 0 ≤ A.heap-size ≤ A.length, to indicate that the heap currently
consists of the elements in the subarray A[1 . . . A.heap-size] of A. The distinction
between A.length and A.heap-size will become relevant in part (c).

The Max-Heapify procedure can be described in pseudocode as follows:

Max-Heapify(A, i)

1: l = Left(i)
2: r = Right(i)
3: if l ≤ A.heap-size and A[l] > A[i] then
4: largest = l
5: else
6: largest = i
7: end if
8: if r ≤ A.heap-size and A[r] > A[largest] then
9: largest = r

10: end if
11: if largest 6= i then
12: exchange A[i] with A[largest]
13: Max-Heapify(A, largest)
14: end if

(i) Illustrate the operation of Max-Heapify(A, 2) on the array
A = 〈16; 4; 10; 14; 7; 9; 3; 2; 8; 1〉, where A.heap-size = 10.

(ii) Illustrate the operation of Max-Heapify(A, 3) on the array
A = 〈27; 17; 3; 16; 13; 10; 1; 5; 7; 12; 4; 8; 9; 0〉, where A.heap-size = 14.

(iii) [*] Starting with Max-Heapify, write pseudocode for Min-Heapify(A, i), which
performs the corresponding manipulation on a min-heap. How does the running time
of Min-Heapify compare to that of Max-Heapify.

(iv) [*] Show that the worst-case running time of Max-Heapify on a heap of size n is
Ω(log n). (Hint: For a heap with n nodes, give node values that cause Max-Heapify
to be called recursively at every node on a simple path from the root down to a leaf.)

Build-Max-Heap(A)

1: A.heap-size = A.length
2: for i = bA.length/2c downto 1 do
3: Max-Heapify(A, i)
4: end for

(v) Illustrate the operation of Build-Max-Heap on the array
A = 〈4; 1; 3; 2; 16; 9; 10; 14; 8; 7〉

(vi) [*] Why do we want the loop index i in line two of Build-Max-Heap to decrease
from bA.length/2c to 1 rather than increase from 1 to bA.length/2c?
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(c) Heapsort(A)

1: Build-Max-Heap(A)
2: for i = A.length downto 2 do
3: exchange A[1] with A[i]
4: A.heap-size = A.heap-size − 1
5: Max-Heapify(A, 1)
6: end for

(i) Illustrate the Heapsort on the array A = 〈16; 14; 10; 8; 7; 9; 3; 2; 4; 1〉.

Exercise 2. Euclidean minimum spanning tree

In this exercise you will compute and plot the Euclidean minimum spanning tree of a large
random planar point set by using the Python libraries Matplotlib, NumPy, and NetworkX.

You are encouraged to use the resources available on the Internet, especially the documentation
of the libraries mentioned above.

(a) Initialize an integer variable n.

(b) Sample n random points from within a square on the Euclidean space. Let’s call the
resulting point set P .

(c) Draw a scatter plot of P .

(d) Compute the distance matrix of P , i.e., an n-by-n matrix D, where Di,j is the Euclidean
distance between the points i and j. (Note that the resulting matrix is symmetric and has
only zeros on its diagonal.)

(e) Using the functions of NetworkX, generate an edge-weighted graph G = (V,E), where
|V | = n and the weight of the edge {i, j} equals Di,j .

(f) Using the appropriate function of NetworkX, compute a minimal spanning tree T of G.

(g) Produce a geometrically faithful drawing of T .

(h) What do you see on the drawing? Do you see pairs of edges that are crossing? Why?

Exercise 3. Minimum spanning trees

(a) Use Kruskal’s algorithm to find minimum spanning trees (MSTs) of the following graphs:
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(ii)

a b c

d e

(b) How many MSTs do the above graphs have?

(c) (i) Prove that a tree on n vertices has exactly n− 1 edges.
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(ii) Let G = (V,E) be a connected graph with |V | = n and |E| = n − 1. Is it true that
such a G is always a tree?

(d) Let G be a connected edge-weighted graph.

(i) Suppose T is an MST of G. Show that for any edge e of G which is not in T , T ∪{e}
has exactly one cycle. Moreover, show that e has the maximum weight among all the
edges in this unique cycle.

(ii) Let e be an edge in G whose weight is strictly smaller than the weight of any other
edge in G. Show that e belongs to every minimum spanning tree of G.

(iii) [*] Show that if all the edge-weights of G are distinct, then G has a unique MST.
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