Subleading asymptotics of symplectic Weyl laws

Oliver Edtmair
UC Berkeley
May 23, 2023

Classical Weyl law

(M^{n}, g) compact Riemannian manifold, possibly with boundary eigenvalues of $-\Delta_{g}$ with Dirichlet boundary condition $0 \leq \lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots<\infty$
$N(\lambda):=$ number of eigenvalues less than λ
Theorem (Weyl)
$N(\lambda)=(2 \pi)^{-n} \omega_{n} \operatorname{vol}(M) \lambda^{n / 2}+E(\lambda)$ with $E(\lambda)=o\left(\lambda^{n / 2}\right)$
Theorem (Levitan, Avakumovic, Seeley)
$E(\lambda)=O\left(\lambda^{(n-1) / 2}\right)$
Remark: this is sharp for the round sphere
Theorem (Duistermaat-Guillemin, Ivrii)
If the set of closed geodesics has measure zero, then
$E(\lambda)=-\frac{1}{4}(2 \pi)^{1-n} \omega_{n-1} \operatorname{vol}(\partial X) \lambda^{(n-1) / 2}+o\left(\lambda^{(n-1) / 2}\right)$
Remark: fails for round sphere

Embedded contact homology (ECH) Weyl law

$X \subset \mathbb{R}^{4}$ star-shaped domain $\rightsquigarrow \quad$ ECH capacities

$$
0<c_{1}(X) \leq c_{2}(X) \leq \cdots<\infty
$$

Spectrality property: For every k, we can find finitely many closed orbits $\gamma_{i} \subset \partial X$ such that $c_{k}(X)=\sum_{i} \mathcal{A}\left(\gamma_{i}\right)$
Theorem (Hutchings '10)
For all star-shaped domains $X \subset \mathbb{R}^{4}$ we have

$$
c_{k}(X)=2(\operatorname{vol}(X) k)^{1 / 2}+o\left(k^{1 / 2}\right) \quad(k \rightarrow \infty)
$$

Cristofaro-Gardiner-Hutchings-Ramos ('12): More general Weyl law for arbitrary contact 3-manifolds
Application: (Irie '15) A C^{∞} generic Reeb flow on a closed 3 -manifold has a dense set of periodic orbits.

Periodic Floer homology (PFH) Weyl law

Closed surface (Σ, ω) of area A, Hamiltonian $H: \mathbb{R} / \mathbb{Z} \times \Sigma \rightarrow \mathbb{R}$ $\rightsquigarrow \quad$ PFH spectral invariants $c_{1}(H), c_{2}(H), \cdots \in \mathbb{R}$
Theorem (CG-Prasad-Zhang, E.-Hutchings 2021)
For all Hamiltonians H we have

$$
c_{d}(H)=d A^{-1} \int_{\mathbb{R} / \mathbb{Z} \times \Sigma} H d t \wedge \omega+o(d) \quad(d \rightarrow \infty)
$$

- Similar statement for area preserving diffeomorphisms
- Related Weyl law for link spectral invariants (CG-Humilière-Mak-Seyfaddini-Smith)
Applications: C^{∞} closing lemma, Simplicity conjecture (CG-Humilière-Seyfaddini),...

Subleading asymptotics

For $X \subset \mathbb{R}^{4}$ star-shaped write $c_{k}(X)=2(\operatorname{vol}(X) k)^{1 / 2}+e_{k}(X)$
Theorem (Hutchings '19)
We have $e_{k}(X)=O\left(k^{1 / 4}\right)$ as $k \rightarrow \infty$.

- Slightly weaker bounds for general contact 3-manifolds by CG-Savale and Sun
Question: In all known examples $e_{k}(X)=O(1)$. Always true?
Theorem (Hutchings '19)
If X is a strictly convex or concave toric domain then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} e_{k}(X)=-\frac{1}{2} R u(X) \tag{1}
\end{equation*}
$$

Counterexample: $R u(B(a))=2 a$ but $\liminf _{k \rightarrow \infty} e_{k}(B(a))=-3 a / 2 \quad \lim \sup _{k \rightarrow \infty} e_{k}(B(a))=-a / 2$
Question: Is (1) true for generic X ?

Relationship with symplectic packing

ECH Weyl law $\quad c_{k}(X)=2(\operatorname{vol}(X) k)^{1 / 2}+o\left(k^{1 / 2}\right)$
Sketch of proof:
Step 1: true for ball ("direct" computation)
Step 2: true for disjoint unions of balls

$$
c_{k}\left(\coprod_{i} X_{i}\right)=\max _{\sum_{i} k_{i}=k} \sum_{i} c_{k_{i}}\left(X_{i}\right)
$$

Step 3: Let X be star-shaped, $\varepsilon>0$ arbitrary. There exists disjoint union $B=\coprod_{i} B_{i}$ of finitely many balls such that

- $B \stackrel{s}{\hookrightarrow} X$
- $\operatorname{vol}(B) \geq \operatorname{vol}(X)-\varepsilon$
$\Rightarrow \quad c_{k}(X) \geq c_{k}(B) \geq 2((\operatorname{vol}(X)-\varepsilon) k)^{1 / 2}+o\left(k^{1 / 2}\right)$
Step 4: For the reverse inequality consider a big ball $C \supset X$ and fill $C \backslash X$ by small balls

Relationship with symplectic packing

For (disjoint unions of) balls we have $e_{k}=O(1)$.
Question: Why does this proof not show $e_{k}(X)=O(1)$ for all star-shaped X ?

Let B_{n} denote the disjoint union of n equal balls with total volume $\operatorname{vol}\left(B_{n}\right)=1$. We have

$$
\limsup _{k \rightarrow \infty} e_{k}\left(B_{n}\right) \longrightarrow-\infty \quad(n \rightarrow \infty)
$$

If we can pack the full volume of X and $C \backslash X$ by finitely many balls, we get $e_{k}(X)=O(1)$.

Symplectic packing

Theorem (Gromov)
int $B^{4}(a) \amalg \operatorname{int} B^{4}(a) \stackrel{s}{\hookrightarrow} \mathbb{C} P^{2}(1) \quad \Leftrightarrow \quad a \leq 1 / 2$
In particular: We can't pack more than half the volume by two equally sized balls.

Theorem (Packing stability, Biran '99)

Let $\left(M^{4}, \omega\right)$ be a closed rational symplectic 4 -manifold. Then there exists N_{0} such that for all $N \geq N_{0}$ the full volume of M can be packed by N equal balls.
Generalizations: higher dimension (Buse-Hind), irrational symplectic 4-manifolds (Buse-Hind-Opshtein)
Question: What about finite volume, open symplectic manifolds?

- true for balls, convex toric domains
- false in general (CG-Hind '23)

Question: What about compact symplectic manifolds with smooth boundary?

"New" ingredient

Consider $T^{2 n}:=(\mathbb{R} / \mathbb{Z})^{2 n}$ with $\omega_{0}=\sum_{i} d x_{i} \wedge d y_{i}$
For $\alpha \in \mathbb{R}^{2 n}$ define rotation

$$
R_{\alpha}: T^{2 n} \rightarrow T^{2 n} \quad R_{\alpha}(p):=p+\alpha
$$

Theorem (Herman)
Suppose that α is Diophantine. Then for every $\varphi \in \operatorname{Ham}\left(T^{2 n}\right)$ sufficiently C^{∞} close to id, there exists $\psi \in \operatorname{Ham}\left(T^{2 n}\right)$ such that

$$
\varphi \circ R_{\alpha}=\psi R_{\alpha} \psi^{-1} .
$$

Theorem (Banyaga)
Let (M, ω) be a closed symplectic manifold. Then $\operatorname{Ham}(M)$ is a simple group.

Proof of concept

Theorem (E. '23)
Let $H: \mathbb{R} / \mathbb{Z} \times S^{2} \rightarrow \mathbb{R}$ be a Hamiltonian on $\left(S^{2}, \omega\right)$. Then

$$
c_{d}(H)=d A^{-1} \int_{\mathbb{R} / \mathbb{Z} \times s^{2}} H d t \wedge \omega+O(1) .
$$

(Best previously known error bound is $O\left(d^{1 / 2}\right.$.)

Thank you!

