Weak KAM Theory on metric spaces

Roma, 23 May, 2023

Weak KAM Theory on metric spaces

Roma, 23 May, 2023

To Antonio, the Master of metric methods

Background on Weak KAM Theory on Lagrangian systems
(M, g) is a compact Riemannian manifold.
(M, g) is a compact Riemannian manifold. If $(x, v) \in T M$, with $x \in M$ and $v \in T_{x} M$, we set

$$
\|v\|_{x}=\sqrt{g_{x}(v, v)}
$$

(M, g) is a compact Riemannian manifold.
If $(x, v) \in T M$, with $x \in M$ and $v \in T_{x} M$, we set

$$
\|v\|_{x}=\sqrt{g_{x}(v, v)}
$$

If $\gamma:[a, b] \rightarrow M$ is a piecewise C^{1} curve, its g-length $\ell_{g}(\gamma)$
(M, g) is a compact Riemannian manifold.
If $(x, v) \in T M$, with $x \in M$ and $v \in T_{x} M$, we set

$$
\|v\|_{x}=\sqrt{g_{x}(v, v)}
$$

If $\gamma:[a, b] \rightarrow M$ is a piecewise C^{1} curve, its g-length $\ell_{g}(\gamma)$ is defined by

$$
\ell_{g}(\gamma)=\int_{a}^{b}\|\dot{\gamma}(s)\|_{\gamma(s)} d s
$$

(M, g) is a compact Riemannian manifold.
If $(x, v) \in T M$, with $x \in M$ and $v \in T_{x} M$, we set

$$
\|v\|_{x}=\sqrt{g_{x}(v, v)}
$$

If $\gamma:[a, b] \rightarrow M$ is a piecewise C^{1} curve, its g-length $\ell_{g}(\gamma)$ is defined by

$$
\ell_{g}(\gamma)=\int_{a}^{b}\|\dot{\gamma}(s)\|_{\gamma(s)} d s
$$

The distance on M is the Riemannian distance obtained from the Riemannian metric,
(M, g) is a compact Riemannian manifold.
If $(x, v) \in T M$, with $x \in M$ and $v \in T_{x} M$, we set

$$
\|v\|_{x}=\sqrt{g_{x}(v, v)}
$$

If $\gamma:[a, b] \rightarrow M$ is a piecewise C^{1} curve, its g-length $\ell_{g}(\gamma)$ is defined by

$$
\ell_{g}(\gamma)=\int_{a}^{b}\|\dot{\gamma}(s)\|_{\gamma(s)} d s
$$

The distance on M is the Riemannian distance obtained from the Riemannian metric, namely

$$
d(x, y)=\inf _{\gamma} \ell_{g}(\gamma)
$$

(M, g) is a compact Riemannian manifold.
If $(x, v) \in T M$, with $x \in M$ and $v \in T_{x} M$, we set

$$
\|v\|_{x}=\sqrt{g_{x}(v, v)}
$$

If $\gamma:[a, b] \rightarrow M$ is a piecewise C^{1} curve, its g-length $\ell_{g}(\gamma)$ is defined by

$$
\ell_{g}(\gamma)=\int_{a}^{b}\|\dot{\gamma}(s)\|_{\gamma(s)} d s
$$

The distance on M is the Riemannian distance obtained from the Riemannian metric, namely

$$
d(x, y)=\inf _{\gamma} \ell_{g}(\gamma)
$$

where the inf is taken on all curves $\gamma:[a, b] \rightarrow M$, with $\gamma(a)=x, \gamma(b)=y$.

Definition (Tonelli Lagrangian)

Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C^{2} function
$L: T M \rightarrow \mathbb{R},(x, v) \mapsto L(x, v)$, that satisfies:

Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C^{2} function
$L: T M \rightarrow \mathbb{R},(x, v) \mapsto L(x, v)$, that satisfies:
(i) (\mathbf{C}^{2} convexity in speed) For every $(x, v) \in T M$, the second partial derivative $\partial^{2} / \partial v^{2} L(x, v)$ with respect to v is positive definite.

Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C^{2} function
$L: T M \rightarrow \mathbb{R},(x, v) \mapsto L(x, v)$, that satisfies:
(i) (\mathbf{C}^{2} convexity in speed) For every $(x, v) \in T M$, the second partial derivative $\partial^{2} / \partial v^{2} L(x, v)$ with respect to v is positive definite.
(ii) (Uniform Superlinearity)

$$
\frac{L(x, v)}{\|v\|_{x}} \rightarrow+\infty, \text { uniformly in } x, \text { when }\|v\|_{x} \rightarrow+\infty
$$

Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C^{2} function
$L: T M \rightarrow \mathbb{R},(x, v) \mapsto L(x, v)$, that satisfies:
(i) (\mathbf{C}^{2} convexity in speed) For every $(x, v) \in T M$, the second partial derivative $\partial^{2} / \partial v^{2} L(x, v)$ with respect to v is positive definite.
(ii) (Uniform Superlinearity)

$$
\frac{L(x, v)}{\|v\|_{x}} \rightarrow+\infty, \text { uniformly in } x, \text { when }\|v\|_{x} \rightarrow+\infty
$$

This second condition is equivalent to:
(ii') For every $K \geq 0$, we can find a finite constant $C(K)$ such that

$$
L(x, v) \geq K\|v\|_{x}+C(K), \text { for every }(x, v) \in T M
$$

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

For $t>0$, we define $h_{t}: M \times M \rightarrow \mathbb{R}$ by

$$
h_{t}(x, y)=\inf _{\gamma} \int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s
$$

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

For $t>0$, we define $h_{t}: M \times M \rightarrow \mathbb{R}$ by

$$
h_{t}(x, y)=\inf _{\gamma} \int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s
$$

where the inf is taken on all curves $\gamma:[0, t] \rightarrow M$, with $\gamma(0)=x, \gamma(t)=y$.

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

For $t>0$, we define $h_{t}: M \times M \rightarrow \mathbb{R}$ by

$$
h_{t}(x, y)=\inf _{\gamma} \int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s
$$

where the inf is taken on all curves $\gamma:[0, t] \rightarrow M$, with $\gamma(0)=x, \gamma(t)=y$.
This $h_{t}(x, y)$ is the minimal action needed to go from x to y in time t.

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

For $t>0$, we define $h_{t}: M \times M \rightarrow \mathbb{R}$ by

$$
h_{t}(x, y)=\inf _{\gamma} \int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s
$$

where the inf is taken on all curves $\gamma:[0, t] \rightarrow M$, with $\gamma(0)=x, \gamma(t)=y$.
This $h_{t}(x, y)$ is the minimal action needed to go from x to y in time t.

Definition (Mañé Potential)

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

For $t>0$, we define $h_{t}: M \times M \rightarrow \mathbb{R}$ by

$$
h_{t}(x, y)=\inf _{\gamma} \int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s
$$

where the inf is taken on all curves $\gamma:[0, t] \rightarrow M$, with $\gamma(0)=x, \gamma(t)=y$.
This $h_{t}(x, y)$ is the minimal action needed to go from x to y in time t.

Definition (Mañé Potential)
For $c \in \mathbb{R}$, the Mañé potential $\phi_{c}: M \times M \rightarrow[-\infty,+\infty[$

The action $\mathbb{L}(\gamma)$ of the piecewise C^{1} curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s)) d s
$$

For $t>0$, we define $h_{t}: M \times M \rightarrow \mathbb{R}$ by

$$
h_{t}(x, y)=\inf _{\gamma} \int_{0}^{t} L(\gamma(s), \dot{\gamma}(s)) d s
$$

where the inf is taken on all curves $\gamma:[0, t] \rightarrow M$, with
$\gamma(0)=x, \gamma(t)=y$.
This $h_{t}(x, y)$ is the minimal action needed to go from x to y in time t.

Definition (Mañé Potential)
For $c \in \mathbb{R}$, the Mañé potential $\phi_{c}: M \times M \rightarrow[-\infty,+\infty[$ is defined by

$$
\phi_{c}(x, y)=\inf _{t \in \mathbb{R}} h_{t}(x, y)+c t
$$

Definition (Peierls Barrier)

Definition (Peierls Barrier)

The Peierls barrier h^{c} is defined by

$$
h^{c}(x, y)=\liminf _{t \rightarrow+\infty} h_{t}(x, y)+c t
$$

Definition (Peierls Barrier)

The Peierls barrier h^{c} is defined by

$$
h^{c}(x, y)=\liminf _{t \rightarrow+\infty} h_{t}(x, y)+c t
$$

Hence $\phi_{c}(x, y) \leq h^{c}(x, y)$, for all $x, y \in M$.

Definition (Peierls Barrier)

The Peierls barrier h^{c} is defined by

$$
h^{c}(x, y)=\liminf _{t \rightarrow+\infty} h_{t}(x, y)+c t
$$

Hence $\phi_{c}(x, y) \leq h^{c}(x, y)$, for all $x, y \in M$.
Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_{c} \equiv-\infty$, for $c<c[0]$ and ϕ_{c} is everywhere finite, for $c \geq c[0]$.

Definition (Peierls Barrier)

The Peierls barrier h^{c} is defined by

$$
h^{c}(x, y)=\liminf _{t \rightarrow+\infty} h_{t}(x, y)+c t
$$

Hence $\phi_{c}(x, y) \leq h^{c}(x, y)$, for all $x, y \in M$.
Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_{c} \equiv-\infty$, for $c<c[0]$ and ϕ_{c} is everywhere finite, for $c \geq c[0]$. This constant $c[0]$ is called the Mañé critical value. It satisfies:

Definition (Peierls Barrier)

The Peierls barrier h^{c} is defined by

$$
h^{c}(x, y)=\liminf _{t \rightarrow+\infty} h_{t}(x, y)+c t
$$

Hence $\phi_{c}(x, y) \leq h^{c}(x, y)$, for all $x, y \in M$.
Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_{c} \equiv-\infty$, for $c<c[0]$ and ϕ_{c} is everywhere finite, for $c \geq c[0]$.
This constant $c[0]$ is called the Mañé critical value. It satisfies:

$$
-\inf _{x \in M} L(x, 0) \leq c[0] \leq-\inf _{T M} L
$$

Definition (Peierls Barrier)

The Peierls barrier h^{c} is defined by

$$
h^{c}(x, y)=\liminf _{t \rightarrow+\infty} h_{t}(x, y)+c t
$$

Hence $\phi_{c}(x, y) \leq h^{c}(x, y)$, for all $x, y \in M$.

Proposition

1) There exists a unique constant $c[0] \in \mathbb{R}$ such that $\phi_{c} \equiv-\infty$, for $c<c[0]$ and ϕ_{c} is everywhere finite, for $c \geq c[0]$.
This constant $c[0]$ is called the Mañé critical value. It satisfies:

$$
-\inf _{x \in M} L(x, 0) \leq c[0] \leq-\inf _{T M} L
$$

2) We have $h^{c}=\left\{\begin{array}{l}\equiv-\infty, \text { for } c<c[0], \\ \equiv+\infty, \text { for } c>c[0], \\ \text { finite everywhere, for } c=c[0] .\end{array}\right.$
3) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$,
4) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where $A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
5) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where $A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
6) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where
$A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$
7) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where
$A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$ such that
(a) $\phi(x, x)=0$, for every $x \in X$.
8) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where
$A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$ such that
(a) $\phi(x, x)=0$, for every $x \in X$.
(b) $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$, for all $x, y, z \in X$.
9) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where
$A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$ such that
(a) $\phi(x, x)=0$, for every $x \in X$.
(b) $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$, for all $x, y, z \in X$.

Definition (Aubry set)
For $c \in \mathbb{R}$, the (projected) Aubry set \mathscr{A}_{c}
3) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where
$A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$ such that
(a) $\phi(x, x)=0$, for every $x \in X$.
(b) $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$, for all $x, y, z \in X$.

Definition (Aubry set)
For $c \in \mathbb{R}$, the (projected) Aubry set \mathscr{A}_{c} is defined by

$$
\mathscr{A}_{c}=\left\{x \in M \mid h^{c}(x, x)=0\right\} .
$$

3) Moreover, for $c \geq c[0]$, the Mañé potential ϕ_{c} is a semi-metric on M, such that $\phi_{c}(x, y) \leq(A+c) d(x, y)$, where
$A=\sup \left\{L(x, v) \mid(x, v) \in T M,\|v\|_{x} \leq 1\right\}$.
Definition (Semi-metric)
A semi-metric ϕ on the set X is a function $\phi: X \times \rightarrow \mathbb{R}$ such that
(a) $\phi(x, x)=0$, for every $x \in X$.
(b) $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$, for all $x, y, z \in X$.

Definition (Aubry set)
For $c \in \mathbb{R}$, the (projected) Aubry set \mathscr{A}_{c} is defined by

$$
\mathscr{A}_{c}=\left\{x \in M \mid h^{c}(x, x)=0\right\} .
$$

Proposition
$\mathscr{A}_{c}=\emptyset$ for $c \neq c[0]$ and $\mathscr{A}_{c[0]} \neq \emptyset$

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$ and the definition of h^{c} as the lim inf of the $h_{t}+c t$ as $t \rightarrow+\infty$,

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$ and the definition of h^{c} as the lim inf of the $h_{t}+c t$ as $t \rightarrow+\infty$, it seems impossible to get h^{c} solely from the knowledge of ϕ_{c}.

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$ and the definition of h^{c} as the lim inf of the $h_{t}+c t$ as $t \rightarrow+\infty$, it seems impossible to get h^{c} solely from the knowledge of ϕ_{c}. As we will see, a 20 years old idea due to Antonio Siconolfi

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$ and the definition of h^{c} as the lim inf of the $h_{t}+c t$ as $t \rightarrow+\infty$, it seems impossible to get h^{c} solely from the knowledge of ϕ_{c}. As we will see, a 20 years old idea due to Antonio Siconolfi to obtain the (projected) Aubry set $\mathscr{A}_{c[0]}$ from $\phi_{c[0]}$,

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$ and the definition of h^{c} as the lim inf of the $h_{t}+c t$ as $t \rightarrow+\infty$, it seems impossible to get h^{c} solely from the knowledge of ϕ_{c}. As we will see, a 20 years old idea due to Antonio Siconolfi to obtain the (projected) Aubry set $\mathscr{A}_{c[0]}$ from $\phi_{c[0]}$, will allow us not only to obtain $\mathscr{A}_{c[0]}$ from the sole knowledge of $\phi_{c[0]}$,

When you look at the definition of ϕ_{c} as the inf in t of the $h_{t}+c t$ and the definition of h^{c} as the lim inf of the $h_{t}+c t$ as $t \rightarrow+\infty$, it seems impossible to get h^{c} solely from the knowledge of ϕ_{c}. As we will see, a 20 years old idea due to Antonio Siconolfi to obtain the (projected) Aubry set $\mathscr{A}_{c[0]}$ from $\phi_{c[0]}$, will allow us not only to obtain $\mathscr{A}_{c[0]}$ from the sole knowledge of $\phi_{c[0]}$, but we will also obtain the Peierls barrier and the weak KAM solutions (or viscosity solutions).

Hamilton-Jacobi Equation

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli,

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous,

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved.

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$
H(x, p)=\max _{v \in T_{x} M} p(v)-L(x, v)
$$

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$
H(x, p)=\max _{v \in T_{x} M} p(v)-L(x, v)
$$

Moreover, H is also Tonelli.
The Hamilton-Jacobi Equation is

$$
\begin{equation*}
H\left(x, d_{x} u\right)=c, \tag{HJc}
\end{equation*}
$$

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$
H(x, p)=\max _{v \in T_{x} M} p(v)-L(x, v)
$$

Moreover, H is also Tonelli.
The Hamilton-Jacobi Equation is

$$
\begin{equation*}
H\left(x, d_{x} u\right)=c, \tag{HJc}
\end{equation*}
$$

where $u: M \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$.

Hamilton-Jacobi Equation

The Hamiltonian $H: T^{*} M \rightarrow \mathbb{R},(x, p) \mapsto H(x, p)$ associated to L is defined by

$$
H(x, p)=\sup _{v \in T_{x} M} p(v)-L(x, v)
$$

Since L is Tonelli, not only the Hamiltonian H is finite and continuous, but the sup in its definition is achieved. Hence

$$
H(x, p)=\max _{v \in T_{x} M} p(v)-L(x, v)
$$

Moreover, H is also Tonelli.
The Hamilton-Jacobi Equation is

$$
\begin{equation*}
H\left(x, d_{x} u\right)=c, \tag{HJc}
\end{equation*}
$$

where $u: M \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$. A (viscosity) subsolution of (HJc) is a Lipschitz function $u: M \rightarrow \mathbb{R}$ such that $H\left(x, d_{x} u\right) \leq c$ for almost every $x \in M$.

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value.

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Moreover, for $c \geq c[0]$ and $x \in M$, the function $\phi_{c}(x, \cdot)$ is a subsolution of $H\left(x, d_{x} u\right)=c$.

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Moreover, for $c \geq c[0]$ and $x \in M$, the function $\phi_{c}(x, \cdot)$ is a subsolution of $H\left(x, d_{x} u\right)=c$.
There is also a concept of viscosity solutions.

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Moreover, for $c \geq c[0]$ and $x \in M$, the function $\phi_{c}(x, \cdot)$ is a subsolution of $H\left(x, d_{x} u\right)=c$.
There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_{t}^{c},

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Moreover, for $c \geq c[0]$ and $x \in M$, the function $\phi_{c}(x, \cdot)$ is a subsolution of $H\left(x, d_{x} u\right)=c$.
There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_{t}^{c}, defined as follows: for a bounded function $u: M \rightarrow \mathbb{R}$ and $t>0$, we define $T_{t}^{c} u$

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Moreover, for $c \geq c[0]$ and $x \in M$, the function $\phi_{c}(x, \cdot)$ is a subsolution of $H\left(x, d_{x} u\right)=c$.
There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_{t}^{c}, defined as follows: for a bounded function $u: M \rightarrow \mathbb{R}$ and $t>0$, we define $T_{t}^{c} u$ by

$$
T_{t}^{c} u(x)=\inf _{y \in M} u(y)+h_{t}(y, x)+c t, \text { for } x \in M
$$

Theorem There exists a subsolution $u: M \rightarrow \mathbb{R}$ of $H\left(x, d_{x} u\right)=c$ if and only if $c \geq c[0]$, where $c[0]$ is Mañé's critical value. For $c \geq c[0]$, the function $u: M \rightarrow \mathbb{R}$ is a subsolution de $H\left(x, d_{x} u\right)=c$ if and only if

$$
u(y)-u(x) \leq \phi_{c}(x, y), \text { for every } x, y \in M
$$

Moreover, for $c \geq c[0]$ and $x \in M$, the function $\phi_{c}(x, \cdot)$ is a subsolution of $H\left(x, d_{x} u\right)=c$.
There is also a concept of viscosity solutions. It would take us too much time to explain it. We will define them in an equivalent way using the Lax-Oleinik semi-group T_{t}^{c}, defined as follows: for a bounded function $u: M \rightarrow \mathbb{R}$ and $t>0$, we define $T_{t}^{c} u$ by

$$
T_{t}^{c} u(x)=\inf _{y \in M} u(y)+h_{t}(y, x)+c t, \text { for } x \in M
$$

The functions $T_{t}^{c} u, t>0$ are all continuous (even if u is not).

Theorem
The family $T_{t}^{c}, t>0$ has a common fixed point if and only if $c=c[0]$.

Theorem
The family $T_{t}^{c}, t>0$ has a common fixed point if and only if $c=c[0]$.
The (viscosity) solutions of $H\left(x, d_{x} u\right)=c$ are precisely the common fixed points of the $T_{t}^{c}, t>0$.

Theorem
The family $T_{t}^{c}, t>0$ has a common fixed point if and only if $c=c[0]$.
The (viscosity) solutions of $H\left(x, d_{x} u\right)=c$ are precisely the common fixed points of the $T_{t}^{c}, t>0$. Moreover, for every $x \in X$, the function $h^{c[0]}(x, \cdot)$ is a (viscosity) solution of $H\left(x, d_{x} u\right)=c[0]$.

Generalization:

Weak KAM Theory on Metric Spaces

We will consider a compact metric space (X, d) together with a continuous semi-metric on X.

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)
A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)
A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$,

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0.

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0. In fact, the example you should keep in mind is

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0. In fact, the example you should keep in mind is $X=M$ a compact manifold equipped with a Tonelli Lagrangian L

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0. In fact, the example you should keep in mind is $X=M$ a compact manifold equipped with a Tonelli Lagrangian L and $\phi=\phi_{c[0]}$, the Mañé potential for the Mañé critical value.

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0. In fact, the example you should keep in mind is $X=M$ a compact manifold equipped with a Tonelli Lagrangian L and $\phi=\phi_{c}[0]$, the Mañé potential for the Mañé critical value.
Note that we can also take the semi-metric $\phi=d$ on the compact metric space (X, d).

We will consider a compact metric space (X, d) together with a continuous semi-metric on X. Recall

Definition (Semi-metric)

A semi-metric ϕ on X is a function $\phi: X \times X \rightarrow \mathbb{R}$ such that

- $\phi(x, x)=0$ for all $x \in X$;
- $\phi(x, z) \leq \phi(x, y)+\phi(y, z)$ for all $x, y, z \in X$.

Note that we do not assume the semi-metric $\phi \geq 0$, because the Mañé potential for a Lagrangian systems is not always ≥ 0. In fact, the example you should keep in mind is $X=M$ a compact manifold equipped with a Tonelli Lagrangian L and $\phi=\phi_{c}[0]$, the Mañé potential for the Mañé critical value.
Note that we can also take the semi-metric $\phi=d$ on the compact metric space (X, d).

Another interesting example is the following:

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

In the sequel ϕ is a continuous semi-metric on the compact metric space (X, d).

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

In the sequel ϕ is a continuous semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$.

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

In the sequel ϕ is a continuous semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$. Note that $\phi_{\max }$ is also a semi-metric and is symmetric.

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

In the sequel ϕ is a continuous semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$. Note that $\phi_{\max }$ is also a semi-metric and is symmetric.
Definition (ϕ-subsolutions)
A ϕ-subsolution is a function $u: X \rightarrow \mathbb{R}$

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

In the sequel ϕ is a continuous semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$. Note that $\phi_{\max }$ is also a semi-metric and is symmetric.
Definition (ϕ-subsolutions)
A ϕ-subsolution is a function $u: X \rightarrow \mathbb{R}$ such that

$$
u(y)-u(x) \leq \phi(x, y), \text { for all } x, y \in X
$$

Another interesting example is the following: If ϕ is a semi-metric on X, we can define a semi-metric on $\hat{\phi}$ on $\mathscr{M}(X)$, the space of probability measures on X by

$$
\hat{\phi}(\mu, \nu)=\inf _{\gamma} \int_{X \times X} \phi(x, y) d \gamma(x, y),
$$

where inf is taken over all the probability measures $\gamma \in \mathscr{M}(X \times X)$ on $X \times X$ whose marginals are μ and ν.

In the sequel ϕ is a continuous semi-metric on the compact metric space (X, d).

It is convenient to set $\phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$. Note that $\phi_{\max }$ is also a semi-metric and is symmetric.
Definition (ϕ-subsolutions)
A ϕ-subsolution is a function $u: X \rightarrow \mathbb{R}$ such that

$$
u(y)-u(x) \leq \phi(x, y), \text { for all } x, y \in X
$$

We will denote by $\mathscr{S}_{\text {sub }}(\phi)$, the set of ϕ-subsolutions.

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proposition

1) The family $\mathscr{S}_{\text {sub }}(\phi)$ is equicontinous.

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proposition

1) The family $\mathscr{S}_{\text {sub }}(\phi)$ is equicontinous. In fact, we have $|u(y)-u(x)| \leq \phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$, for all $x, y \in X$.

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proposition

1) The family $\mathscr{S}_{\text {sub }}(\phi)$ is equicontinous. In fact, we have
$|u(y)-u(x)| \leq \phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$, for all $x, y \in X$.
2) The family $\mathscr{S}_{\text {sub }}(\phi)$ is stable under pointwise convergence.

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proposition

1) The family $\mathscr{S}_{\text {sub }}(\phi)$ is equicontinous. In fact, we have $|u(y)-u(x)| \leq \phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$, for all $x, y \in X$.
2) The family $\mathscr{S}_{\text {sub }}(\phi)$ is stable under pointwise convergence.
3) The family $\mathscr{S}_{\text {sub }}(\phi)$ is a convex subset of the set of real-valued functions. Moreover, it is stable under addition of constants, i.e. if $u \in \mathscr{S}_{\text {sub }}(\phi)$ and $c \in \mathbb{R}$, then $u+c \in \mathscr{S}_{\text {sub }}(\phi)$.

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proposition

1) The family $\mathscr{S}_{\text {sub }}(\phi)$ is equicontinous. In fact, we have $|u(y)-u(x)| \leq \phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$, for all $x, y \in X$.
2) The family $\mathscr{S}_{\text {sub }}(\phi)$ is stable under pointwise convergence.
3) The family $\mathscr{S}_{\text {sub }}(\phi)$ is a convex subset of the set of real-valued functions. Moreover, it is stable under addition of constants, i.e. if $u \in \mathscr{S}_{\text {sub }}(\phi)$ and $c \in \mathbb{R}$, then $u+c \in \mathscr{S}_{\text {sub }}(\phi)$.
4) If $u_{i}, i \in I$ is a family of functions in $\mathscr{S}_{\text {sub }}(\phi)$, then either $\inf _{i \in I} u_{i} \equiv-\infty\left(\right.$ resp. $\left.\sup _{i \in I} u_{i} \equiv+\infty\right)$ or $\inf _{i \in I} u_{i}\left(r e s p . \sup _{i \in I} u_{i}\right)$ is finite everywhere and $\inf _{i \in I} u_{i}\left(r e s p . \sup _{i \in I} u_{i}\right)$ is in $\mathscr{S}_{\text {sub }}(\phi)$.

So $u: M \rightarrow \mathbb{R}$ is in $\mathscr{S}_{\text {sub }}(\phi)$ if and only if

$$
u(y) \leq u(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proposition

1) The family $\mathscr{S}_{\text {sub }}(\phi)$ is equicontinous. In fact, we have
$|u(y)-u(x)| \leq \phi_{\max }(x, y)=\max [\phi(x, y), \phi(y, x)]$, for all $x, y \in X$.
2) The family $\mathscr{S}_{\text {sub }}(\phi)$ is stable under pointwise convergence.
3) The family $\mathscr{S}_{\text {sub }}(\phi)$ is a convex subset of the set of real-valued functions. Moreover, it is stable under addition of constants, i.e. if $u \in \mathscr{S}_{\text {sub }}(\phi)$ and $c \in \mathbb{R}$, then $u+c \in \mathscr{S}_{\text {sub }}(\phi)$.
4) If $u_{i}, i \in I$ is a family of functions in $\mathscr{S}_{\text {sub }}(\phi)$, then either $\inf _{i \in I} u_{i} \equiv-\infty\left(\right.$ resp. $\left.\sup _{i \in I} u_{i} \equiv+\infty\right)$ or $\inf _{i \in I} u_{i}\left(r e s p . \sup _{i \in I} u_{i}\right)$ is finite everywhere and $\inf _{i \in I} u_{i}\left(r e s p . \sup _{i \in I} u_{i}\right)$ is in $\mathscr{S}_{\text {sub }}(\phi)$.
5) For every $x_{0} \in X$, the functions $\phi\left(x_{0}, \cdot\right): X \rightarrow \mathbb{R}, x \mapsto \phi\left(x_{0}, x\right)$ and $-\phi\left(\cdot, x_{0}\right): X \rightarrow \mathbb{R}, x \mapsto-\phi\left(x, x_{0}\right)$ are both ϕ-subsolutions.

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$,

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution,

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.
For 4), suppose that $u_{i}, i \in I$ is a family of subsolutions.

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.
For 4), suppose that $u_{i}, i \in I$ is a family of subsolutions. We have

$$
u_{i}(y) \leq u_{i}(x)+\phi(x, y), \text { for all } x, y \in X \text { and all } i \in I .
$$

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.
For 4), suppose that $u_{i}, i \in I$ is a family of subsolutions. We have

$$
u_{i}(y) \leq u_{i}(x)+\phi(x, y), \text { for all } x, y \in X \text { and all } i \in I .
$$

Thus

$$
\inf _{i \in I} u_{i}(y) \leq \inf _{i \in I} u_{i}(x)+\phi(x, y), \text { for all } x, y \in X
$$

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\text {max }}$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.
For 4), suppose that $u_{i}, i \in I$ is a family of subsolutions. We have

$$
u_{i}(y) \leq u_{i}(x)+\phi(x, y), \text { for all } x, y \in X \text { and all } i \in I
$$

Thus

$$
\inf _{i \in I} u_{i}(y) \leq \inf _{i \in I} u_{i}(x)+\phi(x, y), \text { for all } x, y \in X
$$

Hence, since ϕ is finite everywhere,

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.
For 4), suppose that $u_{i}, i \in I$ is a family of subsolutions. We have

$$
u_{i}(y) \leq u_{i}(x)+\phi(x, y), \text { for all } x, y \in X \text { and all } i \in I
$$

Thus

$$
\inf _{i \in I} u_{i}(y) \leq \inf _{i \in I} u_{i}(x)+\phi(x, y), \text { for all } x, y \in X
$$

Hence, since ϕ is finite everywhere, the inequality above implies either $\inf _{i \in I} u_{i} \equiv-\infty$ or $\inf _{i \in I} u_{i}$ finite everywhere.

Proof.

From the inequality $u(y)-u(x) \leq \phi(x, y)$, for all $x, y \in X$, satisfied by any ϕ-subsolution, we easily obtain

$$
u(y)-u(x) \leq \phi(x, y) \leq \phi_{\max }(x, y)
$$

By symmetry of $\phi_{\max }$, we conclude that

$$
|u(y)-u(x)| \leq \phi_{\max }(x, y)
$$

The equicontinuity of the family $\mathscr{S}_{\text {sub }}(\phi)$ now follows from the uniform continuity of $\phi_{\max }$ on the compact set $X \times X$ and the fact that $\phi_{\text {max }} \equiv 0$ on the diagonal of X.
2) and 3), i.e. convexity and stability by adding a constant, follow routinely from the Definition of ϕ-subsolutions.
For 4), suppose that $u_{i}, i \in I$ is a family of subsolutions. We have

$$
u_{i}(y) \leq u_{i}(x)+\phi(x, y), \text { for all } x, y \in X \text { and all } i \in I
$$

Thus

$$
\inf _{i \in I} u_{i}(y) \leq \inf _{i \in I} u_{i}(x)+\phi(x, y), \text { for all } x, y \in X
$$

Hence, since ϕ is finite everywhere, the inequality above implies either $\inf _{i \in I} u_{i} \equiv-\infty$ or $\inf _{i \in I} u_{i}$ finite everywhere. In this last case the inequality above shows that $\inf _{i \in I} u_{i}$ is a ϕ-subsolution.

For 5), we use the fact that ϕ satisfies the Triangular Inequality, to obtain

$$
\phi\left(x_{0}, y\right) \leq \phi\left(x_{0}, x\right)+\phi(x, y)
$$

For 5), we use the fact that ϕ satisfies the Triangular Inequality, to obtain

$$
\phi\left(x_{0}, y\right) \leq \phi\left(x_{0}, x\right)+\phi(x, y)
$$

which is equivalent to

$$
\phi\left(x_{0}, y\right)-\phi\left(x_{0}, x\right) \leq \phi(x, y)
$$

For 5), we use the fact that ϕ satisfies the Triangular Inequality, to obtain

$$
\phi\left(x_{0}, y\right) \leq \phi\left(x_{0}, x\right)+\phi(x, y)
$$

which is equivalent to

$$
\phi\left(x_{0}, y\right)-\phi\left(x_{0}, x\right) \leq \phi(x, y)
$$

Hence $\phi\left(x_{0}, \cdot\right)$ is a ϕ-subsolution.

For 5), we use the fact that ϕ satisfies the Triangular Inequality, to obtain

$$
\phi\left(x_{0}, y\right) \leq \phi\left(x_{0}, x\right)+\phi(x, y)
$$

which is equivalent to

$$
\phi\left(x_{0}, y\right)-\phi\left(x_{0}, x\right) \leq \phi(x, y)
$$

Hence $\phi\left(x_{0}, \cdot\right)$ is a ϕ-subsolution. The same Triangular Inequality yields

$$
\phi\left(y, x_{0}\right) \leq \phi(y, x)+\phi\left(x, x_{0}\right),
$$

For 5), we use the fact that ϕ satisfies the Triangular Inequality, to obtain

$$
\phi\left(x_{0}, y\right) \leq \phi\left(x_{0}, x\right)+\phi(x, y),
$$

which is equivalent to

$$
\phi\left(x_{0}, y\right)-\phi\left(x_{0}, x\right) \leq \phi(x, y)
$$

Hence $\phi\left(x_{0}, \cdot\right)$ is a ϕ-subsolution.
The same Triangular Inequality yields

$$
\phi\left(y, x_{0}\right) \leq \phi(y, x)+\phi\left(x, x_{0}\right),
$$

which is equivalent to

$$
\left(-\phi\left(x, x_{0}\right)\right)-\left(-\phi\left(y, x_{0}\right)\right) \leq \phi(y, x)
$$

For 5), we use the fact that ϕ satisfies the Triangular Inequality, to obtain

$$
\phi\left(x_{0}, y\right) \leq \phi\left(x_{0}, x\right)+\phi(x, y),
$$

which is equivalent to

$$
\phi\left(x_{0}, y\right)-\phi\left(x_{0}, x\right) \leq \phi(x, y)
$$

Hence $\phi\left(x_{0}, \cdot\right)$ is a ϕ-subsolution. The same Triangular Inequality yields

$$
\phi\left(y, x_{0}\right) \leq \phi(y, x)+\phi\left(x, x_{0}\right),
$$

which is equivalent to

$$
\left(-\phi\left(x, x_{0}\right)\right)-\left(-\phi\left(y, x_{0}\right)\right) \leq \phi(y, x)
$$

Hence $-\phi\left(\cdot, x_{0}\right)$ is a ϕ-subsolution.

The next step is to define the Aubry set $\mathscr{A}(\phi)$.

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$.

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$.

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain).

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_{0}, \ldots, x_{n} with $x=x_{0}$ and $y=x_{n}$.

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_{0}, \ldots, x_{n} with $x=x_{0}$ and $y=x_{n}$. For a chain x_{0}, \ldots, x_{n} of points in X,

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_{0}, \ldots, x_{n} with $x=x_{0}$ and $y=x_{n}$. For a chain x_{0}, \ldots, x_{n} of points in X, we define its ϕ-cost c_{ϕ}

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_{0}, \ldots, x_{n} with $x=x_{0}$ and $y=x_{n}$. For a chain x_{0}, \ldots, x_{n} of points in X, we define its ϕ-cost c_{ϕ} by

$$
c_{\phi}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} \phi\left(x_{i}, x_{i+1}\right) \geq \phi\left(x_{0}, x_{n}\right)
$$

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_{0}, \ldots, x_{n} with $x=x_{0}$ and $y=x_{n}$. For a chain x_{0}, \ldots, x_{n} of points in X, we define its ϕ-cost c_{ϕ} by

$$
c_{\phi}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} \phi\left(x_{i}, x_{i+1}\right) \geq \phi\left(x_{0}, x_{n}\right)
$$

Note that, since the metric d is also a semi-metric, we can define its concatenated length ℓ_{d} in the same way

$$
\ell_{d}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(x_{i}, x_{i+1}\right) \geq d\left(x_{0}, x_{n}\right)
$$

The next step is to define the Aubry set $\mathscr{A}(\phi)$. For this we introduce the concatenated costs $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$, for $\eta \geq 0$. Recall that a chain in X is a sequence x_{0}, \ldots, x_{n} of points in X with $n \geq 1$. The point x_{0} is called the starting point (of the chain) and x_{n} is called the ending point (of the chain). A chain starting at x and ending at y is a chain x_{0}, \ldots, x_{n} with $x=x_{0}$ and $y=x_{n}$. For a chain x_{0}, \ldots, x_{n} of points in X, we define its ϕ-cost c_{ϕ} by

$$
c_{\phi}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} \phi\left(x_{i}, x_{i+1}\right) \geq \phi\left(x_{0}, x_{n}\right)
$$

Note that, since the metric d is also a semi-metric, we can define its concatenated length ℓ_{d} in the same way

$$
\ell_{d}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(x_{i}, x_{i+1}\right) \geq d\left(x_{0}, x_{n}\right)
$$

In the sequel of this work we will assume that X has at least two points.

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$.

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$,

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

Therefore $\ell_{d}\left(\xi_{n}\right) \rightarrow+\infty$, as $n \rightarrow+\infty$, since $d(x, z) \neq 0$.

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

Therefore $\ell_{d}\left(\xi_{n}\right) \rightarrow+\infty$, as $n \rightarrow+\infty$, since $d(x, z) \neq 0$.
Definition $\left(\phi^{\eta}\right)$ For $\eta \geq 0$, we define $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

Therefore $\ell_{d}\left(\xi_{n}\right) \rightarrow+\infty$, as $n \rightarrow+\infty$, since $d(x, z) \neq 0$.
Definition $\left(\phi^{\eta}\right)$ For $\eta \geq 0$, we define $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\phi^{\eta}(x, y) & =\inf \left\{c_{\phi}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y, \ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta\right\} \\
& \geq \phi(x, y)
\end{aligned}
$$

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

Therefore $\ell_{d}\left(\xi_{n}\right) \rightarrow+\infty$, as $n \rightarrow+\infty$, since $d(x, z) \neq 0$.
Definition $\left(\phi^{\eta}\right)$ For $\eta \geq 0$, we define $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\phi^{\eta}(x, y) & =\inf \left\{c_{\phi}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y, \ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta\right\} \\
& \geq \phi(x, y)
\end{aligned}
$$

Since $d(z, z)=\phi(z, z)=0$, for all $z \in X$,

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

Therefore $\ell_{d}\left(\xi_{n}\right) \rightarrow+\infty$, as $n \rightarrow+\infty$, since $d(x, z) \neq 0$.
Definition $\left(\phi^{\eta}\right)$ For $\eta \geq 0$, we define $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\phi^{\eta}(x, y) & =\inf \left\{c_{\phi}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y, \ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta\right\} \\
& \geq \phi(x, y)
\end{aligned}
$$

Since $d(z, z)=\phi(z, z)=0$, for all $z \in X$, to compute $\phi^{\eta}(x, y)$, we can restrict to chains x_{0}, \ldots, x_{n}, with $x_{i} \neq x_{i+1}$, for $i=0, \ldots, n-1$.

This implies that for every $x, y \in X$ and every $\eta \geq 0$, we can find a chain $x_{0}=x, \ldots, x_{n}=y$ with $\ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta$. In fact, for a given pair $(x, y) \in X \times X$, since X has at least two points, we can find $z \neq x$, then the chain

$$
\xi_{n}=(\underbrace{x, z, x, z, \ldots, x, z}_{x, z \text { repeated } n \text { times }}, y)
$$

satisfies

$$
\ell_{d}\left(\xi_{n}\right)=(2 n-1) d(x, z)+d(z, y) .
$$

Therefore $\ell_{d}\left(\xi_{n}\right) \rightarrow+\infty$, as $n \rightarrow+\infty$, since $d(x, z) \neq 0$.
Definition $\left(\phi^{\eta}\right)$ For $\eta \geq 0$, we define $\phi^{\eta}: X \times X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\phi^{\eta}(x, y) & =\inf \left\{c_{\phi}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y, \ell_{d}\left(x_{0}, \ldots, x_{n}\right) \geq \eta\right\} \\
& \geq \phi(x, y)
\end{aligned}
$$

Since $d(z, z)=\phi(z, z)=0$, for all $z \in X$, to compute $\phi^{\eta}(x, y)$, we can restrict to chains x_{0}, \ldots, x_{n}, with $x_{i} \neq x_{i+1}$, for $i=0, \ldots, n-1$.
The ϕ^{η} are called the concatenated costs associated to ϕ.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.
(iv) $\phi^{\eta}(x, y)=\phi(x, y)$, for all $x, y \in X$ and all $\eta \leq d(x, y)$.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.
(iv) $\phi^{\eta}(x, y)=\phi(x, y)$, for all $x, y \in X$ and all $\eta \leq d(x, y)$.

Once we have the concatenated costs,

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.
(iv) $\phi^{\eta}(x, y)=\phi(x, y)$, for all $x, y \in X$ and all $\eta \leq d(x, y)$.

Once we have the concatenated costs, we introduce the Peierls barrier.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.
(iv) $\phi^{\eta}(x, y)=\phi(x, y)$, for all $x, y \in X$ and all $\eta \leq d(x, y)$.

Once we have the concatenated costs, we introduce the Peierls barrier. Since $\eta \mapsto \phi^{\eta}(x, y)$ is non-decreasing, the limit $\lim _{\eta \rightarrow+\infty} \phi^{\eta}(x, y)=\sup _{\eta \geq 0} \phi^{\eta}(x, y) \in \mathbb{R} \cup\{+\infty\}$ exists for any $x, y \in X$.

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.
(iv) $\phi^{\eta}(x, y)=\phi(x, y)$, for all $x, y \in X$ and all $\eta \leq d(x, y)$.

Once we have the concatenated costs, we introduce the Peierls barrier. Since $\eta \mapsto \phi^{\eta}(x, y)$ is non-decreasing, the limit $\lim _{\eta \rightarrow+\infty} \phi^{\eta}(x, y)=\sup _{\eta \geq 0} \phi^{\eta}(x, y) \in \mathbb{R} \cup\{+\infty\}$ exists for any $x, y \in X$.
Definition (Peierls barrier)
The Peierls barrier (for the semi-metric ϕ) is the function $\phi^{\infty}: X \times X \rightarrow \mathbb{R} \cup\{+\infty\}$

Proposition

The concatenated costs ϕ^{η} associated to ϕ satisfy
(i) $\phi^{0}=\phi$.
(ii) $\phi \leq \phi^{\eta} \leq \phi^{\eta^{\prime}}$, for all $\eta, \eta^{\prime} \geq 0$ with $\eta^{\prime} \geq \eta$.
(iii) $\phi^{\eta+\eta^{\prime}}(x, z) \leq \phi^{\eta}(x, y)+\phi^{\eta^{\prime}}(y, z)$, for all $x, y, z \in X$ and all $\eta, \eta^{\prime} \geq 0$.
(iv) $\phi^{\eta}(x, y)=\phi(x, y)$, for all $x, y \in X$ and all $\eta \leq d(x, y)$.

Once we have the concatenated costs, we introduce the Peierls barrier. Since $\eta \mapsto \phi^{\eta}(x, y)$ is non-decreasing, the limit $\lim _{\eta \rightarrow+\infty} \phi^{\eta}(x, y)=\sup _{\eta \geq 0} \phi^{\eta}(x, y) \in \mathbb{R} \cup\{+\infty\}$ exists for any $x, y \in X$.
Definition (Peierls barrier)
The Peierls barrier (for the semi-metric ϕ) is the function $\phi^{\infty}: X \times X \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\phi^{\infty}(x, y)=\lim _{\eta \rightarrow+\infty} \phi^{\eta}(x, y)
$$

Proposition

We have

Proposition

We have
(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.

Proposition

We have
(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.
(ii) $\phi^{\infty}(x, x) \geq \phi(x, x) \geq 0$, for all $x \in X$.

Proposition

We have
(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.
(ii) $\phi^{\infty}(x, x) \geq \phi(x, x) \geq 0$, for all $x \in X$.
(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies

$$
\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi(y, z) \text { and } \phi^{\infty}(x, z) \leq \phi(x, y)+\phi^{\infty}(y, z)
$$

Proposition

We have
(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.
(ii) $\phi^{\infty}(x, x) \geq \phi(x, x) \geq 0$, for all $x \in X$.
(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies
$\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi(y, z)$ and $\phi^{\infty}(x, z) \leq \phi(x, y)+\phi^{\infty}(y, z)$.
Therefore ϕ^{∞} satisfies the triangle inequality

$$
\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi^{\infty}(y, z)
$$

Proposition

We have
(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.
(ii) $\phi^{\infty}(x, x) \geq \phi(x, x) \geq 0$, for all $x \in X$.
(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies
$\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi(y, z)$ and $\phi^{\infty}(x, z) \leq \phi(x, y)+\phi^{\infty}(y, z)$.
Therefore ϕ^{∞} satisfies the triangle inequality

$$
\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi^{\infty}(y, z)
$$

(iv) Either $\phi^{\infty}=+\infty$ or ϕ^{∞} is finite everywhere.

Proposition

We have
(i) $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for all $\eta \geq 0$.
(ii) $\phi^{\infty}(x, x) \geq \phi(x, x) \geq 0$, for all $x \in X$.
(iii) For all $x, y, z \in X$, the Peierls barrier ϕ^{∞} satisfies
$\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi(y, z)$ and $\phi^{\infty}(x, z) \leq \phi(x, y)+\phi^{\infty}(y, z)$.
Therefore ϕ^{∞} satisfies the triangle inequality

$$
\phi^{\infty}(x, z) \leq \phi^{\infty}(x, y)+\phi^{\infty}(y, z)
$$

(iv) Either $\phi^{\infty}=+\infty$ or ϕ^{∞} is finite everywhere.
(v) The Peierls barrier ϕ^{∞} is continuous, when it is finite (everywhere).

Definition
The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous.

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.
Theorem
For a given $x \in X$, the following statements are equivalent:

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.
Theorem
For a given $x \in X$, the following statements are equivalent:
(i) $x \in \mathscr{A}(\phi)$;

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.
Theorem
For a given $x \in X$, the following statements are equivalent:
(i) $x \in \mathscr{A}(\phi)$;
(ii) there exists $\eta>0$ such that $\phi^{\eta}(x, x)=0$;

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous. Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.
Theorem
For a given $x \in X$, the following statements are equivalent:
(i) $x \in \mathscr{A}(\phi)$;
(ii) there exists $\eta>0$ such that $\phi^{\eta}(x, x)=0$;
(iii) for all $\eta \geq 0$, we have $\phi^{\eta}(x, x)=0$.

Definition

The Aubry set $\mathscr{A}(\phi)$ of ϕ is defined by

$$
\mathscr{A}(\phi)=\left\{x \in X \mid \phi^{\infty}(x, x)=0\right\} .
$$

The subset $\mathscr{A}(\phi)$ is always closed since ϕ^{∞} is continuous.
Of course, the Aubry set $\mathscr{A}(\phi)$ set can be empty.
Theorem
For a given $x \in X$, the following statements are equivalent:
(i) $x \in \mathscr{A}(\phi)$;
(ii) there exists $\eta>0$ such that $\phi^{\eta}(x, x)=0$;
(iii) for all $\eta \geq 0$, we have $\phi^{\eta}(x, x)=0$.

Theorem
The Aubry $\mathscr{A}(\phi)$ is non empty if and only if the Peierls barrier ϕ^{∞} is (everywhere) finite.

Proposition If either x or y is in $\mathscr{A}(\phi)$,

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$,

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$.

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$,

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$.

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.
If we take the sup over all the $\eta \geq 0$,

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.
If we take the sup over all the $\eta \geq 0$, we obtain $\phi^{\infty}(x, y) \leq \phi(x, y)$.

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.
If we take the sup over all the $\eta \geq 0$, we obtain $\phi^{\infty}(x, y) \leq \phi(x, y)$.
The case $y \in \mathscr{A}(\phi)$ is similar.

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.
If we take the sup over all the $\eta \geq 0$, we obtain $\phi^{\infty}(x, y) \leq \phi(x, y)$.
The case $y \in \mathscr{A}(\phi)$ is similar.
Theorem If the Peierls barrier ϕ^{∞} is finite everywhere,

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.
If we take the sup over all the $\eta \geq 0$, we obtain $\phi^{\infty}(x, y) \leq \phi(x, y)$.
The case $y \in \mathscr{A}(\phi)$ is similar.
Theorem If the Peierls barrier ϕ^{∞} is finite everywhere, then, for every $x, y \in X$, there exists $z \in \mathscr{A}(\phi)$

Proposition If either x or y is in $\mathscr{A}(\phi)$, then

$$
\phi^{\infty}(x, y)=\phi(x, y)=\phi^{\eta}(x, y), \text { for every } \eta \geq 0
$$

In fact, since $\phi \leq \phi^{\eta} \leq \phi^{\infty}$, for every $\eta \geq 0$, it suffices to show that $\phi^{\infty}(x, y) \leq \phi(x, y)$. Suppose that $x \in \mathscr{A}(\phi)$, then $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Moreover
$\phi^{\eta}(x, y)=\phi^{\eta+0}(x, y) \leq \phi^{\eta}(x, x)+\phi(x, y)=\phi(x, y)$, for every $\eta \geq 0$.
If we take the sup over all the $\eta \geq 0$, we obtain $\phi^{\infty}(x, y) \leq \phi(x, y)$.
The case $y \in \mathscr{A}(\phi)$ is similar.
Theorem If the Peierls barrier ϕ^{∞} is finite everywhere, then, for every $x, y \in X$, there exists $z \in \mathscr{A}(\phi)$ such that

$$
\phi^{\infty}(x, y)=\phi^{\infty}(x, z)+\phi^{\infty}(z, y)
$$

ϕ-solutions

ϕ-solutions

Definition $\mathrm{A} \phi$-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x), \tag{Sol}
\end{equation*}
$$

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x), \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x), \tag{SolBis}
\end{equation*}
$$

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below,

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality,

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ-solution.

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ-solution.
Lemma Let $u: X \rightarrow \mathbb{R}$ be a ϕ-subsolution.

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ-solution.
Lemma Let $u: X \rightarrow \mathbb{R}$ be a ϕ-subsolution. If, for given $x, y \in X$ and $\eta \geq 0$, we have $u(x)-u(y) \geq \phi^{\eta}(y, x)$,

ϕ-solutions

Definition A ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ-solution.
Lemma Let $u: X \rightarrow \mathbb{R}$ be a ϕ-subsolution. If, for given $x, y \in X$ and $\eta \geq 0$, we have $u(x)-u(y) \geq \phi^{\eta}(y, x)$, then $u(x)-u(y)=\phi^{\eta^{\prime}}(y, x)$, for every η^{\prime}, with $0 \leq \eta^{\prime} \leq \eta$.

ϕ-solutions

Definition $\mathrm{A} \phi$-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at $x \in X$ if it satisfies the condition

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)-u(y)=\phi^{\eta}(y, x) \tag{Sol}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\exists y \in X, \exists \eta>0, u(x)=u(y)+\phi^{\eta}(y, x) \tag{SolBis}
\end{equation*}
$$

The ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (everywhere) if it is a ϕ-solution at every $x \in X$.
$\mathscr{S}(\phi)$ denotes the set of ϕ-solutions.
In fact, as shown in the Lemma below, it suffices to have the inequality \geq in (Sol) or (SolBis) instead of the equality, since we are assuming that u is a ϕ-solution.
Lemma Let $u: X \rightarrow \mathbb{R}$ be a ϕ-subsolution. If, for given $x, y \in X$ and $\eta \geq 0$, we have $u(x)-u(y) \geq \phi^{\eta}(y, x)$, then $u(x)-u(y)=\phi^{\eta^{\prime}}(y, x)$, for every η^{\prime}, with $0 \leq \eta^{\prime} \leq \eta$.
This follows from the inequalities

$$
\phi^{\eta}(y, x) \leq u(x)-u(y) \leq \phi(y, x) \leq \phi^{\eta^{\prime}}(y, x) \leq \phi^{\eta}(y, x)
$$

Lemma If $x \in \mathscr{A}(\phi)$,

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution,

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.
It is useful now to recall that
$\phi(x, y)=\phi^{\eta}(x, y)=\phi^{d(x, y)}(x, y)$, for all $x, y \in X$ and $0 \leq \eta \leq d(x, y)$.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.
It is useful now to recall that
$\phi(x, y)=\phi^{\eta}(x, y)=\phi^{d(x, y)}(x, y)$, for all $x, y \in X$ and $0 \leq \eta \leq d(x, y)$. In fact $\phi(x, y) \leq \phi^{\eta}(x, y) \leq \phi^{d(x, y)}(x, y)$, because ϕ^{η} is non-decreasing in η.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that
$\phi(x, y)=\phi^{\eta}(x, y)=\phi^{d(x, y)}(x, y)$, for all $x, y \in X$ and $0 \leq \eta \leq d(x, y)$. In fact $\phi(x, y) \leq \phi^{\eta}(x, y) \leq \phi^{d(x, y)}(x, y)$, because ϕ^{η} is non-decreasing in η. It remains to show that $\phi^{d(x, y)}(x, y) \leq \phi(x, y)$.

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that
$\phi(x, y)=\phi^{\eta}(x, y)=\phi^{d(x, y)}(x, y)$, for all $x, y \in X$ and $0 \leq \eta \leq d(x, y)$. In fact $\phi(x, y) \leq \phi^{\eta}(x, y) \leq \phi^{d(x, y)}(x, y)$, because ϕ^{η} is non-decreasing in η. It remains to show that $\phi^{d(x, y)}(x, y) \leq \phi(x, y)$. This results from the fact that the chain (x, y) satisfies $\ell_{d}(x, y)=d(x, y)$,

Lemma If $x \in \mathscr{A}(\phi)$, then every ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution at x. Therefore, to check that the ϕ-subsolution $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, it suffices to check that it is a ϕ-solution at every $y \in X \backslash \mathscr{A}(\phi)$.
Since $x \in \mathscr{A}(\phi)$, we have $\phi^{\eta}(x, x)=0$, for every $\eta \geq 0$. Hence

$$
0=u(x)-u(x)=\phi^{\eta}(x, x)=0, \text { for every } \eta \geq 0
$$

which indeed shows that u is a solution at $x \in \mathscr{A}(\phi)$.

It is useful now to recall that
$\phi(x, y)=\phi^{\eta}(x, y)=\phi^{d(x, y)}(x, y)$, for all $x, y \in X$ and $0 \leq \eta \leq d(x, y)$. In fact $\phi(x, y) \leq \phi^{\eta}(x, y) \leq \phi^{d(x, y)}(x, y)$, because ϕ^{η} is non-decreasing in η. It remains to show that $\phi^{d(x, y)}(x, y) \leq \phi(x, y)$. This results from the fact that the chain (x, y) satisfies $\ell_{d}(x, y)=d(x, y)$, which yields

$$
\phi^{d(x, y)}(x, y) \leq c_{\phi}(x, y)=\phi(x, y)
$$

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).
3) If for a given $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution en X, then $x_{0} \in \mathscr{A}(\phi)$.

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).
3) If for a given $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution en X, then $x_{0} \in \mathscr{A}(\phi)$.
For 1$)$, fix such an $x \neq x_{0}$. Since $\phi\left(x_{0}, x_{0}\right)=0$, we have $\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)$.

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).
3) If for a given $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution en X, then $x_{0} \in \mathscr{A}(\phi)$.
For 1$)$, fix such an $x \neq x_{0}$. Since $\phi\left(x_{0}, x_{0}\right)=0$, we have $\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)$. Since as we saw above $\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right)$,

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).
3) If for a given $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution en X, then $x_{0} \in \mathscr{A}(\phi)$.
For 1$)$, fix such an $x \neq x_{0}$. Since $\phi\left(x_{0}, x_{0}\right)=0$, we have $\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)$. Since as we saw above $\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right)$, we obtain

$$
\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right) .
$$

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).
3) If for a given $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution en X, then $x_{0} \in \mathscr{A}(\phi)$.
For 1$)$, fix such an $x \neq x_{0}$. Since $\phi\left(x_{0}, x_{0}\right)=0$, we have $\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)$. Since as we saw above $\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right)$, we obtain

$$
\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right) .
$$

Therefore, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x, because $d\left(x_{0}, x\right)>0$ for $x \neq x_{0}$.

Proposition 1) For every $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at every $x \neq x_{0}$.
2) Therefore, if $x_{0} \in \mathscr{A}(\phi)$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution (everywhere on X).
3) If for a given $x_{0} \in X$, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution en X, then $x_{0} \in \mathscr{A}(\phi)$.
For 1$)$, fix such an $x \neq x_{0}$. Since $\phi\left(x_{0}, x_{0}\right)=0$, we have $\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)$. Since as we saw above $\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right)$, we obtain

$$
\phi\left(x_{0}, x\right)-\phi\left(x_{0}, x_{0}\right)=\phi\left(x_{0}, x\right)=\phi^{d\left(x_{0}, x\right)}\left(x_{0}, x\right)
$$

Therefore, the function $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x, because $d\left(x_{0}, x\right)>0$ for $x \neq x_{0}$.
2) follows from 1) and the fact that a ϕ-subsolution is a ϕ-solution at every point in $\mathscr{A}(\phi)$.

To prove 3), suppose that $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x_{0},

To prove 3), suppose that $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x_{0}, then we can find $y \in X$ and $\eta>0$ such that

$$
\phi\left(x_{0}, x_{0}\right)-\phi\left(x_{0}, y\right)=\phi^{\eta}\left(y, x_{0}\right)
$$

To prove 3), suppose that $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x_{0}, then we can find $y \in X$ and $\eta>0$ such that

$$
\phi\left(x_{0}, x_{0}\right)-\phi\left(x_{0}, y\right)=\phi^{\eta}\left(y, x_{0}\right),
$$

or equivalently

$$
\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right)=0
$$

To prove 3), suppose that $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x_{0}, then we can find $y \in X$ and $\eta>0$ such that

$$
\phi\left(x_{0}, x_{0}\right)-\phi\left(x_{0}, y\right)=\phi^{\eta}\left(y, x_{0}\right)
$$

or equivalently

$$
\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right)=0
$$

Thus

$$
0=\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right) \geq \phi^{\eta+0}\left(x_{0}, x_{0}\right) \geq \phi^{\eta+0}\left(x_{0}, x_{0}\right) \geq \phi\left(x_{0}, x_{0}\right)=0
$$

To prove 3), suppose that $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x_{0}, then we can find $y \in X$ and $\eta>0$ such that

$$
\phi\left(x_{0}, x_{0}\right)-\phi\left(x_{0}, y\right)=\phi^{\eta}\left(y, x_{0}\right)
$$

or equivalently

$$
\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right)=0
$$

Thus
$0=\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right) \geq \phi^{\eta+0}\left(x_{0}, x_{0}\right) \geq \phi^{\eta+0}\left(x_{0}, x_{0}\right) \geq \phi\left(x_{0}, x_{0}\right)=0$.
Therefore $\phi^{\eta}\left(x_{0}, x_{0}\right)=0$.

To prove 3), suppose that $\phi\left(x_{0}, \cdot\right)$ is a ϕ-solution at x_{0}, then we can find $y \in X$ and $\eta>0$ such that

$$
\phi\left(x_{0}, x_{0}\right)-\phi\left(x_{0}, y\right)=\phi^{\eta}\left(y, x_{0}\right),
$$

or equivalently

$$
\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right)=0
$$

Thus
$0=\phi\left(x_{0}, y\right)+\phi^{\eta}\left(y, x_{0}\right) \geq \phi^{\eta+0}\left(x_{0}, x_{0}\right) \geq \phi^{\eta+0}\left(x_{0}, x_{0}\right) \geq \phi\left(x_{0}, x_{0}\right)=0$.
Therefore $\phi^{\eta}\left(x_{0}, x_{0}\right)=0$. Since $\eta>0$, we indeed obtain $x_{0} \in \mathscr{A}(\phi)$.

Proposition
If the Peierls barrier ϕ^{∞} is finite,

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.
Suppose that $y \in X$ is fixed.

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.
Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ-solution at y.

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.
Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ-solution at y. By a property of ϕ^{∞} given above,

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.
Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ-solution at y. By a property of ϕ^{∞} given above, we can find $z \in \mathscr{A}(\phi)$ such that

$$
\phi^{\infty}(x, y)=\phi^{\infty}(x, z)+\phi^{\infty}(z, y)
$$

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.
Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ-solution at y. By a property of ϕ^{∞} given above, we can find $z \in \mathscr{A}(\phi)$ such that

$$
\phi^{\infty}(x, y)=\phi^{\infty}(x, z)+\phi^{\infty}(z, y)
$$

Hence

$$
\phi^{\infty}(x, y)-\phi^{\infty}(x, z)=\phi^{\infty}(z, y) \geq \phi^{\eta}(z, y), \text { for every } \eta \geq 0
$$

Proposition

If the Peierls barrier ϕ^{∞} is finite, then, for every $x \in X$, the function $\phi^{\infty}(x, \cdot)$ is a ϕ-solution (everywhere on X).
We already saw that $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.
Suppose that $y \in X$ is fixed. We must show that $\phi^{\infty}(x, \cdot)$ is a ϕ-solution at y. By a property of ϕ^{∞} given above, we can find $z \in \mathscr{A}(\phi)$ such that

$$
\phi^{\infty}(x, y)=\phi^{\infty}(x, z)+\phi^{\infty}(z, y)
$$

Hence

$$
\phi^{\infty}(x, y)-\phi^{\infty}(x, z)=\phi^{\infty}(z, y) \geq \phi^{\eta}(z, y), \text { for every } \eta \geq 0
$$

which implies the equality, because $\phi^{\infty}(x, \cdot)$ is a ϕ-subsolution.

Of course, we would like to show that ϕ-solutions are stable by uniform convergence

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous).

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X),

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X), then for every $x \in X$, we can find $y \in X$

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that

$$
u(x)-u(y)=\phi^{\eta}(y, x), \text { for all } \eta \geq 0
$$

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that

$$
u(x)-u(y)=\phi^{\eta}(y, x), \text { for all } \eta \geq 0
$$

which is equivalent to

$$
u(x)-u(y)=\phi^{\infty}(y, x)
$$

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that

$$
u(x)-u(y)=\phi^{\eta}(y, x), \text { for all } \eta \geq 0
$$

which is equivalent to

$$
u(x)-u(y)=\phi^{\infty}(y, x)
$$

Moreover, we can take $y \in \mathscr{A}(\phi)$.

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that

$$
u(x)-u(y)=\phi^{\eta}(y, x), \text { for all } \eta \geq 0
$$

which is equivalent to

$$
u(x)-u(y)=\phi^{\infty}(y, x)
$$

Moreover, we can take $y \in \mathscr{A}(\phi)$.
We now give a couple of corollaries.

Of course, we would like to show that ϕ-solutions are stable by uniform convergence (or even simple convergence, since the familly ϕ-solutions is contained in the family of ϕ-solutions, which isequicontinuous). This will be a consequence of the following Theorem.

Theorem If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution (on all of X), then for every $x \in X$, we can find $y \in X$ such that

$$
u(x)-u(y)=\phi^{\eta}(y, x), \text { for all } \eta \geq 0
$$

which is equivalent to

$$
u(x)-u(y)=\phi^{\infty}(y, x)
$$

Moreover, we can take $y \in \mathscr{A}(\phi)$.
We now give a couple of corollaries.
Corollary
The ϕ-solutions are stable by uniform convergence.

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$.

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$.

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ-solution at x.

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ-solution at x. By the Theorem above applied to u_{n},

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ-solution at x. By the Theorem above applied to u_{n}, for each n we can find $y_{n} \in X$, such that

$$
u_{n}(x)-u_{n}\left(y_{n}\right)=\phi^{\infty}\left(y_{n}, x\right)
$$

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ-solution at x. By the Theorem above applied to u_{n}, for each n we can find $y_{n} \in X$, such that

$$
u_{n}(x)-u_{n}\left(y_{n}\right)=\phi^{\infty}\left(y_{n}, x\right)
$$

Extracting if necessary, we can suppose $y_{n} \rightarrow y$.

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ-solution at x. By the Theorem above applied to u_{n}, for each n we can find $y_{n} \in X$, such that

$$
u_{n}(x)-u_{n}\left(y_{n}\right)=\phi^{\infty}\left(y_{n}, x\right)
$$

Extracting if necessary, we can suppose $y_{n} \rightarrow y$. Since the convergence $u_{n} \rightarrow u$ is uniform and ϕ^{∞} is continuous, passing to the limit, we obtain

$$
u(x)-u(y)=\phi^{\infty}(y, x)
$$

Suppose that the $u_{n}: M \rightarrow \mathbb{R}$ are ϕ-solutions that converge uniformly on X to $u: X \rightarrow \mathbb{R}$. Fix $x \in X$. Let us show that u is a ϕ-solution at x. By the Theorem above applied to u_{n}, for each n we can find $y_{n} \in X$, such that

$$
u_{n}(x)-u_{n}\left(y_{n}\right)=\phi^{\infty}\left(y_{n}, x\right)
$$

Extracting if necessary, we can suppose $y_{n} \rightarrow y$. Since the convergence $u_{n} \rightarrow u$ is uniform and ϕ^{∞} is continuous, passing to the limit, we obtain

$$
u(x)-u(y)=\phi^{\infty}(y, x)
$$

Therefore u is a ϕ-solution at x.

The next Corollary is well-known for Tonelli Lagrangians.

The next Corollary is well-known for Tonelli Lagrangians.
Corollary If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, we have

$$
u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

The next Corollary is well-known for Tonelli Lagrangians.
Corollary If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, we have

$$
u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

Since u is a ϕ-subsolution, we have $u(x) \leq u(y)+\phi(y, x)$.

The next Corollary is well-known for Tonelli Lagrangians.
Corollary If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, we have

$$
u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

Since u is a ϕ-subsolution, we have $u(x) \leq u(y)+\phi(y, x)$. Hence taking the inf on $y \in \mathscr{A}(\phi)$, we obtain

$$
u(x) \leq \inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

The next Corollary is well-known for Tonelli Lagrangians.
Corollary If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, we have

$$
u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

Since u is a ϕ-subsolution, we have $u(x) \leq u(y)+\phi(y, x)$. Hence taking the inf on $y \in \mathscr{A}(\phi)$, we obtain

$$
u(x) \leq \inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

To show the equality $u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)$,

The next Corollary is well-known for Tonelli Lagrangians.
Corollary If $u: X \rightarrow \mathbb{R}$ is a ϕ-solution, we have

$$
u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

Since u is a ϕ-subsolution, we have $u(x) \leq u(y)+\phi(y, x)$. Hence taking the inf on $y \in \mathscr{A}(\phi)$, we obtain

$$
u(x) \leq \inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)
$$

To show the equality $u(x)=\inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x)$, we apply the Theorem above to find $y_{0} \in \mathscr{A}(\phi)$ such that

$$
\begin{aligned}
u(x) & =u\left(y_{0}\right)+\phi^{\infty}\left(y_{0}, x\right) \\
& \geq u\left(y_{0}\right)+\phi\left(y_{0}, x\right) \\
& \geq \inf _{y \in \mathscr{A}(\phi)} u(y)+\phi(y, x) \\
& \geq u(x) .
\end{aligned}
$$

