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Laplace–Beltrami operator

Consider the Laplace–Beltrami operator on a compact connected n-dimensional
Riemannian manifold M. If ∂M ̸= 0, we assume Dirichlet conditions.

The spectrum is discrete, and the eigenvalues form a sequence

0 ≤ λ1 ⩽ λ2 ⩽ · · · ⩽ λj ≤ · · · ↗ +∞

The corresponding eigenfunctions fj ,

∆fj = λjfj,

form an orthonormal basis in L2(M).
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Nodal patterns

Let Zf denote the nodal (i.e. zero) set of a function f .
A nodal domain of f is a connected component of the set M \ Zf .
Nodal patterns tend to get increasingly complex as λj → ∞.

Nodal pattern of an eigenfunction on S2 corresponding to an eigenvalue λ = 17 · 18.
(Picture credit: M. Levitin.)
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Courant’s theorem

Example
Let M = (0, π). The j-th Dirichlet eigenfunction fj(x) = sin jx has exactly j
nodal domains.

In higher dimensions there is no such statement, but there is a fundamental upper
bound.

Theorem (R. Courant, 1923)
A Laplace eigenfunction fj has at most j nodal domains.
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Nodal count

Denote by m0(f ) the number of nodal domains of f . Together with Weyl’s law,
Courant’s theorem implies

m0(fj) = O
(
λ

n/2
j

)
.

Questions: Can one extend this bound to

1 linear combinations of eigenfunctions (Courant–Herrmann conjecture)

2 products of eigenfunctions (Arnold, 2005)

3 higher order operators (e.g. clamped plate problem)

4 higher topological invariants: Betti numbers mr instead of m0 (Arnold, 2005)
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Negative results

Theorem (B.–Logunov–Sodin, 2020)
There exists a Riemannian metric g on a 2-torus and a sequence fj of eigenfunctions
of the Laplacian ∆g , such that the functions fj + 1 have infinitely many nodal
domains.

Other related examples by Bérard–Charron–Helffer (2021).

Using this result one can show

Proposition (BP3S2, 2022)
In general, the answer to almost all of the questions above is no.

Idea: What if we ignore small oscillations?
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Deep nodal domains

Definition (L. Polterovich – Sodin, 2007)
A nodal domain Ω of a function f is called δ-deep for some δ > 0 if
maxΩ |f | > δ.

δ-deep nodal domains. (Picture credit: E. Shelukhin.)
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Deep nodal domains and Sobolev norms

Let m0(f , δ) be the number of δ-deep nodal domains of a function f .

Let W k,p(M) be the Sobolev space of integer order k based on Lp(M).

Our first main result shows that m0(f , δ) is controlled by the appropriate Sobolev
norms of f .
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Main result: coarse nodal count

Theorem (BP3S2, 2022)
Let f ∈ W k,p(M) for k > n

p , where n = dimM. Then for any δ > 0,

m0(f , δ) ≤ Cδ−
n
k ∥f ∥

n
k
W k,p ,

where C depends on M, k, p but not on δ.

By Sobolev embedding theorem, the condition k > n
p implies that f is continuous.

Note that the estimate blows up as δ → 0.

This bound can be extended to higher persistent Betti numbers mr(f , δ) to be
discussed later.
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Coarse Courant for linear combinations

Let Fλ denote the subspace spanned by all eigenfunctions with eigenvalues ≤ λ.

Given L2-normalised f ∈ Fλ, one can use a priori estimates to control ∥f ∥W k,2 in
terms of λ.

Theorem
Let k > n

2 be an integer. Then for any δ > 0 and any f ∈ Fλ with ∥f ∥L2 = 1,

m0(f , δ) ≤ Cδ−
n
k (λ+ 1)

n
2 .

Remark
In two dimensions, versions of this result were proved by L. Polterovich–Sodin
(2007) and I. Polterovich–L. Polterovich – Stojisavljević (2019).
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Coarse Courant for linear combinations – sharpness

Fλ - the subspace spanned by all eigenfunctions with eigenvalues ≤ λ.

Theorem
Let k > n

2 be an integer. Then for any δ > 0 and any f ∈ Fλ with ∥f ∥L2 = 1,

m0(f , δ) ≤ Cδ−
n
k (λ+ 1)

n
2 .

Theorem
For each δ > 0 one can find f ∈ Fλ with ∥f ∥L2 = 1, such that

m0(f , δ) ≥ c
(λ+ 1)

n
2

max(1, δ2)
− 1.
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Coarse Courant for products

Using estimates on the Sobolev norms of products, we obtain

Theorem
Let f1, . . . , fl ∈ Fλ be L2-normalised linear combinations of eigenfunctions,
f = f1 · · · · · fl and k > n/2 be an integer number. Then for any δ > 0 and ε > 0,

m0(f , δ) ≤ Cδ−
n
k (λ+ 1)

n
2+ε .

Thus up to the power (λ+ 1)ε, the upper bound is the same as in the previous case.
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Extensions of main results

To arbitrary elliptic differential operators of any order, and if ∂M = ∅ also to
pseudodifferential operators.

To sections of vector bundles, thus giving a possible answer to a question of
V. Arnold (2003).

To persistent Betti numbers of arbitrary degree:

mr(f , δ) = dim Im
(

Hr({|f | > δ}) → Hr(M \ Zf )
)
,

where Hr stands for the r-th homology group with coefficients in a field.
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Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis.

Barcode is a multiset B = {Ij}j∈J of intervals Ij ⊂ R.

B and B′ are ε-matched if after erasing some bars of length < 2ε the rest are in
bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

dbottle(B,B′) = inf{ε | B,B′ are ε-matched}.
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Example: barcode of a height function

f : S1 → R is a height function on deformed circle given by:

d

c

b

a

f

(Picture credit: V. Stojisavljević.)

Barcode B(f ). (Picture credit: M. Levitin.)
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Stability

Theorem (Stability theorem, Cohen-Steiner–Edelsbrunner–Harer, 2007)
Let f , g be two Morse functions on M. Then

dbottle(B(f ),B(g)) ≤ dC0(f , g).

Stability theorem is a key feature of the theory.
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The barcode counting function

Define the barcode counting function Nδ(f ) equal to the number of all finite bars
of length > δ.

By stability theorem and density of Morse functions, one can extend this
definition to any continuous function.

What we need: an estimate on Nδ(−|f |).

Why? Because:
m0(f , δ) ≤ Nδ(−|f |).
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Main theorem: coarse bar count

Theorem
Let f ∈ W k,p(M) for k > n

p , where n = dimM. Then for any δ > 0,

Nδ(f ) ≤ Cδ−
n
k ∥f ∥

n
k
W k,p + βM ,

where C depends on M, k, p but not on δ, and βM is the total Betti number of M.

In the theorem, Nδ(f ) can be replaced by Nδ(−|f |) or by Nδ(|f |).
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Ingredients of the proof

• Milnor’s bound on the number of critical points of polynomials.

• Polynomial approximation and Morrey–Sobolev theorem.

• Multiscale dyadic partition into small cubes until functions are well
approximated by polynomials.

• Nice behavior of Nδ under unions and stability theorem.
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Milnor’s bound and polynomial approximation

Method is inspired by Yomdin (1985). Let g be a generic polynomial of degree k.
Milnor’s bound (1964): the number of critical points of g is ≤ (k − 1)n.
Using this one can show that Nδ(g,Q) ≤ Ckn.

Assume that f is well approximated by a polynomial of degree k. Then by stability
Nδ(f ) ≤ Ckn.

Theorem (Morrey–Sobolev)
Let Pk(Q) ⊂ C0(Q) denote the subspace of polynomials of degree ≤ k. Then

dC0 (f ,Pk−1(Q)) ≤ C (Vol(Q))
k
n−

1
p ∥Dkf ∥Lp(Q).
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Multiscale dyadic partition

A multiscale variation of Cohen-Steiner–Edelsbrunner-Harer-Mileyko (2010).
Divide cube Q into 2n equal cubes Qi. We say that a cube Qi is good if

C (Vol(Qi))
k
n−

1
p ∥Dkf ∥Lp(Qi) ≤ δ.

Otherwise, we say that a cube is bad.
We continue subdividing until all cubes are good.

Bad

Bad

Good

Good

Kl Kl+1

One can show that the total number κ of cubes in the end is bounded by

κ ≤ C1δ
− n

k

(
∥Dkf ∥Lp(Q)

) n
k
+ C2.
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Local-to-global argument

Milnor’s bound, stability and the multiscale dyadic partition allows us to estimate
the barcode counting function separately in each cube.
It remains to glue all the cubes together by using a Mayer-Vietoris type argument.
Fact: Nδ is additive for disjoint unions. In general, we have

N2δ (f |A1∪A2) ≤ Nδ (f |A1) + Nδ (f |A2) + Nδ (f |A1∩A2) .

Applying this fact together with a combinatorial argument that allows to control
the number of non-disjoint unions we complete the proof.

Theorem (BP3S2, 2022)
Let U → V → W be an exact sequence of persistence modules. Then

N2δ(V ) ≤ Nδ(U ) + Nδ(W ).
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Applying this fact together with a combinatorial argument that allows to control
the number of non-disjoint unions we complete the proof.

Theorem (BP3S2, 2022)
Let U → V → W be an exact sequence of persistence modules. Then

N2δ(V ) ≤ Nδ(U ) + Nδ(W ).
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Thank you for your attention!
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