Subleading asymptotics of symplectic Weyl laws

Oliver Edtmair

UC Berkeley

May 23, 2023

Classical Weyl law

 (M^n, g) compact Riemannian manifold, possibly with boundary eigenvalues of $-\Delta_g$ with Dirichlet boundary condition $0 \le \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots < \infty$ $N(\lambda) :=$ number of eigenvalues less than λ

Theorem (Weyl) $N(\lambda) = (2\pi)^{-n}\omega_n \operatorname{vol}(M)\lambda^{n/2} + E(\lambda)$ with $E(\lambda) = o(\lambda^{n/2})$

Theorem (Levitan, Avakumovic, Seeley) $E(\lambda) = O(\lambda^{(n-1)/2})$

Remark: this is sharp for the round sphere

Theorem (Duistermaat-Guillemin, Ivrii)

If the set of closed geodesics has measure zero, then $E(\lambda) = -\frac{1}{4}(2\pi)^{1-n}\omega_{n-1}\operatorname{vol}(\partial X)\lambda^{(n-1)/2} + o(\lambda^{(n-1)/2})$

Remark: fails for round sphere

Embedded contact homology (ECH) Weyl law

 $X \subset \mathbb{R}^4$ star-shaped domain \rightsquigarrow ECH capacities

$$0 < c_1(X) \leq c_2(X) \leq \cdots < \infty$$

Spectrality property: For every k, we can find finitely many closed orbits $\gamma_i \subset \partial X$ such that $c_k(X) = \sum_i \mathcal{A}(\gamma_i)$

Theorem (Hutchings '10)

For all star-shaped domains $X \subset \mathbb{R}^4$ we have

$$c_k(X) = 2(\operatorname{vol}(X)k)^{1/2} + o(k^{1/2})$$
 $(k \to \infty).$

Cristofaro-Gardiner-Hutchings-Ramos ('12): More general Weyl law for arbitrary contact 3-manifolds **Application:** (Irie '15) A C^{∞} generic Reeb flow on a closed 3-manifold has a dense set of periodic orbits.

Periodic Floer homology (PFH) Weyl law

Closed surface (Σ, ω) of area A, Hamiltonian $H : \mathbb{R}/\mathbb{Z} \times \Sigma \to \mathbb{R}$ \rightsquigarrow PFH spectral invariants $c_1(H), c_2(H), \dots \in \mathbb{R}$

Theorem (CG-Prasad-Zhang, E.-Hutchings 2021) For all Hamiltonians *H* we have

$$c_d(H) = dA^{-1} \int_{\mathbb{R}/\mathbb{Z} imes \Sigma} H dt \wedge \omega + o(d) \qquad (d o \infty).$$

- Similar statement for area preserving diffeomorphisms
- Related Weyl law for link spectral invariants (CG-Humilière-Mak-Seyfaddini-Smith)

Applications: C^{∞} closing lemma, Simplicity conjecture (CG-Humilière-Seyfaddini),...

Subleading asymptotics

For $X \subset \mathbb{R}^4$ star-shaped write $c_k(X) = 2(\operatorname{vol}(X)k)^{1/2} + e_k(X)$ Theorem (Hutchings '19) We have $e_k(X) = O(k^{1/4})$ as $k \to \infty$.

 Slightly weaker bounds for general contact 3-manifolds by CG-Savale and Sun

Question: In all known examples $e_k(X) = O(1)$. Always true?

Theorem (Hutchings '19)

If X is a strictly convex or concave toric domain then

$$\lim_{k \to \infty} e_k(X) = -\frac{1}{2} R u(X). \tag{1}$$

Counterexample: Ru(B(a)) = 2a but $\liminf_{k\to\infty} e_k(B(a)) = -3a/2$ $\limsup_{k\to\infty} e_k(B(a)) = -a/2$ **Question:** Is (1) true for generic X?

Relationship with symplectic packing

ECH Weyl law $c_k(X) = 2(\operatorname{vol}(X)k)^{1/2} + o(k^{1/2})$ Sketch of proof: **Step 1:** true for ball ("direct" computation) **Step 2:** true for disjoint unions of balls

$$c_k(\coprod_i X_i) = \max_{\sum_i k_i = k} \sum_i c_{k_i}(X_i)$$

Step 3: Let X be star-shaped, $\varepsilon > 0$ arbitrary. There exists disjoint union $B = \coprod_i B_i$ of finitely many balls such that

$$\blacktriangleright B \stackrel{s}{\hookrightarrow} X$$

►
$$\operatorname{vol}(B) \ge \operatorname{vol}(X) - \varepsilon$$

 $\Rightarrow \quad c_k(X) \geq c_k(B) \geq 2((\operatorname{vol}(X) - \varepsilon)k)^{1/2} + o(k^{1/2})$

Step 4: For the reverse inequality consider a big ball $C \supset X$ and fill $C \setminus X$ by small balls

Relationship with symplectic packing

For (disjoint unions of) balls we have $e_k = O(1)$. **Question:** Why does this proof not show $e_k(X) = O(1)$ for all star-shaped X?

Let B_n denote the disjoint union of n equal balls with total volume $vol(B_n) = 1$. We have

$$\limsup_{k\to\infty} e_k(B_n) \longrightarrow -\infty \quad (n\to\infty)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If we can pack the full volume of X and $C \setminus X$ by finitely many balls, we get $e_k(X) = O(1)$.

Symplectic packing

Theorem (Gromov) int $B^4(a) \coprod int B^4(a) \stackrel{s}{\hookrightarrow} \mathbb{C}P^2(1) \quad \Leftrightarrow \quad a \le 1/2$

In particular: We can't pack more than half the volume by two equally sized balls.

Theorem (Packing stability, Biran '99)

Let (M^4, ω) be a closed rational symplectic 4-manifold. Then there exists N_0 such that for all $N \ge N_0$ the full volume of M can be packed by N equal balls.

Generalizations: higher dimension (Buse-Hind), irrational symplectic 4-manifolds (Buse-Hind-Opshtein) **Question:** What about finite volume, open symplectic manifolds?

- true for balls, convex toric domains
- ▶ false in general (CG-Hind '23)

Question: What about compact symplectic manifolds with smooth boundary?

"New" ingredient

Consider $T^{2n} := (\mathbb{R}/\mathbb{Z})^{2n}$ with $\omega_0 = \sum_i dx_i \wedge dy_i$ For $\alpha \in \mathbb{R}^{2n}$ define rotation

$$R_{\alpha}: T^{2n} \to T^{2n} \quad R_{\alpha}(p) \coloneqq p + \alpha$$

Theorem (Herman)

Suppose that α is Diophantine. Then for every $\varphi \in \text{Ham}(T^{2n})$ sufficiently C^{∞} close to id, there exists $\psi \in \text{Ham}(T^{2n})$ such that

$$\varphi \circ R_{\alpha} = \psi R_{\alpha} \psi^{-1}.$$

Theorem (Banyaga)

Let (M, ω) be a closed symplectic manifold. Then Ham(M) is a simple group.

Proof of concept

Theorem (E. '23) Let $H : \mathbb{R}/\mathbb{Z} \times S^2 \to \mathbb{R}$ be a Hamiltonian on (S^2, ω) . Then $c_d(H) = dA^{-1} \int_{\mathbb{R}/\mathbb{Z} \times S^2} H dt \wedge \omega + O(1).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Best previously known error bound is $O(d^{1/2})$.)

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()