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Background on Weak KAM Theory on Lagrangian systems



(M, g) is a compact Riemannian manifold.

If (x , v) ∈ TM, with x ∈ M and v ∈ TxM, we set

‖v‖x =
√

gx(v , v).

If γ : [a, b]→ M is a piecewise C1 curve, its g -length `g (γ) is
defined by

`g (γ) =

∫ b

a
‖γ̇(s)‖γ(s) ds.

The distance on M is the Riemannian distance obtained from the
Riemannian metric, namely

d(x , y) = inf
γ
`g (γ),

where the inf is taken on all curves γ : [a, b]→ M, with
γ(a) = x , γ(b) = y .
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Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C2 function
L : TM → R, (x , v) 7→ L(x , v), that satisfies:

(i) (C2 convexity in speed) For every (x , v) ∈ TM, the second
partial derivative ∂2/∂v2L(x , v) with respect to v is positive
definite.

(ii) (Uniform Superlinearity)

L(x , v)

‖v‖x
→ +∞, uniformly in x , when ‖v‖x → +∞.

This second condition is equivalent to:

(ii’) For every K ≥ 0, we can find a finite constant C (K ) such that

L(x , v) ≥ K‖v‖x + C (K ), for every (x , v) ∈ TM.



Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C2 function
L : TM → R, (x , v) 7→ L(x , v), that satisfies:

(i) (C2 convexity in speed) For every (x , v) ∈ TM, the second
partial derivative ∂2/∂v2L(x , v) with respect to v is positive
definite.

(ii) (Uniform Superlinearity)

L(x , v)

‖v‖x
→ +∞, uniformly in x , when ‖v‖x → +∞.

This second condition is equivalent to:

(ii’) For every K ≥ 0, we can find a finite constant C (K ) such that

L(x , v) ≥ K‖v‖x + C (K ), for every (x , v) ∈ TM.



Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C2 function
L : TM → R, (x , v) 7→ L(x , v), that satisfies:

(i) (C2 convexity in speed) For every (x , v) ∈ TM, the second
partial derivative ∂2/∂v2L(x , v) with respect to v is positive
definite.

(ii) (Uniform Superlinearity)

L(x , v)

‖v‖x
→ +∞, uniformly in x , when ‖v‖x → +∞.

This second condition is equivalent to:

(ii’) For every K ≥ 0, we can find a finite constant C (K ) such that

L(x , v) ≥ K‖v‖x + C (K ), for every (x , v) ∈ TM.



Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C2 function
L : TM → R, (x , v) 7→ L(x , v), that satisfies:

(i) (C2 convexity in speed) For every (x , v) ∈ TM, the second
partial derivative ∂2/∂v2L(x , v) with respect to v is positive
definite.

(ii) (Uniform Superlinearity)

L(x , v)

‖v‖x
→ +∞, uniformly in x , when ‖v‖x → +∞.

This second condition is equivalent to:

(ii’) For every K ≥ 0, we can find a finite constant C (K ) such that

L(x , v) ≥ K‖v‖x + C (K ), for every (x , v) ∈ TM.



Definition (Tonelli Lagrangian)

A Tonelli Lagrangian is a C2 function
L : TM → R, (x , v) 7→ L(x , v), that satisfies:

(i) (C2 convexity in speed) For every (x , v) ∈ TM, the second
partial derivative ∂2/∂v2L(x , v) with respect to v is positive
definite.

(ii) (Uniform Superlinearity)

L(x , v)

‖v‖x
→ +∞, uniformly in x , when ‖v‖x → +∞.

This second condition is equivalent to:

(ii’) For every K ≥ 0, we can find a finite constant C (K ) such that

L(x , v) ≥ K‖v‖x + C (K ), for every (x , v) ∈ TM.



The action L(γ) of the piecewise C1 curve γ : [a, b]→ M is∫ b

a
L(γ(s), γ̇(s)) ds.

For t > 0, we define ht : M ×M → R by

ht(x , y) = inf
γ

∫ t

0
L(γ(s), γ̇(s)) ds,

where the inf is taken on all curves γ : [0, t]→ M, with
γ(0) = x , γ(t) = y .
This ht(x , y) is the minimal action needed to go from x to y in
time t.

Definition (Mañé Potential)

For c ∈ R, the Mañé potential φc : M ×M → [−∞,+∞[ is
defined by

φc(x , y) = inf
t∈R

ht(x , y) + ct.
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Definition (Peierls Barrier)

The Peierls barrier hc is defined by

hc(x , y) = lim inf
t→+∞

ht(x , y) + ct.

Hence φc(x , y) ≤ hc(x , y), for all x , y ∈ M.

Proposition

1) There exists a unique constant c[0] ∈ R such that φc ≡ −∞,
for c < c[0] and φc is everywhere finite, for c ≥ c[0].
This constant c[0] is called the Mañé critical value. It satisfies:

− inf
x∈M

L(x , 0) ≤ c[0] ≤ − inf
TM

L.

2) We have hc =


≡ −∞, for c < c[0],

≡ +∞, for c > c[0],

finite everywhere, for c = c[0].
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3) Moreover, for c ≥ c[0], the Mañé potential φc is a semi-metric
on M, such that φc(x , y) ≤ (A + c)d(x , y),

where
A = sup{L(x , v) | (x , v) ∈ TM, ‖v‖x ≤ 1}.

Definition (Semi-metric)

A semi-metric φ on the set X is a function φ : X× → R such that

(a) φ(x , x) = 0, for every x ∈ X .

(b) φ(x , z) ≤ φ(x , y) + φ(y , z), for all x , y , z ∈ X .

Definition (Aubry set)

For c ∈ R, the (projected) Aubry set Ac is defined by

Ac = {x ∈ M | hc(x , x) = 0}.

Proposition

Ac = ∅ for c 6= c[0] and Ac[0] 6= ∅
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When you look at the definition of φc as the inf in t of the ht + ct

and the definition of hc as the lim inf of the ht + ct as t → +∞, it
seems impossible to get hc solely from the knowledge of φc . As we
will see, a 20 years old idea due to Antonio Siconolfi to obtain the
(projected) Aubry set Ac[0] from φc[0], will allow us not only to
obtain Ac[0] from the sole knowledge of φc[0], but we will also
obtain the Peierls barrier and the weak KAM solutions (or viscosity
solutions).
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Hamilton-Jacobi Equation

The Hamiltonian H : T ∗M → R, (x , p) 7→ H(x , p) associated to L
is defined by

H(x , p) = sup
v∈TxM

p(v)− L(x , v).

Since L is Tonelli, not only the Hamiltonian H is finite and
continuous, but the sup in its definition is achieved. Hence

H(x , p) = max
v∈TxM

p(v)− L(x , v).

Moreover, H is also Tonelli.
The Hamilton-Jacobi Equation is

H(x , dxu) = c, (HJc)

where u : M → R and c ∈ R. A (viscosity) subsolution of (HJc) is
a Lipschitz function u : M → R such that H(x , dxu) ≤ c for
almost every x ∈ M.
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Theorem There exists a subsolution u : M → R of
H(x , dxu) = c if and only if c ≥ c[0], where c[0] is Mañé’s critical
value.

For c ≥ c[0], the function u : M → R is a subsolution de
H(x , dxu) = c if and only if

u(y)− u(x) ≤ φc(x , y), for every x , y ∈ M.

Moreover, for c ≥ c[0] and x ∈ M, the function φc(x , ·) is a
subsolution of H(x , dxu) = c .
There is also a concept of viscosity solutions. It would take us too
much time to explain it. We will define them in an equivalent way
using the Lax-Oleinik semi-groupT c

t , defined as follows: for a
bounded function u : M → R and t > 0, we define T c

t u by

T c
t u(x) = inf

y∈M
u(y) + ht(y , x) + ct, for x ∈ M.

The functions T c
t u, t > 0 are all continuous (even if u is not).
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value. For c ≥ c[0], the function u : M → R is a subsolution de
H(x , dxu) = c if and only if

u(y)− u(x) ≤ φc(x , y), for every x , y ∈ M.

Moreover, for c ≥ c[0] and x ∈ M, the function φc(x , ·) is a
subsolution of H(x , dxu) = c .
There is also a concept of viscosity solutions. It would take us too
much time to explain it. We will define them in an equivalent way
using the Lax-Oleinik semi-groupT c

t , defined as follows: for a
bounded function u : M → R and t > 0, we define T c

t u by

T c
t u(x) = inf

y∈M
u(y) + ht(y , x) + ct, for x ∈ M.

The functions T c
t u, t > 0 are all continuous (even if u is not).



Theorem There exists a subsolution u : M → R of
H(x , dxu) = c if and only if c ≥ c[0], where c[0] is Mañé’s critical
value. For c ≥ c[0], the function u : M → R is a subsolution de
H(x , dxu) = c if and only if

u(y)− u(x) ≤ φc(x , y), for every x , y ∈ M.

Moreover, for c ≥ c[0] and x ∈ M, the function φc(x , ·) is a
subsolution of H(x , dxu) = c .
There is also a concept of viscosity solutions. It would take us too
much time to explain it. We will define them in an equivalent way
using the Lax-Oleinik semi-groupT c

t , defined as follows: for a
bounded function u : M → R and t > 0, we define T c

t u by

T c
t u(x) = inf

y∈M
u(y) + ht(y , x) + ct, for x ∈ M.

The functions T c
t u, t > 0 are all continuous (even if u is not).



Theorem
The familyT c

t , t > 0 has a common fixed point if and only if
c = c[0].

The (viscosity) solutions of H(x , dxu) = c are precisely the
common fixed points of the T c

t , t > 0.
Moreover, for every x ∈ X , the function hc[0](x , ·) is a (viscosity)
solution of H(x , dxu) = c[0].
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Generalization:
Weak KAM Theory on Metric Spaces



We will consider a compact metric space (X , d) together with a
continuous semi-metric on X .

Recall

Definition (Semi-metric)

A semi-metric φ on X is a function φ : X × X → R such that

I φ(x , x) = 0 for all x ∈ X ;

I φ(x , z) ≤ φ(x , y) + φ(y , z) for all x , y , z ∈ X .

Note that we do not assume the semi-metric φ ≥ 0, because the
Mañé potential for a Lagrangian systems is not always ≥ 0.
In fact, the example you should keep in mind is X = M a compact
manifold equipped with a Tonelli Lagrangian L and φ = φc[0], the
Mañé potential for the Mañé critical value.
Note that we can also take the semi-metric φ = d on the compact
metric space (X , d).
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Note that we can also take the semi-metric φ = d on the compact
metric space (X , d).



We will consider a compact metric space (X , d) together with a
continuous semi-metric on X . Recall

Definition (Semi-metric)

A semi-metric φ on X is a function φ : X × X → R such that

I φ(x , x) = 0 for all x ∈ X ;

I φ(x , z) ≤ φ(x , y) + φ(y , z) for all x , y , z ∈ X .

Note that we do not assume the semi-metric φ ≥ 0,

because the
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Mañé potential for a Lagrangian systems is not always ≥ 0.

In fact, the example you should keep in mind is X = M a compact
manifold equipped with a Tonelli Lagrangian L and φ = φc[0], the
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Another interesting example is the following:

If φ is a semi-metric
on X , we can define a semi-metric on φ̂ on M (X ), the space of
probability measures on X by

φ̂(µ, ν) = inf
γ

∫
X×X

φ(x , y) dγ(x , y),

where inf is taken over all the probability measures γ ∈M (X ×X )
on X × X whose marginals are µ and ν.

In the sequel φ is a continuous semi-metric on the compact metric
space (X , d).

It is convenient to set φmax(x , y) = max[φ(x , y), φ(y , x)]. Note
that φmax is also a semi-metric and is symmetric.

Definition (φ-subsolutions)

A φ-subsolution is a function u : X → R such that

u(y)− u(x) ≤ φ(x , y), for all x , y ∈ X .

We will denote by Ssub(φ), the set of φ-subsolutions.
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So u : M → R is in Ssub(φ) if and only if

u(y) ≤ u(x) + φ(x , y), for all x , y ∈ X .

Proposition

1) The family Ssub(φ) is equicontinous. In fact, we have

|u(y)−u(x)| ≤ φmax(x , y) = max[φ(x , y), φ(y , x)], for all x , y ∈ X.

2) The family Ssub(φ) is stable under pointwise convergence.
3) The family Ssub(φ) is a convex subset of the set of real-valued
functions. Moreover, it is stable under addition of constants, i.e. if
u ∈ Ssub(φ) and c ∈ R, then u + c ∈ Ssub(φ).
4) If ui , i ∈ I is a family of functions in Ssub(φ), then either
inf i∈I ui ≡ −∞ (resp. supi∈I ui ≡ +∞) or inf i∈I ui (resp. supi∈I ui )
is finite everywhere and inf i∈I ui (resp. supi∈I ui ) is in Ssub(φ).
5) For every x0 ∈ X, the functions φ(x0, ·) : X → R, x 7→ φ(x0, x)
and −φ(·, x0) : X → R, x 7→ −φ(x , x0) are both φ-subsolutions.
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Proof.
From the inequality u(y)− u(x) ≤ φ(x , y), for all x , y ∈ X ,

satisfied by any φ-subsolution, we easily obtain
u(y)− u(x) ≤ φ(x , y) ≤ φmax(x , y).

By symmetry of φmax, we conclude that
|u(y)− u(x)| ≤ φmax(x , y).

The equicontinuity of the family Ssub(φ) now follows from the
uniform continuity of φmax on the compact set X × X and the fact
that φmax ≡ 0 on the diagonal of X .
2) and 3), i.e. convexity and stability by adding a constant, follow
routinely from the Definition of φ-subsolutions.
For 4), suppose that ui , i ∈ I is a family of subsolutions. We have

ui (y) ≤ ui (x) + φ(x , y), for all x , y ∈ X and all i ∈ I .

Thus
inf
i∈I

ui (y) ≤ inf
i∈I

ui (x) + φ(x , y), for all x , y ∈ X .

Hence, since φ is finite everywhere, the inequality above implies
either inf i∈I ui ≡ −∞ or inf i∈I ui finite everywhere. In this last
case the inequality above shows that inf i∈I ui is a φ-subsolution.
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For 5), we use the fact that φ satisfies the Triangular Inequality, to
obtain

φ(x0, y) ≤ φ(x0, x) + φ(x , y),

which is equivalent to

φ(x0, y)− φ(x0, x) ≤ φ(x , y).

Hence φ(x0, ·) is a φ-subsolution.
The same Triangular Inequality yields

φ(y , x0) ≤ φ(y , x) + φ(x , x0),

which is equivalent to

(−φ(x , x0))− (−φ(y , x0)) ≤ φ(y , x).

Hence −φ(·, x0) is a φ-subsolution.
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The next step is to define the Aubry set A (φ).

For this we
introduce the concatenated costs φη : X × X → R, for η ≥ 0.
Recall that a chain in X is a sequence x0, . . . , xn of points in X
with n ≥ 1. The point x0 is called the starting point (of the chain)
and xn is called the ending point (of the chain). A chain starting
at x and ending at y is a chain x0, . . . , xn with x = x0 and y = xn.
For a chain x0, . . . , xn of points in X , we define its φ-cost cφ by

cφ(x0, . . . , xn) =
n−1∑
i=0

φ(xi , xi+1) ≥ φ(x0, xn).

Note that, since the metric d is also a semi-metric, we can define
its concatenated length `d in the same way

`d(x0, . . . , xn) =
n−1∑
i=0

d(xi , xi+1) ≥ d(x0, xn).

In the sequel of this work we will assume that X has at least two
points.
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This implies that for every x , y ∈ X and every η ≥ 0, we can find a
chain x0 = x , . . . , xn = y with `d(x0, . . . , xn) ≥ η.

In fact, for a given pair (x , y) ∈ X × X , since X has at least two
points, we can find z 6= x , then the chain

ξn = (x , z , x , z , . . . , x , z︸ ︷︷ ︸
x , z repeated n times

, y)

satisfies
`d(ξn) = (2n − 1)d(x , z) + d(z , y).

Therefore `d(ξn)→ +∞, as n→ +∞, since d(x , z) 6= 0.

Definition (φη) For η ≥ 0, we define φη : X × X → R by

φη(x , y) = inf{cφ(x0, . . . , xn) | x0 = x , xn = y , `d(x0, . . . , xn) ≥ η}
≥ φ(x , y).

Since d(z , z) = φ(z , z) = 0, for all z ∈ X , to compute φη(x , y), we
can restrict to chains x0, . . . , xn, with xi 6= xi+1, for
i = 0, . . . , n − 1.
The φη are called the concatenated costs associated to φ.
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Proposition

The concatenated costs φη associated to φ satisfy

(i) φ0 = φ.

(ii) φ ≤ φη ≤ φη′ , for all η, η′ ≥ 0 with η′ ≥ η.

(iii) φη+η
′
(x , z) ≤ φη(x , y) + φη

′
(y , z), for all x , y , z ∈ X and all

η, η′ ≥ 0.

(iv) φη(x , y) = φ(x , y), for all x , y ∈ X and all η ≤ d(x , y).

Once we have the concatenated costs, we introduce the Peierls
barrier. Since η 7→ φη(x , y) is non-decreasing, the limit
limη→+∞ φ

η(x , y) = supη≥0 φ
η(x , y) ∈ R ∪ {+∞} exists for any

x , y ∈ X .

Definition (Peierls barrier)

The Peierls barrier (for the semi-metric φ) is the function
φ∞ : X × X → R ∪ {+∞} defined by

φ∞(x , y) = lim
η→+∞

φη(x , y).
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Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Proposition

We have

(i) φ ≤ φη ≤ φ∞, for all η ≥ 0.

(ii) φ∞(x , x) ≥ φ(x , x) ≥ 0, for all x ∈ X.

(iii) For all x , y , z ∈ X, the Peierls barrier φ∞ satisfies

φ∞(x , z) ≤ φ∞(x , y)+φ(y , z) and φ∞(x , z) ≤ φ(x , y)+φ∞(y , z).

Therefore φ∞ satisfies the triangle inequality

φ∞(x , z) ≤ φ∞(x , y) + φ∞(y , z).

(iv) Either φ∞ = +∞ or φ∞ is finite everywhere.

(v) The Peierls barrier φ∞ is continuous, when it is finite
(everywhere).



Definition
The Aubry set A (φ) of φ is defined by

A (φ) = {x ∈ X | φ∞(x , x) = 0}.

The subset A (φ) is always closed since φ∞ is continuous.
Of course, the Aubry set A (φ) set can be empty.

Theorem
For a given x ∈ X, the following statements are equivalent:

(i) x ∈ A (φ);

(ii) there exists η > 0 such that φη(x , x) = 0;

(iii) for all η ≥ 0, we have φη(x , x) = 0.

Theorem
The Aubry A (φ) is non empty if and only if the Peierls barrier φ∞

is (everywhere) finite.
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Proposition If either x or y is in A (φ),

then

φ∞(x , y) = φ(x , y) = φη(x , y), for every η ≥ 0.

In fact, since φ ≤ φη ≤ φ∞, for every η ≥ 0, it suffices to show
that φ∞(x , y) ≤ φ(x , y). Suppose that x ∈ A (φ), then
φη(x , x) = 0, for every η ≥ 0. Moreover

φη(x , y) = φη+0(x , y) ≤ φη(x , x)+φ(x , y) = φ(x , y), for every η ≥ 0.

If we take the sup over all the η ≥ 0, we obtain
φ∞(x , y) ≤ φ(x , y).
The case y ∈ A (φ) is similar.

Theorem If the Peierls barrier φ∞ is finite everywhere, then, for
every x , y ∈ X, there exists z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).
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φ-solutions

Definition A φ-subsolution u : X → R is a φ-solution at x ∈ X if
it satisfies the condition

∃y ∈ X ,∃η > 0, u(x)− u(y) = φη(y , x), (Sol)

equivalently
∃y ∈ X , ∃η > 0, u(x) = u(y) + φη(y , x), (SolBis)

The φ-subsolution u : X → R is a φ-solution (everywhere) if it is a
φ-solution at every x ∈ X .

S (φ) denotes the set of φ-solutions.
In fact, as shown in the Lemma below, it suffices to have the
inequality ≥ in (Sol) or (SolBis) instead of the equality, since we
are assuming that u is a φ-solution.

Lemma Let u : X → R be a φ-subsolution. If, for given x , y ∈ X
and η ≥ 0, we have u(x)− u(y) ≥ φη(y , x), then
u(x)− u(y) = φη

′
(y , x), for every η′, with 0 ≤ η′ ≤ η.

This follows from the inequalities
φη(y , x) ≤ u(x)− u(y) ≤ φ(y , x) ≤ φη′(y , x) ≤ φη(y , x).
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Proposition 1) For every x0 ∈ X, the function φ(x0, ·) is a
φ-solution at every x 6= x0.

2) Therefore, if x0 ∈ A (φ), the function φ(x0, ·) is a φ-solution
(everywhere on X).
3) If for a given x0 ∈ X, the function φ(x0, ·) is a φ-solution en X ,
then x0 ∈ A (φ).

For 1), fix such an x 6= x0. Since φ(x0, x0) = 0, we have
φ(x0, x)− φ(x0, x0) = φ(x0, x). Since as we saw above
φ(x0, x) = φd(x0,x)(x0, x), we obtain

φ(x0, x)− φ(x0, x0) = φ(x0, x) = φd(x0,x)(x0, x).

Therefore, the function φ(x0, ·) is a φ-solution at x , because
d(x0, x) > 0 for x 6= x0.
2) follows from 1) and the fact that a φ-subsolution is a φ-solution
at every point in A (φ).
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To prove 3), suppose that φ(x0, ·) is a φ-solution at x0,

then we
can find y ∈ X and η > 0 such that

φ(x0, x0)− φ(x0, y) = φη(y , x0),

or equivalently
φ(x0, y) + φη(y , x0) = 0.

Thus

0 = φ(x0, y)+φη(y , x0) ≥ φη+0(x0, x0) ≥ φη+0(x0, x0) ≥ φ(x0, x0) = 0.

Therefore φη(x0, x0) = 0. Since η > 0, we indeed obtain
x0 ∈ A (φ).
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Proposition

If the Peierls barrier φ∞ is finite,

then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.

Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed.

We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y .

By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above,

we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Proposition

If the Peierls barrier φ∞ is finite, then, for every x ∈ X, the
function φ∞(x , ·) is a φ-solution (everywhere on X).

We already saw that φ∞(x , ·) is a φ-subsolution.
Suppose that y ∈ X is fixed. We must show that φ∞(x , ·) is a
φ-solution at y . By a property of φ∞ given above, we can find
z ∈ A (φ) such that

φ∞(x , y) = φ∞(x , z) + φ∞(z , y).

Hence

φ∞(x , y)− φ∞(x , z) = φ∞(z , y) ≥ φη(z , y), for every η ≥ 0,

which implies the equality, because φ∞(x , ·) is a φ-subsolution.



Of course, we would like to show that φ-solutions are stable by
uniform convergence

(or even simple convergence, since the familly
φ-solutions is contained in the family of φ-solutions, which
isequicontinuous). This will be a consequence of the following
Theorem.

Theorem If u : X → R is a φ-solution (on all of X), then for
every x ∈ X, we can find y ∈ X such that

u(x)− u(y) = φη(y , x), for all η ≥ 0,

which is equivalent to

u(x)− u(y) = φ∞(y , x).

Moreover, we can take y ∈ A (φ).

We now give a couple of corollaries.

Corollary

The φ-solutions are stable by uniform convergence.
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Suppose that the un : M → R are φ-solutions that converge
uniformly on X to u : X → R.

Fix x ∈ X . Let us show that u is a
φ-solution at x . By the Theorem above applied to un, for each n
we can find yn ∈ X , such that

un(x)− un(yn) = φ∞(yn, x).

Extracting if necessary, we can suppose yn → y . Since the
convergence un → u is uniform and φ∞ is continuous, passing to
the limit, we obtain

u(x)− u(y) = φ∞(y , x).

Therefore u is a φ-solution at x .
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The next Corollary is well-known for Tonelli Lagrangians.

Corollary If u : X → R is a φ-solution, we have

u(x) = inf
y∈A (φ)

u(y) + φ(y , x).

Since u is a φ-subsolution, we have u(x) ≤ u(y) + φ(y , x). Hence
taking the inf on y ∈ A (φ), we obtain

u(x) ≤ inf
y∈A (φ)

u(y) + φ(y , x).

To show the equality u(x) = infy∈A (φ) u(y) + φ(y , x), we apply
the Theorem above to find y0 ∈ A (φ) such that

u(x) = u(y0) + φ∞(y0, x)

≥ u(y0) + φ(y0, x)

≥ inf
y∈A (φ)

u(y) + φ(y , x)

≥ u(x).
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