
Fundamentals in Computer Science
Exercise Sheet – TD 3 (4 heures)

Fall 2024
Prof. Thomassé

Teaching assistant: Malory Marin (LIP, MC2), � malory.marin@ens-lyon.fr.
Some exercises are based on the book A guide to algorithm design.

Algorithm design (2h)

The goal of this set of exercises is to explore the different classical strategies to design an algorithm.

Exercise 1. Greedy algorithm : Interval cover

We are given a set X = {x1, ..., xn} of n points on a line.

(a) Design and implement a greedy algorithm that determines the smallest set of closed intervals of
length 1 that contains all the points.

(b) Prove the optimality of the algorithm and give its complexity.

Exercise 2. Divide-and-Conquer : Maximum sum

Let T be a table of n relative integers. We want to find the maximum sum of contiguous elements,
namely, two indices i and j (1 6 i < j 6 n) that maximize

∑j
k=i T [k].

(a) If T = [2, 18,−22, 20, 8,−6, 10,−24, 13, 3], can you return the two indices corresponding to the
maximum sum ?

(b) Design and implement an algorithm that returns the maximum sum of contiguous elements with a
divide-and-conquer algorithm.

(c) (Pour aller plus loin) Design a linear-time algorithm that solves the problem through a single scan
of the array. Illustrate the efficiency difference between this algorithm and the previous one by
plotting both execution times versus the size of the array on random instances.

Exercise 3. Dynamic programming : Matrix chains

Consider n matrices A1, ..., An, where Ai is of size pi−1× pi (1 6 i 6 n). We want to compute A1×A2×
... × An. The problem is to find the order of the multiplications should be done and, therefore, to add
parentheses to the expression, in order to minimize the total number of operations. Note that it costs
pa · pb · pc to multiply a matrix of size pa × pb by a matrix of size pb × pc.

Propose a dynamic-programming algorithm to solve the problem and give its complexity.

NP-complete problems (2h)

As discussed in the lecture, an NP-complete problem is one for which no polynomial-time algorithm is
known to exist (unless P = NP). One of the most prominent NP-complete problems is 3-Sat, which
involves a Boolean formula expressed in conjunctive normal form, such as

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ . . .

The objective is to determine a truth assignment for the variables such that the entire formula evaluates
to true.
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When dealing with a computational problem where no polynomial-time solution seems to exist, it’s quite
likely that the problem is NP-complete. To prevent the possibility of someone finding a polynomial-time
algorithm in the future, it’s advisable to formally prove that the problem is indeed NP-complete.

Exercise 4. Around clique and clusterings

(a) Prove that the following decision problem, called Clique, is NP-complete: Given a graph G and
an integer k, does G have a clique of size k? That is, a set of k distinct vertices u1, . . . , uk such
that all the edges uiuj (for 1 6 i < j 6 k) are present in G. Hint: Use a reduction from 3-Sat.

(b) Prove that the following decision problem, called Dominating Set, is NP-complete: Given a graph
G and an integer k, does G have a dominating set of size k? That is, a set K of k vertices such that
for every vertex u ∈ V (G), either u ∈ K or there exists some v ∈ K such that uv ∈ E(G). Hint:
Use a reduction from Vertex Cover, and add one vertex per edge in the instance of Vertex
Cover.

Vertex Cover
Input: A graph G = (V,E), where V is the set of vertices and E is the set of edges, and an integer
k. In addition, each vertex from G is incident to at least one edge.
Goal: Find a subset C ⊆ V such that |C| ≤ k and every edge in E is incident to at least one vertex
in C. In other words,

∀uv ∈ E, u ∈ C or v ∈ C.

(c) Let G = (V,E) be a complete graph whose edges are weighted by a weight function w that satisfies
the triangle inequality: w(u, v) 6 w(u, x) +w(x, v) for any u, v, and x in V . For instance, G might
represent n points in the plane, where the weight of an edge corresponds to the distance between
the two points. Let k be a positive integer. For any subset S ⊆ V and any vertex v /∈ S, we
define d(v, S) = mins∈S w(v, s). A k-center is a subset S of V with cardinality at most k such that
the center(S) = maxv∈V \S d(v, S) is minimized. Prove that the problem k-Center, which asks
whether, given a real c, there exists a k-center S such that center(S) 6 c, is NP-complete. Hint:
Use a reduction from Dominating Set.

Exercise 5. Minimizing harmful interactions in biological networks

(a) In a biological network (e.g., a gene regulation network or protein interaction network), cycles can
represent harmful feedback loops that disrupt the normal functioning of the system. To stabilize
the network, biologists often need to remove a minimal set of nodes (genes or proteins) to break all
the cycles.

This problem can be formulated as the Feedback Vertex Set Problem:

• Let the biological network be modeled as a directed or undirected graph G = (V,E), where V
represents the set of nodes (genes or proteins), and E represents interactions between them.

• A feedback vertex set is a subset F ⊆ V of vertices whose removal makes the graph acyclic
(i.e., without cycles).

Show that finding the minimum feedback vertex set is NP-complete by reducing it from the Vertex
Cover problem in an undirected graph.

(b) Many biological problems, such as drug target identification, can be framed similarly to the MFVS
problem. In the context of drug discovery, explain how the identification of a small set of critical
proteins (nodes) using MFVS could guide the development of treatments to control diseases.

Exercise 6. Optimizing diagnostic tests

Consider a medical diagnosis problem where a person must select the minimum number of diagnostic
tests to confirm or rule out a set of possible diseases. The problem can be represented as follows:
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• Let D = {d1, d2, . . . , dn} be a set of diseases, and T = {t1, t2, . . . , tm} be a set of diagnostic tests.

• Each test ti ∈ T can confirm or eliminate one or more diseases in D.

The problem can be reformulated as the Set Cover problem, where the universe is the set of diseases,
and each set corresponds to the diseases that can be confirmed or eliminated by a single test. This
problem is known to be NP-complete.

Set Cover
Input: A universe U = {u1, u2, . . . , un} of elements, a collection of sets S = {S1, S2, . . . , Sm} such that
Si ⊆ U for all i = 1, 2, . . . ,m and an integer k.
Goal: Find a subcollection C ⊆ S such that |C| 6 k and the union of the sets in C covers all elements
of U , i.e., ⋃

Si∈C
Si = U.

Given that solving this problem exactly is computationally intractable (NP-complete), explain how to
approach this problem using a greedy algorithm. Analyze the worst-case performance of this greedy
approach in terms of approximation ratio compared to the optimal solution (Hint : Prove that if an
optimal solution uses k tests, the greedy algorithm takes at most O(k ln(n)) tests).
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