The Toda Lattice and Symplectic Balls

Yaron Ostrover
Tel-Aviv University

Based on a joint work with Vinicius Ramos and Daniele Sepe.
Symplectic Dynamics at INdAM
Rome, May 2023

The Plan of the Talk

The Plan of the Talk

Rhombic Dodecahedron

Epitome Astronomiae Copernicanae [Kepler, 1618]

The Plan of the Talk

Rhombic Dodecahedron

Minkowski Billiard Dynamics

The Plan of the Talk

The Plan of the Talk

Rhombic Dodecahedron

Epitome Astronomiae Copernicanae [Kepler, 1618]

$$
H(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}}
$$

The Toda Lattice Model (M. Toda, 1967)

Minkowski Billiard Dynamics

Symplectic Balls

Symplectic Balls and Lagrangian Products

Symplectic Balls and Lagrangian Products

Question: What could be said about the svmplectic image of a ball?

Symplectic Balls and Lagrangian Products

Question: What could be said about the symplectic image of a ball?
Motivation: Viterbo's volume-capacity conjecture for convex bodies.

Symplectic Balls and Lagrangian Products

Question: What could be said about the symplectic image of a ball?
Motivation: Viterbo's volume-capacity conjecture for convex bodies.
Question: Which configurations $A \times_{L} B$ are symplectomorphic to a ball?

Symplectic Balls and Lagrangian Products

Question: What could be said about the symplectic image of a ball?
Motivation: Viterbo's volume-capacity conjecture for convex bodies.
Question: Which configurations $A \times_{L} B$ are symplectomorphic to a ball?

A Symplectic Ball in Disguise

A Symplectic Ball in Disguise

Theorem (O-Ramos-Sepe, 2023):

A Symplectic Ball in Disguise

Theorem (O-Ramos-Sepe, 2023):

More precisely:

$$
\begin{aligned}
& \mathcal{S}^{n}=\left\{\mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i}=0, q_{i}-q_{i+1}<1 \text { for all } i\right\} \\
& \mathcal{R}^{n}=\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0, \max _{i} p_{i}-\min _{i} p_{i}<1\right\}
\end{aligned}
$$

Theorem (O-Ramos-Sepe, 2023): $\mathcal{S}^{n} \times \mathcal{R}^{n}$ is symplectomorphic to a ball.

Other Examples

The Ellipsoid E(a, b):

$$
a<b<2 a
$$

$$
b=2 a
$$

$$
b>2 a
$$

The Polydiscs $\mathrm{P}(1,1)$ and $\mathrm{P}(1,3)$:

Lagrangian Products and Minkowski Billiards

Lagrangian Products and Minkowski Billiards

Assume $K \subset \mathbb{R}_{q}^{n}$ and $T \subset \mathbb{R}_{p}^{n}$ are convex sets.

Lagrangian Products and Minkowski Billiards

Assume $K \subset \mathbb{R}_{q}^{n}$ and $T \subset \mathbb{R}_{p}^{n}$ are convex sets.

$$
\mathfrak{X}(q, p)= \begin{cases}\left(\nabla\|y\|_{T}, 0\right), & (q, p) \in \operatorname{int}(K) \times \partial T, \\ \left(0,-\nabla\left\|_{x}\right\|_{K}\right), & (q, p) \in \partial K \times \operatorname{int}(T) .\end{cases}
$$

Lagrangian Products and Minkowski Billiards

Assume $K \subset \mathbb{R}_{q}^{n}$ and $T \subset \mathbb{R}_{p}^{n}$ are convex sets.

$$
\mathfrak{X}(q, p)= \begin{cases}\left(\nabla\|y\|_{T}, 0\right), & (q, p) \in \operatorname{int}(K) \times \partial T, \\ \left(0,-\nabla\left\|_{x}\right\|_{K}\right), & (q, p) \in \partial K \times \operatorname{int}(T) .\end{cases}
$$

Lagrangian Products and Minkowski Billiards

Assume $K \subset \mathbb{R}_{q}^{n}$ and $T \subset \mathbb{R}_{p}^{n}$ are convex sets.

$$
\mathfrak{X}(q, p)= \begin{cases}\left(\nabla\|y\|_{T}, 0\right), & (q, p) \in \operatorname{int}(K) \times \partial T \\ \left(0,-\nabla\left\|_{x}\right\|_{K}\right), & (q, p) \in \partial K \times \operatorname{int}(T) .\end{cases}
$$

The Reeb flow of the Lagrangian pair (K, T) corresponds to billiard dynamics in K w.r.t the "geometry induced by T^{\prime}.

A Special Billiard Dynamics in the Simplex

A Special Billiard Dynamics in the Simplex

Question: Which configuration $\Delta^{n} \times_{L} T$ is symplectomorphic to a ball?

A Special Billiard Dynamics in the Simplex

Question: Which configuration $\Delta^{n} \times_{L} T$ is symplectomorphic to a ball?
Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão): In R^{4}, for smooth strictly convex bodies: Zoll \Rightarrow "Symplectic ball"

A Special Billiard Dynamics in the Simplex

Question: Which configuration $\Delta^{n} \times_{L} T$ is symplectomorphic to a ball?
Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão): In R^{4}, for smooth strictly convex bodies: Zoll \Rightarrow "Symplectic ball"

Question: for which "geometry" the billiard in the simplex is "Zoll"?

A Special Billiard Dynamics in the Simplex

Question: Which configuration $\Delta^{n} \times_{L} T$ is symplectomorphic to a ball?
Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão): In R^{4}, for smooth strictly convex bodies: Zoll \Rightarrow "Symplectic ball"

Question: for which "geometry" the billiard in the simplex is "Zoll"?

Answer (in dim 2): the hexagonal geometry.

Technical (and Conceptual) Difficulties

Technical (and Conceptual) Difficulties

Problem: how to prove that this configuration is a symplectic ball?

Technical (and Conceptual) Difficulties

Problem: how to prove that this configuration is a symplectic ball?

$$
\cong B
$$

Natural approach: use "integrability"

Technical (and Conceptual) Difficulties

Problem: how to prove that this configuration is a symplectic ball?

$$
\cong B
$$

Natural approach: use "integrability"

$$
H(q, p)=\frac{1}{2}|p|^{2}+U(q) \quad J(q, p)=\frac{1}{3} \operatorname{Re}\left(p^{3}\right)+p \times \nabla U(q) .
$$

Technical (and Conceptual) Difficulties

Problem: how to prove that this configuration is a symplectic ball?

Natural approach: use "integrability"

$$
H(q, p)=\frac{1}{2}|p|^{2}+U(q) \quad J(q, p)=\frac{1}{3} \operatorname{Re}\left(p^{3}\right)+p \times \nabla U(q) .
$$

Main Problem: find `suitable' cycles in the Arnold-Liouville Thm.

Technical (and Conceptual) Difficulties

Problem: how to prove that this configuration is a symplectic ball?

Natural approach: use "integrability"

$$
H(q, p)=\frac{1}{2}|p|^{2}+U(q) \quad J(q, p)=\frac{1}{3} \operatorname{Re}\left(p^{3}\right)+p \times \nabla U(q) .
$$

Main Problem: find `suitable' cycles in the Arnold-Liouville Thm.
Serendipity: this can be done via the Toda lattice model.

Toda Lattice and Symplectic Balls

Goal: The Lagrangian product of a regular simplex and a symmetric region in \mathbb{R}^{n} is symplectomorphic to a toric domain.

Toda Lattice and Symplectic Balls

Goal: The Lagrangian product of a regular simplex and a symmetric region in \mathbb{R}^{n} is symplectomorphic to a toric domain.

Idea \#1: The Reeb flow of the Lagrangian pair (K, T) corresponds to billiard dynamics in K w.r.t the "geometry induced by T".

Toda Lattice and Symplectic Balls

Goal: The Lagrangian product of a regular simplex and a symmetric region in \mathbb{R}^{n} is symplectomorphic to a toric domain.

Idea \#1: The Reeb flow of the Lagrangian pair (K, T) corresponds to billiard dynamics in K w.r.t the "geometry induced by T".

Idea \#2: Billiard in the Simplex \longleftrightarrow elastic collisions of particles on a finite (frictionless) ring.

(a)

(b)

Toda Lattice and Symplectic Balls

Goal: The Lagrangian product of a regular simplex and a symmetric region in \mathbb{R}^{n} is symplectomorphic to a toric domain.

Idea \#1: The Reeb flow of the Lagrangian pair (K, T) corresponds to billiard dynamics in K w.r.t the "geometry induced by T ".

Idea \#2: Billiard in the Simplex \longleftrightarrow elastic collisions of particles on a finite (frictionless) ring.

Idea \#3: such systems of collisions of particles are related to the (completely integrable) Toda lattice systems:

$$
H(p, q)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} e^{q_{j}-q_{j+1}}
$$

A Deformation of the Toda Lattice

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the potential converges to

$$
\left\{\begin{array}{c}
0, \text { if } q_{i}-q_{i+1}<1, \text { for all } i=1, \ldots, n, \\
\infty, \text { if } q_{i}-q_{i+1}>1, \text { for some } i=1, \ldots, n
\end{array}\right.
$$

The flow of $X_{H_{c}}$ converges to the billiard flow in

$$
\left\{\mathbf{q} \in \mathbb{R}^{n} \mid q_{i}-q_{i+1}<1, \text { for all } i=1, \ldots, n\right\}
$$

The level lines of the potential energy

Billiard in an equilateral triangle can be obtained from a three particles Toda lattice with some kind of limiting procedure

The Toda lattice \& The Lax Pair Formulation

The Toda lattice \& The Lax Pair Formulation

$$
H(p, q)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} e^{q_{j}-q_{j+1}}
$$

The Toda lattice \& The Lax Pair Formulation

$$
H(p, q)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} e^{q_{j}-q_{j+1}} \quad a_{j}=-\frac{1}{2} p_{j}, \quad b_{j}=\frac{1}{2} e^{\left(q_{j}-q_{j+1}\right) / 2} \text { (Flaschka coordinates) }
$$

The Toda lattice \& The Lax Pair Formulation

$$
\begin{aligned}
& H(p, q)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} e^{q_{j}-q_{j+1}} \quad a_{j}=-\frac{1}{2} p_{j}, \quad b_{j}=\frac{1}{2} e^{\left(q_{j}-q_{j+1}\right) / 2} \\
& \text { (Flaschka coordinates) } \\
& H(L)=\frac{1}{2} \operatorname{Trace}\left(L^{2}\right) \\
& \dot{L}=B L-L B:=[B, L]
\end{aligned}
$$

$$
\begin{gathered}
H(L)=\frac{1}{2} \operatorname{Trace}\left(L^{2}\right) \\
\dot{L}=B L-L B:=[B, L] \\
L=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \cdots & \cdots \\
b_{1} & a_{2} & b_{2} & & \cdots \\
0 & b_{2} & a_{3} & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & b_{n-1} \\
0 & 0 & \cdots & b_{n-1} & a_{n}
\end{array}\right) \quad B=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & \cdots & \cdots \\
-b_{1} & 0 & b_{2} & & \cdots \\
0 & -b_{2} & 0 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & b_{n-1} \\
0 & 0 & \cdots & -b_{n-1} & 0
\end{array}\right) \text { Lax pair. }
\end{gathered}
$$

The Toda lattice \& The Lax Pair Formulation

$$
\begin{gathered}
H(p, q)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} e^{q_{j}-q_{j+1}} \quad \begin{array}{r}
a_{j}=-\frac{1}{2} p_{j}, \quad b_{j}=\frac{1}{2} e^{\left(q_{j}-q_{j+1}\right) / 2} \\
\text { (Flaschka coordinates) }
\end{array} \\
H(L)=\frac{1}{2} \operatorname{Trace}\left(L^{2}\right) \\
\dot{L}=B L-L B:=[B, L] \\
L=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \cdots & \cdots \\
b_{1} & a_{2} & b_{2} & & \cdots \\
0 & b_{2} & a_{3} & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & b_{n-1} \\
0 & 0 & \cdots & b_{n-1} & a_{n}
\end{array}\right) \quad B=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & \cdots & \cdots \\
-b_{1} & 0 & b_{2} & & \cdots \\
0 & -b_{2} & 0 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & b_{n-1} \\
0 & 0 & \cdots & -b_{n-1} & 0
\end{array}\right) \text { Lax pair } .
\end{gathered}
$$

Note: the Spectrum of L is invariant under the flow.

The Toda lattice \& The Lax Pair Formulation

$$
\begin{aligned}
& H(p, q)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=1}^{n-1} e^{q_{j}-q_{j+1}} \quad a_{j}=-\frac{1}{2} p_{j}, \quad b_{j}=\frac{1}{2} e^{\left(q_{j}-q_{j+1}\right) / 2} \\
& \text { (Flaschka coordinates) } \\
& H(L)=\frac{1}{2} \operatorname{Trace}\left(L^{2}\right) \\
& \dot{L}=B L-L B:=[B, L] \\
& L=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \cdots & \cdots \\
b_{1} & a_{2} & b_{2} & & \cdots \\
0 & b_{2} & a_{3} & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & b_{n-1} \\
0 & 0 & \cdots & b_{n-1} & a_{n}
\end{array}\right) \quad B=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & \cdots & \cdots \\
-b_{1} & 0 & b_{2} & & \cdots \\
0 & -b_{2} & 0 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & b_{n-1} \\
0 & 0 & \cdots & -b_{n-1} & 0
\end{array}\right) \text { Lax pair } .
\end{aligned}
$$

Note: the Spectrum of L is invariant under the flow.
Theorem [Toda, Flaschka-McLaughlin, Moser.....]: The system is completely integrable, and there are global action angle coordinates.

The Action-Angle Coordinates

There is a difference equation related to L :

$$
a_{k-1} y_{k-1}(\lambda)+b_{k} y_{k}(\lambda)+a_{k} y_{k+1}(\lambda)=\lambda y_{k}(\lambda)
$$

We can associate to it a discriminant $\Delta(\lambda)$.
Theorem (Flaschka-McLaughlin, van Moerbeke, Moser)
Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n+2}$ be the roots of $\Delta(\lambda)^{2}-4$.
Then the action coordinates $\phi=\left(I_{1}, \ldots, I_{n}\right)$ are given by

$$
I_{i}=(n+1) \int_{\lambda_{2 i}}^{\lambda_{2 i+1}} \cosh ^{-1}\left|\frac{\Delta(\lambda)}{2}\right| d \lambda,
$$

and they induce a symplectomorphism

$$
\Phi:\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n+1} \mid \sum_{i} q_{i}=\sum_{i} p_{i}=0\right\} \longrightarrow \mathbb{R}^{2 n}
$$

The Main Result

Let $\rho: \mathbb{R}^{n+1} \rightarrow[0, \infty)^{n}$ defined by

$$
\rho\left(p_{1}, \ldots, p_{n+1}\right)=\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right)
$$

where $\sigma \in S_{n+1}$ such that $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$.

Theorem (O-Ramos-Sepe, 2023):

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\epsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\epsilon) \Delta^{n} \times_{L} A
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to $\mathbb{X}_{(n+1) \rho(A)}$.

Open Questions

For which polytopes P is the product $\Delta^{n} \times P$ symplectomorphic to a ball?

Figure: The Fedorov polyhedra
What about other root-systems?

Symplectic Packing Problems?

Is this a Symplectic Ball?

The Octacube (24-cell).

Equality in Viterbo's Conjecture and "combinatorially Zoll" (Chaidez-Hutchings)

The End

Thank you for your attention!

 Any questions?
The Rhombic Dodecahedron as a Torus

Configuration spaces of hard spheres

O. B. Eriçok, ${ }^{*}$ K. Ganesan, ${ }^{\dagger}$ and J. K. Mason ${ }^{\ddagger}$

Materials Science and Engineering, University of California, Davis, CA, 95616, USA.

FIG. 2: A 3-torus \mathbb{T}^{3} is obtained by identifying opposite faces of a rhombic dodecahedron. The vectors \mathbf{a}_{1} and \mathbf{a}_{2} are respectively the unit directions in the x and y axes. The remaining four \mathbf{a}_{i} pass through the centers of the lower faces.

Toric Domains

Toric domains

Definition

A toric domain $\mathbb{X}_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $\mathbb{X}_{\Omega}=\mu^{-1}(\Omega)$, where $\Omega \subset[0, \infty)^{n}$ is an open set and

$$
\mu: \mathbb{C}^{n} \rightarrow[0, \infty)^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Example (Cylinder)

$Z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}$

Example (Ellipsoid)
$\pi\left|z_{2}\right|^{2}$

$E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b} \leq 1\right.\right\}$

The Arnold-Liouville Theorem

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ such that
$\left\{H_{i}, H_{j}\right\}=0$ for all i, j.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.
- Let U be an open set such that $F(U)$ is simply-connected and does not contain critical values. Then there exists a diffeomorphism $\phi: F(U) \rightarrow \Omega$ and a symplectomorphism $\Phi: U \rightarrow \mathbb{X}_{\Omega}$ such that the following diagram commutes.

- The map ϕ can be obtained by action coordinates:

$$
\phi(c)=\left(\oint_{\gamma_{1}^{c}} \lambda, \ldots, \oint_{\gamma_{n}^{c}} \lambda\right) .
$$

