WEAK KAM THEORY ON METRIC SPACES

Roma, 23 May, 2023

WEAK KAM THEORY ON METRIC SPACES

Roma, 23 May, 2023

To Antonio, the Master of metric methods

Background on Weak KAM Theory on Lagrangian systems

(M,g) is a compact Riemannian manifold.

$$\|v\|_{x}=\sqrt{g_{x}(v,v)}.$$

$$\|v\|_{x}=\sqrt{g_{x}(v,v)}$$

If $\gamma : [a, b] \to M$ is a piecewise C^1 curve, its g-length $\ell_g(\gamma)$

$$\|v\|_{x}=\sqrt{g_{x}(v,v)}$$

If $\gamma : [a, b] \to M$ is a piecewise C¹ curve, its g-length $\ell_g(\gamma)$ is defined by

$$\ell_g(\gamma) = \int_a^b \|\dot{\gamma}(s)\|_{\gamma(s)} \, ds.$$

$$\|v\|_{x}=\sqrt{g_{x}(v,v)}$$

If $\gamma : [a, b] \to M$ is a piecewise C¹ curve, its g-length $\ell_g(\gamma)$ is defined by

$$\ell_g(\gamma) = \int_a^b \|\dot{\gamma}(s)\|_{\gamma(s)} \, ds.$$

The distance on M is the Riemannian distance obtained from the Riemannian metric,

$$\|v\|_{x}=\sqrt{g_{x}(v,v)}$$

If $\gamma : [a, b] \to M$ is a piecewise C¹ curve, its g-length $\ell_g(\gamma)$ is defined by

$$\ell_g(\gamma) = \int_a^b \|\dot{\gamma}(s)\|_{\gamma(s)} \, ds.$$

The distance on M is the Riemannian distance obtained from the Riemannian metric, namely

$$d(x,y) = \inf_{\gamma} \ell_g(\gamma),$$

$$\|v\|_{x}=\sqrt{g_{x}(v,v)}$$

If $\gamma : [a, b] \to M$ is a piecewise C¹ curve, its g-length $\ell_g(\gamma)$ is defined by

$$\ell_g(\gamma) = \int_a^b \|\dot{\gamma}(s)\|_{\gamma(s)} \, ds.$$

The distance on M is the Riemannian distance obtained from the Riemannian metric, namely

$$d(x,y) = \inf_{\gamma} \ell_g(\gamma),$$

where the inf is taken on all curves $\gamma : [a, b] \to M$, with $\gamma(a) = x, \gamma(b) = y$.

A Tonelli Lagrangian is a C^2 function

 $L: TM \to \mathbb{R}, (x, v) \mapsto L(x, v)$, that satisfies:

A Tonelli Lagrangian is a C^2 function

- $L: TM \to \mathbb{R}, (x, v) \mapsto L(x, v)$, that satisfies:
 - (i) (C² convexity in speed) For every $(x, v) \in TM$, the second partial derivative $\partial^2/\partial v^2 L(x, v)$ with respect to v is positive definite.

A Tonelli Lagrangian is a C^2 function

- $L: TM \to \mathbb{R}, (x, v) \mapsto L(x, v)$, that satisfies:
 - (i) (C² convexity in speed) For every $(x, v) \in TM$, the second partial derivative $\partial^2/\partial v^2 L(x, v)$ with respect to v is positive definite.
- (ii) (Uniform Superlinearity)

$$\frac{\mathcal{L}(x,v)}{\|v\|_x} \to +\infty$$
, uniformly in x, when $\|v\|_x \to +\infty$.

A Tonelli Lagrangian is a C^2 function

- $L: TM \to \mathbb{R}, (x, v) \mapsto L(x, v)$, that satisfies:
 - (i) (C² convexity in speed) For every $(x, v) \in TM$, the second partial derivative $\partial^2/\partial v^2 L(x, v)$ with respect to v is positive definite.
- (ii) (Uniform Superlinearity)

$$rac{\mathcal{L}(x, v)}{\|v\|_x} o +\infty$$
, uniformly in x, when $\|v\|_x o +\infty$.

This second condition is equivalent to:

(ii') For every $K \ge 0$, we can find a finite constant C(K) such that

 $L(x, v) \ge K \|v\|_x + C(K)$, for every $(x, v) \in TM$.

$$\int_a^b L(\gamma(s),\dot{\gamma}(s))\,ds.$$

$$\int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds.$$

For t > 0, we define $h_t : M \times M \to \mathbb{R}$ by

$$h_t(x,y) = \inf_{\gamma} \int_0^t L(\gamma(s), \dot{\gamma}(s)) ds,$$

$$\int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds$$

For t > 0, we define $h_t : M \times M \to \mathbb{R}$ by

$$h_t(x,y) = \inf_{\gamma} \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds,$$

where the inf is taken on all curves $\gamma : [0, t] \to M$, with $\gamma(0) = x, \gamma(t) = y$.

$$\int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds.$$

For t > 0, we define $h_t : M \times M \to \mathbb{R}$ by

$$h_t(x,y) = \inf_{\gamma} \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds,$$

where the inf is taken on all curves $\gamma : [0, t] \to M$, with $\gamma(0) = x, \gamma(t) = y$. This $h_t(x, y)$ is the minimal action needed to go from x to y in time t.

$$\int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds$$

For t > 0, we define $h_t : M \times M \to \mathbb{R}$ by

$$h_t(x,y) = \inf_{\gamma} \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds,$$

where the inf is taken on all curves $\gamma : [0, t] \to M$, with $\gamma(0) = x, \gamma(t) = y$. This $h_t(x, y)$ is the minimal action needed to go from x to y in time t.

Definition (Mañé Potential)

$$\int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds.$$

For t > 0, we define $h_t : M \times M \to \mathbb{R}$ by

$$h_t(x,y) = \inf_{\gamma} \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds,$$

where the inf is taken on all curves $\gamma : [0, t] \to M$, with $\gamma(0) = x, \gamma(t) = y$. This $h_t(x, y)$ is the minimal action needed to go from x to y in time t.

Definition (Mañé Potential)

For $c \in \mathbb{R}$, the Mañé potential $\phi_c : M \times M \to [-\infty, +\infty[$

$$\int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds.$$

For t > 0, we define $h_t : M \times M \to \mathbb{R}$ by

$$h_t(x,y) = \inf_{\gamma} \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds,$$

where the inf is taken on all curves $\gamma : [0, t] \to M$, with $\gamma(0) = x, \gamma(t) = y$. This $h_t(x, y)$ is the minimal action needed to go from x to y in time t.

Definition (Mañé Potential)

For $c \in \mathbb{R}$, the Mañé potential $\phi_c : M \times M \to [-\infty, +\infty[$ is defined by

$$\phi_c(x,y) = \inf_{t \in \mathbb{R}} h_t(x,y) + ct.$$

The Peierls barrier h^c is defined by

$$h^{c}(x,y) = \liminf_{t\to+\infty} h_{t}(x,y) + ct.$$

The Peierls barrier h^c is defined by

$$h^{c}(x,y) = \liminf_{t\to+\infty} h_{t}(x,y) + ct.$$

Hence $\phi_c(x, y) \leq h^c(x, y)$, for all $x, y \in M$.

The Peierls barrier h^c is defined by

$$h^{c}(x,y) = \liminf_{t\to+\infty} h_{t}(x,y) + ct.$$

Hence $\phi_c(x, y) \leq h^c(x, y)$, for all $x, y \in M$.

Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_c \equiv -\infty$, for c < c[0] and ϕ_c is everywhere finite, for $c \ge c[0]$.

The Peierls barrier h^c is defined by

$$h^{c}(x,y) = \liminf_{t\to+\infty} h_{t}(x,y) + ct.$$

Hence $\phi_c(x, y) \leq h^c(x, y)$, for all $x, y \in M$.

Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_c \equiv -\infty$, for c < c[0] and ϕ_c is everywhere finite, for $c \ge c[0]$. This constant c[0] is called the Mañé critical value. It satisfies:

The Peierls barrier h^c is defined by

$$h^{c}(x,y) = \liminf_{t\to+\infty} h_{t}(x,y) + ct.$$

Hence $\phi_c(x, y) \le h^c(x, y)$, for all $x, y \in M$.

Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_c \equiv -\infty$, for c < c[0] and ϕ_c is everywhere finite, for $c \ge c[0]$. This constant c[0] is called the Mañé critical value. It satisfies:

$$-\inf_{x\in M}L(x,0)\leq c[0]\leq -\inf_{TM}L(x,0)$$

The Peierls barrier h^c is defined by

$$h^{c}(x,y) = \liminf_{t\to+\infty} h_{t}(x,y) + ct.$$

Hence $\phi_c(x, y) \le h^c(x, y)$, for all $x, y \in M$. Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_c \equiv -\infty$, for c < c[0] and ϕ_c is everywhere finite, for $c \ge c[0]$. This constant c[0] is called the Mañé critical value. It satisfies:

$$-\inf_{x\in M}L(x,0)\leq c[0]\leq -\inf_{TM}L(x,0)$$

2) We have
$$h^{c} = \begin{cases} \equiv -\infty, \text{ for } c < c[0], \\ \equiv +\infty, \text{ for } c > c[0], \\ \text{finite everywhere, for } c = c[0]. \end{cases}$$

3) Moreover, for $c \ge c[0]$, the Mañé potential ϕ_c is a semi-metric on M, such that $\phi_c(x, y) \le (A + c)d(x, y)$,

Definition (Semi-metric)

Definition (Semi-metric)

A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$

Definition (Semi-metric)

A semi-metric ϕ on the set X is a function $\phi : X \times \to \mathbb{R}$ such that (a) $\phi(x, x) = 0$, for every $x \in X$.

Definition (Semi-metric)

A semi-metric ϕ on the set X is a function $\phi : X \times \to \mathbb{R}$ such that (a) $\phi(x, x) = 0$, for every $x \in X$.

(b)
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
, for all $x, y, z \in X$.

Definition (Semi-metric)

A semi-metric ϕ on the set X is a function $\phi : X \times \to \mathbb{R}$ such that (a) $\phi(x, x) = 0$, for every $x \in X$.

(b) $\phi(x,z) \le \phi(x,y) + \phi(y,z)$, for all $x, y, z \in X$.

Definition (Aubry set)

For $c \in \mathbb{R}$, the (projected) Aubry set \mathscr{A}_c

3) Moreover, for $c \ge c[0]$, the Mañé potential ϕ_c is a semi-metric on M, such that $\phi_c(x, y) \le (A + c)d(x, y)$, where $A = \sup\{L(x, v) \mid (x, v) \in TM, \|v\|_x \le 1\}.$

Definition (Semi-metric)

A semi-metric ϕ on the set X is a function $\phi : X \times \to \mathbb{R}$ such that (a) $\phi(x, x) = 0$, for every $x \in X$. (b) $\phi(x, z) \le \phi(x, y) + \phi(y, z)$, for all $x, y, z \in X$.

Definition (Aubry set)

For $c \in \mathbb{R}$, the (projected) Aubry set \mathscr{A}_c is defined by

$$\mathscr{A}_{c} = \{ x \in M \mid h^{c}(x, x) = 0 \}.$$

3) Moreover, for $c \ge c[0]$, the Mañé potential ϕ_c is a semi-metric on M, such that $\phi_c(x, y) \le (A + c)d(x, y)$, where $A = \sup\{L(x, v) \mid (x, v) \in TM, \|v\|_x \le 1\}.$

Definition (Semi-metric)

A semi-metric ϕ on the set X is a function $\phi : X \times \to \mathbb{R}$ such that (a) $\phi(x, x) = 0$, for every $x \in X$. (b) $\phi(x, z) \le \phi(x, y) + \phi(y, z)$, for all $x, y, z \in X$.

Definition (Aubry set)

For $c \in \mathbb{R}$, the (projected) Aubry set \mathscr{A}_c is defined by

$$\mathscr{A}_{c} = \{ x \in M \mid h^{c}(x, x) = 0 \}.$$

Proposition

$$\mathscr{A}_{c}=\emptyset$$
 for $c
eq c[0]$ and $\mathscr{A}_{c[0]}
eq \emptyset$

When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$

When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$ and the definition of h^c as the limit of the $h_t + ct$ as $t \to +\infty$, When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$ and the definition of h^c as the lim inf of the $h_t + ct$ as $t \to +\infty$, it seems impossible to get h^c solely from the knowledge of ϕ_c . When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$ and the definition of h^c as the lim inf of the $h_t + ct$ as $t \to +\infty$, it seems impossible to get h^c solely from the knowledge of ϕ_c . As we will see, a 20 years old idea due to Antonio Siconolfi When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$ and the definition of h^c as the lim inf of the $h_t + ct$ as $t \to +\infty$, it seems impossible to get h^c solely from the knowledge of ϕ_c . As we will see, a 20 years old idea due to Antonio Siconolfi to obtain the (projected) Aubry set $\mathscr{A}_{c[0]}$ from $\phi_{c[0]}$, When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$ and the definition of h^c as the lim inf of the $h_t + ct$ as $t \to +\infty$, it seems impossible to get h^c solely from the knowledge of ϕ_c . As we will see, a 20 years old idea due to Antonio Siconolfi to obtain the (projected) Aubry set $\mathscr{A}_{c[0]}$ from $\phi_{c[0]}$, will allow us not only to obtain $\mathscr{A}_{c[0]}$ from the sole knowledge of $\phi_{c[0]}$, When you look at the definition of ϕ_c as the inf in t of the $h_t + ct$ and the definition of h^c as the lim inf of the $h_t + ct$ as $t \to +\infty$, it seems impossible to get h^c solely from the knowledge of ϕ_c . As we will see, a 20 years old idea due to Antonio Siconolfi to obtain the (projected) Aubry set $\mathscr{A}_{c[0]}$ from $\phi_{c[0]}$, will allow us not only to obtain $\mathscr{A}_{c[0]}$ from the sole knowledge of $\phi_{c[0]}$, but we will also obtain the Peierls barrier and the weak KAM solutions (or viscosity solutions).

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli,

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous,

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved.

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$H(x,p) = \max_{v \in T_x M} p(v) - L(x,v).$$

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$H(x,p) = \max_{v \in T_x M} p(v) - L(x,v).$$

Moreover, *H* is also Tonelli. The Hamilton-Jacobi Equation is

$$H(x, d_x u) = c, \tag{HJc}$$

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$H(x,p) = \max_{v \in T_x M} p(v) - L(x,v).$$

Moreover, H is also Tonelli. The Hamilton-Jacobi Equation is

$$H(x, d_x u) = c, \tag{HJc}$$

where $u: M \to \mathbb{R}$ and $c \in \mathbb{R}$.

The Hamiltonian $H: T^*M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ associated to L is defined by

$$H(x,p) = \sup_{v \in T_xM} p(v) - L(x,v).$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$H(x,p) = \max_{v \in T_x M} p(v) - L(x,v).$$

Moreover, *H* is also Tonelli. The Hamilton-Jacobi Equation is

$$H(x, d_x u) = c, \qquad (HJc)$$

where $u: M \to \mathbb{R}$ and $c \in \mathbb{R}$. A (viscosity) subsolution of (HJc) is a *Lipschitz* function $u: M \to \mathbb{R}$ such that $H(x, d_x u) \leq c$ for almost every $x \in M$. Theorem There exists a subsolution $u : M \to \mathbb{R}$ of $H(x, d_x u) = c$ if and only if $c \ge c[0]$, where c[0] is Mañé's critical value.

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

Moreover, for $c \ge c[0]$ and $x \in M$, the function $\phi_c(x, \cdot)$ is a subsolution of $H(x, d_x u) = c$.

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

Moreover, for $c \ge c[0]$ and $x \in M$, the function $\phi_c(x, \cdot)$ is a subsolution of $H(x, d_x u) = c$.

There is also a concept of viscosity solutions.

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

Moreover, for $c \ge c[0]$ and $x \in M$, the function $\phi_c(x, \cdot)$ is a subsolution of $H(x, d_x u) = c$.

There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_t^c ,

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

Moreover, for $c \ge c[0]$ and $x \in M$, the function $\phi_c(x, \cdot)$ is a subsolution of $H(x, d_x u) = c$.

There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_t^c , defined as follows: for a bounded function $u: M \to \mathbb{R}$ and t > 0, we define $T_t^c u$

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

Moreover, for $c \ge c[0]$ and $x \in M$, the function $\phi_c(x, \cdot)$ is a subsolution of $H(x, d_x u) = c$.

There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_t^c , defined as follows: for a bounded function $u: M \to \mathbb{R}$ and t > 0, we define $T_t^c u$ by

$$T_t^c u(x) = \inf_{y \in M} u(y) + h_t(y, x) + ct, \text{ for } x \in M.$$

$$u(y) - u(x) \le \phi_c(x, y)$$
, for every $x, y \in M$.

Moreover, for $c \ge c[0]$ and $x \in M$, the function $\phi_c(x, \cdot)$ is a subsolution of $H(x, d_x u) = c$.

There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_t^c , defined as follows: for a bounded function $u: M \to \mathbb{R}$ and t > 0, we define $T_t^c u$ by

$$T_t^c u(x) = \inf_{y \in M} u(y) + h_t(y, x) + ct, \text{ for } x \in M.$$

The functions $T_t^c u, t > 0$ are all continuous (even if u is not).

Theorem The family T_t^c , t > 0 has a common fixed point if and only if c = c[0].

Theorem

The family T_t^c , t > 0 has a common fixed point if and only if c = c[0].

The (viscosity) solutions of $H(x, d_x u) = c$ are precisely the common fixed points of the T_t^c , t > 0.

Theorem

The family T_t^c , t > 0 has a common fixed point if and only if c = c[0].

The (viscosity) solutions of $H(x, d_x u) = c$ are precisely the common fixed points of the $T_t^c, t > 0$. Moreover, for every $x \in X$, the function $h^{c[0]}(x, \cdot)$ is a (viscosity) solution of $H(x, d_x u) = c[0]$. Generalization: Weak KAM Theory on Metric Spaces

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi:X\times X\to \mathbb{R}$ such that

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi:X\times X\to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi:X\times X\to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

• $\phi(x,z) \le \phi(x,y) + \phi(y,z)$ for all $x, y, z \in X$.

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi:X\times X\to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$,

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \ge 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0 .

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \ge 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0 . In fact, the example you should keep in mind is

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \ge 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0 . In fact, the example you should keep in mind is X = M a compact manifold equipped with a Tonelli Lagrangian L

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \ge 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0 . In fact, the example you should keep in mind is X = M a compact manifold equipped with a Tonelli Lagrangian L and $\phi = \phi_{c[0]}$, the Mañé potential for the Mañé critical value.

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \ge 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0 . In fact, the example you should keep in mind is X = M a compact manifold equipped with a Tonelli Lagrangian L and $\phi = \phi_{c[0]}$, the Mañé potential for the Mañé critical value.

Note that we can also take the semi-metric $\phi = d$ on the compact metric space (X, d).

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \to \mathbb{R}$ such that

•
$$\phi(x,x) = 0$$
 for all $x \in X$;

•
$$\phi(x,z) \le \phi(x,y) + \phi(y,z)$$
 for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \ge 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0 . In fact, the example you should keep in mind is X = M a compact manifold equipped with a Tonelli Lagrangian L and $\phi = \phi_{c[0]}$, the Mañé potential for the Mañé critical value.

Note that we can also take the semi-metric $\phi = d$ on the compact metric space (X, d).

Another interesting example is the following:

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

In the sequel ϕ is a **continuous** semi-metric on the compact metric space (X, d).

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

In the sequel ϕ is a **continuous** semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max}(x, y) = \max[\phi(x, y), \phi(y, x)].$

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

In the sequel ϕ is a **continuous** semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max}(x, y) = \max[\phi(x, y), \phi(y, x)]$. Note that ϕ_{\max} is also a semi-metric and is symmetric.

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

In the sequel ϕ is a **continuous** semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max}(x, y) = \max[\phi(x, y), \phi(y, x)]$. Note that ϕ_{\max} is also a semi-metric and is symmetric.

Definition (ϕ -subsolutions)

A ϕ -subsolution is a function $u: X \to \mathbb{R}$

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

In the sequel ϕ is a **continuous** semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max}(x, y) = \max[\phi(x, y), \phi(y, x)]$. Note that ϕ_{\max} is also a semi-metric and is symmetric.

Definition (ϕ -subsolutions)

A ϕ -subsolution is a function $u: X \to \mathbb{R}$ such that

 $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$.

$$\hat{\phi}(\mu,\nu) = \inf_{\gamma} \int_{X \times X} \phi(x,y) \, d\gamma(x,y),$$

where inf is taken over all the probability measures $\gamma \in \mathcal{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν .

In the sequel ϕ is a **continuous** semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max}(x, y) = \max[\phi(x, y), \phi(y, x)]$. Note that ϕ_{\max} is also a semi-metric and is symmetric.

Definition (ϕ -subsolutions)

A ϕ -subsolution is a function $u : X \to \mathbb{R}$ such that $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$.

We will denote by $\mathscr{S}_{sub}(\phi)$, the set of ϕ -subsolutions.

Proposition

1) The family $\mathscr{S}_{\mathrm{sub}}(\phi)$ is equicontinous.

Proposition

1) The family $\mathscr{S}_{\mathrm{sub}}(\phi)$ is equicontinous. In fact, we have

 $|u(y)-u(x)| \le \phi_{\max}(x,y) = \max[\phi(x,y),\phi(y,x)], \text{ for all } x,y \in X.$

Proposition

1) The family $\mathscr{S}_{sub}(\phi)$ is equicontinous. In fact, we have

 $|u(y)-u(x)| \le \phi_{\max}(x,y) = \max[\phi(x,y),\phi(y,x)], \text{ for all } x,y \in X.$

2) The family $\mathscr{S}_{sub}(\phi)$ is stable under pointwise convergence.

Proposition

1) The family $\mathscr{S}_{\mathrm{sub}}(\phi)$ is equicontinous. In fact, we have

 $|u(y)-u(x)| \le \phi_{\max}(x,y) = \max[\phi(x,y),\phi(y,x)], \text{ for all } x,y \in X.$

2) The family $\mathscr{S}_{sub}(\phi)$ is stable under pointwise convergence. 3) The family $\mathscr{S}_{sub}(\phi)$ is a convex subset of the set of real-valued functions. Moreover, it is stable under addition of constants, i.e. if $u \in \mathscr{S}_{sub}(\phi)$ and $c \in \mathbb{R}$, then $u + c \in \mathscr{S}_{sub}(\phi)$.

Proposition

1) The family $\mathscr{S}_{\mathrm{sub}}(\phi)$ is equicontinous. In fact, we have

 $|u(y)-u(x)| \le \phi_{\max}(x,y) = \max[\phi(x,y),\phi(y,x)], \text{ for all } x,y \in X.$

2) The family $\mathscr{S}_{sub}(\phi)$ is stable under pointwise convergence. 3) The family $\mathscr{S}_{sub}(\phi)$ is a convex subset of the set of real-valued functions. Moreover, it is stable under addition of constants, i.e. if $u \in \mathscr{S}_{sub}(\phi)$ and $c \in \mathbb{R}$, then $u + c \in \mathscr{S}_{sub}(\phi)$. 4) If $u_i, i \in I$ is a family of functions in $\mathscr{S}_{sub}(\phi)$, then either $\inf_{i \in I} u_i \equiv -\infty$ (resp. $\sup_{i \in I} u_i \equiv +\infty$) or $\inf_{i \in I} u_i$ (resp. $\sup_{i \in I} u_i$) is finite everywhere and $\inf_{i \in I} u_i$ (resp. $\sup_{i \in I} u_i$) is in $\mathscr{S}_{sub}(\phi)$.

Proposition

1) The family $\mathscr{S}_{\mathrm{sub}}(\phi)$ is equicontinous. In fact, we have

 $|u(y)-u(x)| \le \phi_{\max}(x,y) = \max[\phi(x,y),\phi(y,x)], \text{ for all } x,y \in X.$

2) The family S_{sub}(φ) is stable under pointwise convergence.
3) The family S_{sub}(φ) is a convex subset of the set of real-valued functions. Moreover, it is stable under addition of constants, i.e. if u ∈ S_{sub}(φ) and c ∈ ℝ, then u + c ∈ S_{sub}(φ).
4) If u_i, i ∈ I is a family of functions in S_{sub}(φ), then either inf_{i∈I} u_i ≡ -∞ (resp. sup_{i∈I} u_i ≡ +∞) or inf_{i∈I} u_i (resp. sup_{i∈I} u_i) is finite everywhere and inf_{i∈I} u_i (resp. sup_{i∈I} u_i) is in S_{sub}(φ).
5) For every x₀ ∈ X, the functions φ(x₀, ·) : X → ℝ, x ↦ φ(x₀, x) and -φ(·, x₀) : X → ℝ, x ↦ -φ(x, x₀) are both φ-subsolutions.

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$,

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution,

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain $u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y) - u(x)| \leq \phi_{\max}(x, y).$$

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)| \leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\mathrm{sub}}(\phi)$ now follows from the uniform continuity of ϕ_{\max} on the compact set $X \times X$

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)| \leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)|\leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)|\leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

For 4), suppose that $u_i, i \in I$ is a family of subsolutions.

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)| \leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

For 4), suppose that $u_i, i \in I$ is a family of subsolutions. We have

 $u_i(y) \le u_i(x) + \phi(x, y)$, for all $x, y \in X$ and all $i \in I$.

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)| \leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

For 4), suppose that $u_i, i \in I$ is a family of subsolutions. We have

$$u_i(y) \le u_i(x) + \phi(x, y)$$
, for all $x, y \in X$ and all $i \in I$.

Thus

$$\inf_{i \in I} u_i(y) \le \inf_{i \in I} u_i(x) + \phi(x, y), \text{ for all } x, y \in X.$$

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)|\leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

For 4), suppose that $u_i, i \in I$ is a family of subsolutions. We have

$$u_i(y) \le u_i(x) + \phi(x, y)$$
, for all $x, y \in X$ and all $i \in I$.

Thus

$$\inf_{i \in I} u_i(y) \le \inf_{i \in I} u_i(x) + \phi(x, y), \text{ for all } x, y \in X.$$

Hence, since ϕ is finite everywhere,

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)|\leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

For 4), suppose that $u_i, i \in I$ is a family of subsolutions. We have

$$u_i(y) \le u_i(x) + \phi(x, y)$$
, for all $x, y \in X$ and all $i \in I$.

Thus

$$\inf_{i \in I} u_i(y) \le \inf_{i \in I} u_i(x) + \phi(x, y), \text{ for all } x, y \in X.$$

Hence, since ϕ is finite everywhere, the inequality above implies either $\inf_{i \in I} u_i \equiv -\infty$ or $\inf_{i \in I} u_i$ finite everywhere.

From the inequality $u(y) - u(x) \le \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ -subsolution, we easily obtain

$$u(y) - u(x) \le \phi(x, y) \le \phi_{\max}(x, y).$$

By symmetry of ϕ_{\max} , we conclude that

$$|u(y)-u(x)|\leq \phi_{\max}(x,y).$$

The equicontinuity of the family $\mathscr{S}_{\rm sub}(\phi)$ now follows from the uniform continuity of $\phi_{\rm max}$ on the compact set $X \times X$ and the fact that $\phi_{\rm max} \equiv 0$ on the diagonal of X.

2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ -subsolutions.

For 4), suppose that $u_i, i \in I$ is a family of subsolutions. We have

$$u_i(y) \le u_i(x) + \phi(x, y)$$
, for all $x, y \in X$ and all $i \in I$.

Thus

$$\inf_{i \in I} u_i(y) \le \inf_{i \in I} u_i(x) + \phi(x, y), \text{ for all } x, y \in X.$$

Hence, since ϕ is finite everywhere, the inequality above implies either $\inf_{i \in I} u_i \equiv -\infty$ or $\inf_{i \in I} u_i$ finite everywhere. In this last case the inequality above shows that $\inf_{i \in I} u_i$ is a ϕ -subsolution.

$$\phi(x_0, y) \leq \phi(x_0, x) + \phi(x, y),$$

$$\phi(x_0, y) \leq \phi(x_0, x) + \phi(x, y),$$

which is equivalent to

$$\phi(x_0, y) - \phi(x_0, x) \leq \phi(x, y).$$

$$\phi(x_0, y) \leq \phi(x_0, x) + \phi(x, y),$$

which is equivalent to

$$\phi(x_0, y) - \phi(x_0, x) \leq \phi(x, y).$$

Hence $\phi(x_0, \cdot)$ is a ϕ -subsolution.

$$\phi(x_0, y) \leq \phi(x_0, x) + \phi(x, y),$$

which is equivalent to

$$\phi(x_0, y) - \phi(x_0, x) \leq \phi(x, y).$$

Hence $\phi(x_0, \cdot)$ is a ϕ -subsolution. The same Triangular Inequality yields

$$\phi(y, x_0) \leq \phi(y, x) + \phi(x, x_0),$$

$$\phi(x_0, y) \leq \phi(x_0, x) + \phi(x, y),$$

which is equivalent to

$$\phi(x_0, y) - \phi(x_0, x) \leq \phi(x, y).$$

Hence $\phi(x_0, \cdot)$ is a ϕ -subsolution. The same Triangular Inequality yields

$$\phi(y, x_0) \leq \phi(y, x) + \phi(x, x_0),$$

which is equivalent to

$$(-\phi(x,x_0))-(-\phi(y,x_0))\leq \phi(y,x).$$

$$\phi(x_0, y) \leq \phi(x_0, x) + \phi(x, y),$$

which is equivalent to

$$\phi(x_0, y) - \phi(x_0, x) \leq \phi(x, y).$$

Hence $\phi(x_0, \cdot)$ is a ϕ -subsolution. The same Triangular Inequality yields

$$\phi(y, x_0) \leq \phi(y, x) + \phi(x, x_0),$$

which is equivalent to

$$(-\phi(x,x_0))-(-\phi(y,x_0))\leq \phi(y,x).$$

Hence $-\phi(\cdot, x_0)$ is a ϕ -subsolution.

The next step is to define the Aubry set $\mathscr{A}(\phi)$.

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$.

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_0, \ldots, x_n with $x = x_0$ and $y = x_n$. The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_0, \ldots, x_n with $x = x_0$ and $y = x_n$. For a chain x_0, \ldots, x_n of points in X, The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_0, \ldots, x_n with $x = x_0$ and $y = x_n$. For a chain x_0, \ldots, x_n of points in X, we define its ϕ -cost c_{ϕ} The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_0, \ldots, x_n with $x = x_0$ and $y = x_n$. For a chain x_0, \ldots, x_n of points in X, we define its ϕ -cost c_{ϕ} by

$$c_{\phi}(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} \phi(x_i,x_{i+1}) \ge \phi(x_0,x_n).$$

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_0, \ldots, x_n with $x = x_0$ and $y = x_n$. For a chain x_0, \ldots, x_n of points in X, we define its ϕ -cost c_{ϕ} by

$$c_{\phi}(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} \phi(x_i,x_{i+1}) \ge \phi(x_0,x_n).$$

Note that, since the metric d is also a semi-metric, we can define its concatenated length ℓ_d in the same way

$$\ell_d(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} d(x_i,x_{i+1}) \ge d(x_0,x_n).$$

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta} : X \times X \to \mathbb{R}$, for $\eta \ge 0$. Recall that a chain in X is a sequence x_0, \ldots, x_n of points in X with $n \ge 1$. The point x_0 is called the starting point (of the chain) and x_n is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_0, \ldots, x_n with $x = x_0$ and $y = x_n$. For a chain x_0, \ldots, x_n of points in X, we define its ϕ -cost c_{ϕ} by

$$c_{\phi}(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} \phi(x_i,x_{i+1}) \ge \phi(x_0,x_n).$$

Note that, since the metric d is also a semi-metric, we can define its concatenated length ℓ_d in the same way

$$\ell_d(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} d(x_i,x_{i+1}) \ge d(x_0,x_n).$$

In the sequel of this work we will assume that X has at least two points.

This implies that for every $x, y \in X$ and every $\eta \ge 0$, we can find a chain $x_0 = x, \ldots, x_n = y$ with $\ell_d(x_0, \ldots, x_n) \ge \eta$.

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{n, y}, y)$$

x, z repeated n times

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x \text{ z repeated } n \text{ times}}, y)$$

x, z repeated n times

satisfies

$$\ell_d(\xi_n)=(2n-1)d(x,z)+d(z,y).$$

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x, z \text{ repeated } n \text{ times}}, y)$$

satisfies

$$\ell_d(\xi_n) = (2n-1)d(x,z) + d(z,y).$$

Therefore $\ell_d(\xi_n) \to +\infty$, as $n \to +\infty$, since $d(x, z) \neq 0$.

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x, z \text{ repeated } n \text{ times}}, y)$$

satisfies

$$\ell_d(\xi_n) = (2n-1)d(x,z) + d(z,y).$$

Therefore $\ell_d(\xi_n) \to +\infty$, as $n \to +\infty$, since $d(x,z) \neq 0$.
Definition (ϕ^{η}) For $\eta \ge 0$, we define $\phi^{\eta} : X \times X \to \mathbb{R}$

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x, z \text{ repeated } n \text{ times}}, y)$$

satisfies

$$\ell_d(\xi_n) = (2n-1)d(x,z) + d(z,y).$$

Therefore $\ell_d(\xi_n) \to +\infty$, as $n \to +\infty$, since $d(x,z) \neq 0$.
Definition (ϕ^{η}) For $\eta \ge 0$, we define $\phi^{\eta} : X \times X \to \mathbb{R}$ by
 $\phi^{\eta}(x,y) = \inf \{c_i(x_0, \dots, x_i) \mid x_0 = x, y_i = y_i \}$

$$\phi^{\eta}(x,y) = \inf\{c_{\phi}(x_0,\ldots,x_n) \mid x_0 = x, x_n = y, \ell_d(x_0,\ldots,x_n) \ge \eta\}$$

$$\ge \phi(x,y).$$

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x, z \text{ repeated } n \text{ times}}, y)$$

satisfies

$$\ell_d(\xi_n)=(2n-1)d(x,z)+d(z,y).$$

Therefore $\ell_d(\xi_n) \to +\infty$, as $n \to +\infty$, since $d(x, z) \neq 0$. Definition (ϕ^{η}) For $\eta \ge 0$, we define $\phi^{\eta} : X \times X \to \mathbb{R}$ by

$$\phi^{\eta}(x,y) = \inf\{c_{\phi}(x_0,\ldots,x_n) \mid x_0 = x, x_n = y, \ell_d(x_0,\ldots,x_n) \ge \eta\}$$
$$\ge \phi(x,y).$$

Since $d(z,z) = \phi(z,z) = 0$, for all $z \in X$,

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x, z \text{ repeated } n \text{ times}}, y)$$

satisfies

$$\ell_d(\xi_n)=(2n-1)d(x,z)+d(z,y).$$

Therefore $\ell_d(\xi_n) \to +\infty$, as $n \to +\infty$, since $d(x, z) \neq 0$. Definition (ϕ^{η}) For $\eta \ge 0$, we define $\phi^{\eta} : X \times X \to \mathbb{R}$ by

$$\phi^{\eta}(x,y) = \inf\{c_{\phi}(x_0,\ldots,x_n) \mid x_0 = x, x_n = y, \ell_d(x_0,\ldots,x_n) \ge \eta\}$$

$$\ge \phi(x,y).$$

Since $d(z, z) = \phi(z, z) = 0$, for all $z \in X$, to compute $\phi^{\eta}(x, y)$, we can restrict to chains x_0, \ldots, x_n , with $x_i \neq x_{i+1}$, for $i = 0, \ldots, n-1$.

$$\xi_n = (\underbrace{x, z, x, z, \dots, x, z}_{x, z \text{ repeated } n \text{ times}}, y)$$

satisfies

$$\ell_d(\xi_n)=(2n-1)d(x,z)+d(z,y).$$

Therefore $\ell_d(\xi_n) \to +\infty$, as $n \to +\infty$, since $d(x, z) \neq 0$. Definition (ϕ^{η}) For $\eta \ge 0$, we define $\phi^{\eta} : X \times X \to \mathbb{R}$ by

$$\phi^{\eta}(x,y) = \inf\{c_{\phi}(x_0,\ldots,x_n) \mid x_0 = x, x_n = y, \ell_d(x_0,\ldots,x_n) \ge \eta\}$$

$$\ge \phi(x,y).$$

Since $d(z, z) = \phi(z, z) = 0$, for all $z \in X$, to compute $\phi^{\eta}(x, y)$, we can restrict to chains x_0, \ldots, x_n , with $x_i \neq x_{i+1}$, for $i = 0, \ldots, n-1$. The ϕ^{η} are called the concatenated costs associated to ϕ .

The concatenated costs ϕ^η associated to ϕ satisfy

The concatenated costs ϕ^η associated to ϕ satisfy

(i)
$$\phi^0 = \phi$$
.

The concatenated costs ϕ^{η} associated to ϕ satisfy

(i) $\phi^{0} = \phi$. (ii) $\phi \le \phi^{\eta} \le \phi^{\eta'}$, for all $\eta, \eta' \ge 0$ with $\eta' \ge \eta$.

The concatenated costs ϕ^η associated to ϕ satisfy

The concatenated costs ϕ^η associated to ϕ satisfy

(iv)
$$\phi^{\eta}(x,y) = \phi(x,y)$$
, for all $x, y \in X$ and all $\eta \leq d(x,y)$.

The concatenated costs ϕ^{η} associated to ϕ satisfy

Once we have the concatenated costs,

The concatenated costs ϕ^{η} associated to ϕ satisfy

Once we have the concatenated costs, we introduce the Peierls barrier.

The concatenated costs ϕ^{η} associated to ϕ satisfy

(iv)
$$\phi^{\eta}(x,y) = \phi(x,y)$$
, for all $x, y \in X$ and all $\eta \leq d(x,y)$.

Once we have the concatenated costs, we introduce the Peierls barrier. Since $\eta \mapsto \phi^{\eta}(x, y)$ is non-decreasing, the limit $\lim_{\eta \to +\infty} \phi^{\eta}(x, y) = \sup_{\eta \ge 0} \phi^{\eta}(x, y) \in \mathbb{R} \cup \{+\infty\}$ exists for any $x, y \in X$.

The concatenated costs ϕ^{η} associated to ϕ satisfy

(iv)
$$\phi^{\eta}(x,y) = \phi(x,y)$$
, for all $x, y \in X$ and all $\eta \leq d(x,y)$.

Once we have the concatenated costs, we introduce the Peierls barrier. Since $\eta \mapsto \phi^{\eta}(x, y)$ is non-decreasing, the limit $\lim_{\eta \to +\infty} \phi^{\eta}(x, y) = \sup_{\eta \ge 0} \phi^{\eta}(x, y) \in \mathbb{R} \cup \{+\infty\}$ exists for any $x, y \in X$.

Definition (Peierls barrier)

The Peierls barrier (for the semi-metric ϕ) is the function $\phi^{\infty}: X \times X \to \mathbb{R} \cup \{+\infty\}$

The concatenated costs ϕ^{η} associated to ϕ satisfy

(iv)
$$\phi^{\eta}(x,y) = \phi(x,y)$$
, for all $x, y \in X$ and all $\eta \leq d(x,y)$.

Once we have the concatenated costs, we introduce the Peierls barrier. Since $\eta \mapsto \phi^{\eta}(x, y)$ is non-decreasing, the limit $\lim_{\eta \to +\infty} \phi^{\eta}(x, y) = \sup_{\eta \ge 0} \phi^{\eta}(x, y) \in \mathbb{R} \cup \{+\infty\}$ exists for any $x, y \in X$.

Definition (Peierls barrier)

The Peierls barrier (for the semi-metric ϕ) is the function $\phi^{\infty}: X \times X \to \mathbb{R} \cup \{+\infty\}$ defined by

$$\phi^{\infty}(x,y) = \lim_{\eta \to +\infty} \phi^{\eta}(x,y).$$

Proposition We have

We have

(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.

We have

(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.

(ii) $\phi^{\infty}(x,x) \ge \phi(x,x) \ge 0$, for all $x \in X$.

We have

- (i) $\phi \le \phi^{\eta} \le \phi^{\infty}$, for all $\eta \ge 0$.
- (ii) $\phi^{\infty}(x,x) \ge \phi(x,x) \ge 0$, for all $x \in X$.

(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies

 $\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi(y,z)$ and $\phi^{\infty}(x,z) \leq \phi(x,y) + \phi^{\infty}(y,z)$.

We have

(i)
$$\phi \leq \phi^{\eta} \leq \phi^{\infty}$$
, for all $\eta \geq 0$.

(ii)
$$\phi^{\infty}(x,x) \ge \phi(x,x) \ge 0$$
, for all $x \in X$.

(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies

 $\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi(y,z)$ and $\phi^{\infty}(x,z) \leq \phi(x,y) + \phi^{\infty}(y,z)$.

Therefore ϕ^{∞} satisfies the triangle inequality

$$\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi^{\infty}(y,z).$$

We have

(i)
$$\phi \le \phi^{\eta} \le \phi^{\infty}$$
, for all $\eta \ge 0$.

(ii)
$$\phi^{\infty}(x,x) \ge \phi(x,x) \ge 0$$
, for all $x \in X$.

(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies

 $\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi(y,z)$ and $\phi^{\infty}(x,z) \leq \phi(x,y) + \phi^{\infty}(y,z)$.

Therefore ϕ^{∞} satisfies the triangle inequality

$$\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi^{\infty}(y,z).$$

(iv) Either $\phi^{\infty} = +\infty$ or ϕ^{∞} is finite everywhere.

We have

(i)
$$\phi \le \phi^{\eta} \le \phi^{\infty}$$
, for all $\eta \ge 0$.

(ii) $\phi^{\infty}(x,x) \ge \phi(x,x) \ge 0$, for all $x \in X$.

(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies

 $\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi(y,z)$ and $\phi^{\infty}(x,z) \leq \phi(x,y) + \phi^{\infty}(y,z)$.

Therefore ϕ^{∞} satisfies the triangle inequality

$$\phi^{\infty}(x,z) \leq \phi^{\infty}(x,y) + \phi^{\infty}(y,z).$$

(iv) Either $\phi^{\infty} = +\infty$ or ϕ^{∞} is finite everywhere.

(v) The Peierls barrier ϕ^{∞} is continuous, when it is finite (everywhere).

Definition The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous.

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

Theorem

For a given $x \in X$, the following statements are equivalent:

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

Theorem

For a given $x \in X$, the following statements are equivalent:

(i) $x \in \mathscr{A}(\phi)$;

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

Theorem

For a given $x \in X$, the following statements are equivalent:

(i)
$$x \in \mathscr{A}(\phi)$$
;

(ii) there exists $\eta > 0$ such that $\phi^{\eta}(x, x) = 0$;

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

Theorem

For a given $x \in X$, the following statements are equivalent:

(i)
$$x \in \mathscr{A}(\phi)$$
;

(ii) there exists $\eta > 0$ such that $\phi^{\eta}(x, x) = 0$;

(iii) for all $\eta \ge 0$, we have $\phi^{\eta}(x, x) = 0$.

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$\mathscr{A}(\phi) = \{ x \in X \mid \phi^{\infty}(x, x) = 0 \}.$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

Theorem

For a given $x \in X$, the following statements are equivalent:

Theorem

The Aubry $\mathscr{A}(\phi)$ is non empty if and only if the Peierls barrier ϕ^{∞} is (everywhere) finite.

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), \text{ for every } \eta \geq 0.$$

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), ext{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^\eta \leq \phi^\infty$, for every $\eta \geq {\rm 0},$

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), \text{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$.

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), \text{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$,

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), \text{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$.

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), ext{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y) = \phi^{\eta+0}(x,y) \le \phi^\eta(x,x) + \phi(x,y) = \phi(x,y), ext{ for every } \eta \ge 0.$$

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), ext{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y)=\phi^{\eta+0}(x,y)\leq \phi^\eta(x,x)+\phi(x,y)=\phi(x,y), ext{ for every } \eta\geq 0.$$

If we take the sup over all the $\eta \geq$ 0,

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), ext{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y)=\phi^{\eta+0}(x,y)\leq \phi^\eta(x,x)+\phi(x,y)=\phi(x,y), ext{ for every } \eta\geq 0.$$

If we take the sup over all the $\eta \ge 0$, we obtain $\phi^{\infty}(x,y) \le \phi(x,y).$

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), ext{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y)=\phi^{\eta+0}(x,y)\leq \phi^\eta(x,x)+\phi(x,y)=\phi(x,y), ext{ for every } \eta\geq 0.$$

If we take the sup over all the $\eta \ge 0$, we obtain $\phi^{\infty}(x, y) \le \phi(x, y)$. The case $y \in \mathscr{A}(\phi)$ is similar.

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), \text{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y) = \phi^{\eta+0}(x,y) \le \phi^\eta(x,x) + \phi(x,y) = \phi(x,y), ext{ for every } \eta \ge 0.$$

If we take the sup over all the $\eta \ge 0$, we obtain $\phi^{\infty}(x, y) \le \phi(x, y)$. The case $y \in \mathscr{A}(\phi)$ is similar.

Theorem If the Peierls barrier ϕ^{∞} is finite everywhere,

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), ext{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y) = \phi^{\eta+0}(x,y) \le \phi^\eta(x,x) + \phi(x,y) = \phi(x,y), ext{ for every } \eta \ge 0.$$

If we take the sup over all the $\eta \ge 0$, we obtain $\phi^{\infty}(x, y) \le \phi(x, y)$. The case $y \in \mathscr{A}(\phi)$ is similar.

Theorem If the Peierls barrier ϕ^{∞} is finite everywhere, then, for every $x, y \in X$, there exists $z \in \mathscr{A}(\phi)$

$$\phi^{\infty}(x,y) = \phi(x,y) = \phi^{\eta}(x,y), \text{ for every } \eta \geq 0.$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Moreover

$$\phi^\eta(x,y) = \phi^{\eta+0}(x,y) \le \phi^\eta(x,x) + \phi(x,y) = \phi(x,y), ext{ for every } \eta \ge 0.$$

If we take the sup over all the $\eta \ge 0$, we obtain $\phi^{\infty}(x, y) \le \phi(x, y)$. The case $y \in \mathscr{A}(\phi)$ is similar.

Theorem If the Peierls barrier ϕ^{∞} is finite everywhere, then, for every $x, y \in X$, there exists $z \in \mathscr{A}(\phi)$ such that

$$\phi^{\infty}(x,y) = \phi^{\infty}(x,z) + \phi^{\infty}(z,y).$$

$\phi\text{-solutions}$

Definition A ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution at $x \in X$

Definition A ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x), \tag{Sol}$$

Definition A ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below,

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality,

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u: X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ -solution.

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ -solution.

Lemma Let $u: X \to \mathbb{R}$ be a ϕ -subsolution.

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ -solution.

Lemma Let $u : X \to \mathbb{R}$ be a ϕ -subsolution. If, for given $x, y \in X$ and $\eta \ge 0$, we have $u(x) - u(y) \ge \phi^{\eta}(y, x)$,

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ -solution.

Lemma Let $u: X \to \mathbb{R}$ be a ϕ -subsolution. If, for given $x, y \in X$ and $\eta \ge 0$, we have $u(x) - u(y) \ge \phi^{\eta}(y, x)$, then $u(x) - u(y) = \phi^{\eta'}(y, x)$, for every η' , with $0 \le \eta' \le \eta$.

Definition A ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at $x \in X$ if it satisfies the condition

$$\exists y \in X, \exists \eta > 0, u(x) - u(y) = \phi^{\eta}(y, x),$$
 (Sol)

equivalently

$$\exists y \in X, \exists \eta > 0, u(x) = u(y) + \phi^{\eta}(y, x),$$
 (SolBis)

The ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution (everywhere) if it is a ϕ -solution at every $x \in X$.

 $\mathscr{S}(\phi)$ denotes the set of ϕ -solutions.

In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ -solution.

Lemma Let $u: X \to \mathbb{R}$ be a ϕ -subsolution. If, for given $x, y \in X$ and $\eta \ge 0$, we have $u(x) - u(y) \ge \phi^{\eta}(y, x)$, then $u(x) - u(y) = \phi^{\eta'}(y, x)$, for every η' , with $0 \le \eta' \le \eta$. This follows from the inequalities $\phi^{\eta}(y, x) \le u(x) - u(y) \le \phi(y, x) \le \phi^{\eta'}(y, x) \le \phi^{\eta}(y, x)$.

Lemma If $x \in \mathscr{A}(\phi)$,

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at x.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution at x. Therefore, to check that the ϕ -subsolution $u : X \to \mathbb{R}$ is a ϕ -solution,

Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x) = 0$, for every $\eta \ge 0$.

Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x) = 0$, for every $\eta \ge 0$. Hence

$$\mathsf{0} = u(x) - u(x) = \phi^\eta(x,x) = \mathsf{0}, ext{ for every } \eta \geq \mathsf{0},$$

Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x) = 0$, for every $\eta \geq 0$. Hence

$$0 = u(x) - u(x) = \phi^\eta(x, x) = 0$$
, for every $\eta \ge 0$,

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

$$0 = u(x) - u(x) = \phi^{\eta}(x, x) = 0$$
, for every $\eta \ge 0$,

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that

 $\phi(x,y) = \phi^{\eta}(x,y) = \phi^{d(x,y)}(x,y)$, for all $x, y \in X$ and $0 \le \eta \le d(x,y)$.

$$0 = u(x) - u(x) = \phi^{\eta}(x, x) = 0$$
, for every $\eta \ge 0$,

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that

 $\phi(x,y) = \phi^{\eta}(x,y) = \phi^{d(x,y)}(x,y)$, for all $x, y \in X$ and $0 \le \eta \le d(x,y)$. In fact $\phi(x,y) \le \phi^{\eta}(x,y) \le \phi^{d(x,y)}(x,y)$, because ϕ^{η} is non-decreasing in η .

$$0=u(x)-u(x)=\phi^\eta(x,x)=0, ext{ for every } \eta\geq 0,$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that

 $\phi(x,y) = \phi^{\eta}(x,y) = \phi^{d(x,y)}(x,y)$, for all $x, y \in X$ and $0 \le \eta \le d(x,y)$. In fact $\phi(x,y) \le \phi^{\eta}(x,y) \le \phi^{d(x,y)}(x,y)$, because ϕ^{η} is non-decreasing in η . It remains to show that $\phi^{d(x,y)}(x,y) \le \phi(x,y)$.

$$0 = u(x) - u(x) = \phi^{\eta}(x, x) = 0$$
, for every $\eta \ge 0$,

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that

 $\phi(x,y) = \phi^{\eta}(x,y) = \phi^{d(x,y)}(x,y)$, for all $x, y \in X$ and $0 \le \eta \le d(x,y)$. In fact $\phi(x,y) \le \phi^{\eta}(x,y) \le \phi^{d(x,y)}(x,y)$, because ϕ^{η} is non-decreasing in η . It remains to show that $\phi^{d(x,y)}(x,y) \le \phi(x,y)$. This results from the fact that the chain (x,y) satisfies $\ell_d(x,y) = d(x,y)$,

$$0 = u(x) - u(x) = \phi^\eta(x, x) = 0$$
, for every $\eta \ge 0$,

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that

$$\begin{split} \phi(x,y) &= \phi^{\eta}(x,y) = \phi^{d(x,y)}(x,y), \text{ for all } x,y \in X \text{ and } 0 \leq \eta \leq d(x,y).\\ \text{In fact } \phi(x,y) \leq \phi^{\eta}(x,y) \leq \phi^{d(x,y)}(x,y), \text{ because } \phi^{\eta} \text{ is }\\ \text{non-decreasing in } \eta. \text{ It remains to show that} \\ \phi^{d(x,y)}(x,y) \leq \phi(x,y). \text{ This results from the fact that the chain} \\ (x,y) \text{ satisfies } \ell_d(x,y) = d(x,y), \text{ which yields} \\ \phi^{d(x,y)}(x,y) \leq c_{\phi}(x,y) = \phi(x,y). \end{split}$$

Proposition 1) For every $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution at every $x \neq x_0$. 2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X). Proposition 1) For every $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution at every $x \neq x_0$. 2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X). 3) If for a given $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution en X, then $x_0 \in \mathscr{A}(\phi)$.

2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X).

3) If for a given $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution en X, then $x_0 \in \mathscr{A}(\phi)$.

For 1), fix such an $x \neq x_0$. Since $\phi(x_0, x_0) = 0$, we have $\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x)$.

2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X).

3) If for a given $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution en X, then $x_0 \in \mathscr{A}(\phi)$.

For 1), fix such an $x \neq x_0$. Since $\phi(x_0, x_0) = 0$, we have $\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x)$. Since as we saw above $\phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x)$,

2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X).

3) If for a given $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution en X, then $x_0 \in \mathscr{A}(\phi)$.

For 1), fix such an $x \neq x_0$. Since $\phi(x_0, x_0) = 0$, we have $\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x)$. Since as we saw above $\phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x)$, we obtain

$$\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x).$$

2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X).

3) If for a given $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution en X, then $x_0 \in \mathscr{A}(\phi)$.

For 1), fix such an $x \neq x_0$. Since $\phi(x_0, x_0) = 0$, we have $\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x)$. Since as we saw above $\phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x)$, we obtain

$$\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x).$$

Therefore, the function $\phi(x_0, \cdot)$ is a ϕ -solution at x, because $d(x_0, x) > 0$ for $x \neq x_0$.

2) Therefore, if $x_0 \in \mathscr{A}(\phi)$, the function $\phi(x_0, \cdot)$ is a ϕ -solution (everywhere on X).

3) If for a given $x_0 \in X$, the function $\phi(x_0, \cdot)$ is a ϕ -solution en X, then $x_0 \in \mathscr{A}(\phi)$.

For 1), fix such an $x \neq x_0$. Since $\phi(x_0, x_0) = 0$, we have $\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x)$. Since as we saw above $\phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x)$, we obtain

$$\phi(x_0, x) - \phi(x_0, x_0) = \phi(x_0, x) = \phi^{d(x_0, x)}(x_0, x).$$

Therefore, the function $\phi(x_0, \cdot)$ is a ϕ -solution at x, because $d(x_0, x) > 0$ for $x \neq x_0$.

2) follows from 1) and the fact that a ϕ -subsolution is a ϕ -solution at every point in $\mathscr{A}(\phi)$.

To prove 3), suppose that $\phi(x_0, \cdot)$ is a ϕ -solution at x_0 ,

$$\phi(x_0,x_0)-\phi(x_0,y)=\phi^{\eta}(y,x_0),$$

$$\phi(x_0,x_0)-\phi(x_0,y)=\phi^{\eta}(y,x_0),$$

or equivalently

$$\phi(x_0, y) + \phi^{\eta}(y, x_0) = 0.$$

$$\phi(x_0, x_0) - \phi(x_0, y) = \phi^{\eta}(y, x_0),$$

or equivalently

$$\phi(x_0, y) + \phi^{\eta}(y, x_0) = 0.$$

Thus

$$0 = \phi(x_0, y) + \phi^{\eta}(y, x_0) \ge \phi^{\eta+0}(x_0, x_0) \ge \phi^{\eta+0}(x_0, x_0) \ge \phi(x_0, x_0) = 0.$$

$$\phi(x_0, x_0) - \phi(x_0, y) = \phi^{\eta}(y, x_0),$$

or equivalently

$$\phi(x_0, y) + \phi^{\eta}(y, x_0) = 0.$$

Thus

$$0 = \phi(x_0, y) + \phi^{\eta}(y, x_0) \ge \phi^{\eta+0}(x_0, x_0) \ge \phi^{\eta+0}(x_0, x_0) \ge \phi(x_0, x_0) = 0.$$

Therefore $\phi^{\eta}(x_0, x_0) = 0$.

$$\phi(\mathbf{x}_0,\mathbf{x}_0)-\phi(\mathbf{x}_0,\mathbf{y})=\phi^{\eta}(\mathbf{y},\mathbf{x}_0),$$

or equivalently

$$\phi(x_0, y) + \phi^{\eta}(y, x_0) = 0.$$

Thus

$$0 = \phi(x_0, y) + \phi^{\eta}(y, x_0) \ge \phi^{\eta+0}(x_0, x_0) \ge \phi^{\eta+0}(x_0, x_0) \ge \phi(x_0, x_0) = 0.$$

Therefore $\phi^{\eta}(x_0, x_0) = 0$. Since $\eta > 0$, we indeed obtain $x_0 \in \mathscr{A}(\phi)$.

Proposition If the Peierls barrier ϕ^{∞} is finite,

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X).

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X). We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution.

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X). We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution. Suppose that $y \in X$ is fixed.

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X).

We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution. Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ -solution at y.

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X).

We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution. Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ -solution at y. By a property of ϕ^{∞} given above,

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X).

We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution. Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ -solution at y. By a property of ϕ^{∞} given above, we can find $z \in \mathscr{A}(\phi)$ such that

$$\phi^{\infty}(x,y) = \phi^{\infty}(x,z) + \phi^{\infty}(z,y).$$

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X).

We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution. Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ -solution at y. By a property of ϕ^{∞} given above, we can find $z \in \mathscr{A}(\phi)$ such that

$$\phi^{\infty}(x,y) = \phi^{\infty}(x,z) + \phi^{\infty}(z,y).$$

Hence

$$\phi^\infty(x,y)-\phi^\infty(x,z)=\phi^\infty(z,y)\geq \phi^\eta(z,y),\,\, ext{for every}\,\,\eta\geq {\sf 0},$$

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ -solution (everywhere on X).

We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution. Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ -solution at y. By a property of ϕ^{∞} given above, we can find $z \in \mathscr{A}(\phi)$ such that

$$\phi^{\infty}(x,y) = \phi^{\infty}(x,z) + \phi^{\infty}(z,y).$$

Hence

$$\phi^\infty(x,y)-\phi^\infty(x,z)=\phi^\infty(z,y)\geq \phi^\eta(z,y),\,\, ext{for every}\,\,\eta\geq 0$$
 ,

which implies the equality, because $\phi^{\infty}(x, \cdot)$ is a ϕ -subsolution.

Of course, we would like to show that $\phi\mbox{-solutions}$ are stable by uniform convergence

Of course, we would like to show that ϕ -solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ -solutions is contained in the family of ϕ -solutions, which isequicontinuous).

Theorem If $u: X \to \mathbb{R}$ is a ϕ -solution (on all of X),

Theorem If $u : X \to \mathbb{R}$ is a ϕ -solution (on all of X), then for every $x \in X$, we can find $y \in X$

Theorem If $u : X \to \mathbb{R}$ is a ϕ -solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that $u(x) - u(y) = \phi^{\eta}(y, x)$, for all $\eta \ge 0$,

Theorem If $u : X \to \mathbb{R}$ is a ϕ -solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that $u(x) - u(y) = \phi^{\eta}(y, x)$, for all $\eta \ge 0$,

which is equivalent to

$$u(x)-u(y)=\phi^{\infty}(y,x).$$

Theorem If $u : X \to \mathbb{R}$ is a ϕ -solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that $u(x) - u(y) = \phi^{\eta}(y, x)$, for all $\eta \ge 0$,

which is equivalent to

$$u(x)-u(y)=\phi^{\infty}(y,x).$$

Moreover, we can take $y \in \mathscr{A}(\phi)$.

Theorem If $u : X \to \mathbb{R}$ is a ϕ -solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that $u(x) - u(y) = \phi^{\eta}(y, x)$, for all $\eta \ge 0$,

which is equivalent to

$$u(x)-u(y)=\phi^{\infty}(y,x).$$

Moreover, we can take $y \in \mathscr{A}(\phi)$. We now give a couple of corollaries.

Theorem If $u : X \to \mathbb{R}$ is a ϕ -solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that $u(x) - u(y) = \phi^{\eta}(y, x)$, for all $\eta \ge 0$,

which is equivalent to

$$u(x)-u(y)=\phi^{\infty}(y,x).$$

Moreover, we can take $y \in \mathscr{A}(\phi)$. We now give a couple of corollaries.

Corollary

The ϕ -solutions are stable by uniform convergence.

Suppose that the $u_n : M \to \mathbb{R}$ are ϕ -solutions that converge uniformly on X to $u : X \to \mathbb{R}$.

Suppose that the $u_n : M \to \mathbb{R}$ are ϕ -solutions that converge uniformly on X to $u : X \to \mathbb{R}$. Fix $x \in X$.

Suppose that the $u_n : M \to \mathbb{R}$ are ϕ -solutions that converge uniformly on X to $u : X \to \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ -solution at x.

$$u_n(x) - u_n(y_n) = \phi^{\infty}(y_n, x).$$

$$u_n(x) - u_n(y_n) = \phi^{\infty}(y_n, x).$$

Extracting if necessary, we can suppose $y_n \rightarrow y$.

$$u_n(x) - u_n(y_n) = \phi^{\infty}(y_n, x).$$

Extracting if necessary, we can suppose $y_n \to y$. Since the convergence $u_n \to u$ is uniform and ϕ^{∞} is continuous, passing to the limit, we obtain

$$u(x)-u(y)=\phi^{\infty}(y,x).$$

$$u_n(x) - u_n(y_n) = \phi^{\infty}(y_n, x).$$

Extracting if necessary, we can suppose $y_n \to y$. Since the convergence $u_n \to u$ is uniform and ϕ^{∞} is continuous, passing to the limit, we obtain

$$u(x)-u(y)=\phi^{\infty}(y,x).$$

Therefore u is a ϕ -solution at x.

The next Corollary is well-known for Tonelli Lagrangians.

$$u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

$$u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

Since u is a ϕ -subsolution, we have $u(x) \le u(y) + \phi(y, x)$.

$$u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

Since *u* is a ϕ -subsolution, we have $u(x) \le u(y) + \phi(y, x)$. Hence taking the inf on $y \in \mathscr{A}(\phi)$, we obtain

$$u(x) \leq \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

$$u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

Since *u* is a ϕ -subsolution, we have $u(x) \le u(y) + \phi(y, x)$. Hence taking the inf on $y \in \mathscr{A}(\phi)$, we obtain

$$u(x) \leq \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

To show the equality $u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x)$,

$$u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

Since *u* is a ϕ -subsolution, we have $u(x) \le u(y) + \phi(y, x)$. Hence taking the inf on $y \in \mathscr{A}(\phi)$, we obtain

$$u(x) \leq \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x).$$

To show the equality $u(x) = \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x)$, we apply the Theorem above to find $y_0 \in \mathscr{A}(\phi)$ such that

$$egin{aligned} u(x) &= u(y_0) + \phi^\infty(y_0, x) \ &\geq u(y_0) + \phi(y_0, x) \ &\geq \inf_{y \in \mathscr{A}(\phi)} u(y) + \phi(y, x) \ &\geq u(x). \quad \Box \end{aligned}$$