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Classical Weyl law

(M", g) compact Riemannian manifold, possibly with boundary
eigenvalues of —A, with Dirichlet boundary condition

0< A<l <

N(\) := number of eigenvalues less than A

Theorem (Weyl)

N(\) = (27) "wy vol(M)A™2 + E(X\)  with E()\) = o(A"/?)
Theorem (Levitan, Avakumovic, Seeley)

E(\) = O(A("=1)/2)

Remark: this is sharp for the round sphere

Theorem (Duistermaat-Guillemin, lvrii)

If the set of closed geodesics has measure zero, then
E(\) = —1(27) 1 "wp_1 vol(OX)A~1/2 4 o(A(n=1)/2)

Remark: fails for round sphere



Embedded contact homology (ECH) Weyl law

X C R* star-shaped domain  ~»  ECH capacities

O<C1(X)SC2(X)§~-- < o0
Spectrality property: For every k, we can find finitely many
closed orbits v; C 9X such that ¢, (X) = >_; A(vi)

Theorem (Hutchings '10)
For all star-shaped domains X C R* we have

c(X) = 2(vol(X)k)Y/2 + o(k1/2) (k= o0).

Cristofaro-Gardiner-Hutchings-Ramos ('12): More general Weyl
law for arbitrary contact 3-manifolds

Application: (Irie '15) A C* generic Reeb flow on a closed
3-manifold has a dense set of periodic orbits.



Periodic Floer homology (PFH) Weyl law

Closed surface (X, w) of area A, Hamiltonian H: R/Z x ¥ — R
~»  PFH spectral invariants ¢;(H), c2(H), - € R

Theorem (CG-Prasad-Zhang, E.-Hutchings 2021)

For all Hamiltonians H we have

cg(H) = dA™? /M _ Hdt Aw+o(d)  (d — o).
X

» Similar statement for area preserving diffeomorphisms
> Related Weyl law for link spectral invariants
(CG-Humiliere-Mak-Seyfaddini-Smith)

Applications: C* closing lemma, Simplicity conjecture
(CG-Humiliere-Seyfaddini),. ..



Subleading asymptotics
For X C R* star-shaped write ¢, (X) = 2(vol(X)k)'/? + e (X)
Theorem (Hutchings '19)
We have e, (X) = O(k'/*) as k — oo.

» Slightly weaker bounds for general contact 3-manifolds by
CG-Savale and Sun

Question: In all known examples e, (X) = O(1). Always true?

Theorem (Hutchings '19)

If X is a strictly convex or concave toric domain then

lim ex(X) = —%RU(X). (1)

k—o0

Counterexample: Ru(B(a)) = 2a but
liminfy_ o ex(B(a)) = —3a/2 limsup,_, ex(B(a)) = —a/2
Question: Is (1) true for generic X?



Relationship with symplectic packing

ECH Weyl law  ¢x(X) = 2(vol(X)k)Y/2 + o(k'/?)
Sketch of proof:

Step 1: true for ball (“direct” computation)

Step 2: true for disjoint unions of balls

Ck(H Xi) = max, Z Ci (X7)

Step 3: Let X be star-shaped, € > 0 arbitrary. There exists
disjoint union B = [[; B; of finitely many balls such that

> B X

» vol(B) > vol(X) — ¢
= (X) > ck(B) > 2((vol(X) — £)k)Y2 + o(k/?)
Step 4: For the reverse inequality consider a big ball C D X and
fill C\ X by small balls



Relationship with symplectic packing

For (disjoint unions of) balls we have e, = O(1).
Question: Why does this proof not show e, (X) = O(1) for all
star-shaped X7

Let B, denote the disjoint union of n equal balls with total volume
vol(B,) = 1. We have

limsup ex(Bp) — —oo0  (n — o0)
k—o00

If we can pack the full volume of X and C \ X by finitely
many balls, we get e,(X) = O(1).



Symplectic packing

Theorem (Gromov)
int B4(a) [[int B4(a) < CP2(1) & a<1/2
In particular: We can't pack more than half the volume by two
equally sized balls.
Theorem (Packing stability, Biran '99)
Let (M*,w) be a closed rational symplectic 4-manifold. Then there
exists Ny such that for all N > Ny the full volume of M can be
packed by N equal balls.
Generalizations: higher dimension (Buse-Hind), irrational
symplectic 4-manifolds (Buse-Hind-Opshtein)
Question: What about finite volume, open symplectic manifolds?
> true for balls, convex toric domains
> false in general (CG-Hind '23)

Question: What about compact symplectic manifolds with
smooth boundary?



“New" ingredient

Consider T2 := (R/Z)?" with wg = >, dx; A dy;
For ac € R2" define rotation

Ra:T?" = T?" Ra(p)=p+a

Theorem (Herman)

Suppose that « is Diophantine. Then for every ¢ € Ham(T?2")
sufficiently C close to id, there exists ¢» € Ham(T2") such that

@o Ry =yRa .

Theorem (Banyaga)

Let (M,w) be a closed symplectic manifold. Then Ham(M) is a
simple group.



Proof of concept

Theorem (E. '23)
Let H:R/Z x S> — R be a Hamiltonian on (52, w). Then

cg(H) = dAl/ Hdt A w + O(1).
R/ZxS?

(Best previously known error bound is O(d%/2.)



Thank you!



