Bézout's theorem and topological persistence

Leonid Polterovich, Tel Aviv

Rome, 2023
with Lev Buhovsky, Jordan Payette, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees.

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees. Can we extend this statement in the following directions?

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees.
Can we extend this statement in the following directions?
(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on Riemannian manifolds (inspired by Arnold, 2003 combined with Donnelly-Fefferman, 1998);

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees.
Can we extend this statement in the following directions?
(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on Riemannian manifolds (inspired by Arnold, 2003 combined with Donnelly-Fefferman, 1998);
(ii) Intersection of affine submanifolds - the transcendental Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees.
Can we extend this statement in the following directions?
(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on Riemannian manifolds (inspired by Arnold, 2003 combined with Donnelly-Fefferman, 1998);
(ii) Intersection of affine submanifolds - the transcendental Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.
NO! Evidence (à la Buhovsky-M.Sodin-Logunov) for (i), famous Cornalba-Shiffman counterexample for (ii).

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees.
Can we extend this statement in the following directions?
(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on Riemannian manifolds (inspired by Arnold, 2003 combined with Donnelly-Fefferman, 1998);
(ii) Intersection of affine submanifolds - the transcendental Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.
NO! Evidence (à la Buhovsky-M.Sodin-Logunov) for (i), famous Cornalba-Shiffman counterexample for (ii).
But YES... if one cuts small oscillations, i.e. removes intersections which do not persist after a mild perturbation.

What is this lecture about?

Bézout theorem, $1779 d$ generic hypersurfaces in $\mathbb{C} P^{d}$ have a number of intersection points given by the product of their degrees.
Can we extend this statement in the following directions?
(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on Riemannian manifolds (inspired by Arnold, 2003 combined with Donnelly-Fefferman, 1998);
(ii) Intersection of affine submanifolds - the transcendental Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.
NO! Evidence (à la Buhovsky-M.Sodin-Logunov) for (i), famous Cornalba-Shiffman counterexample for (ii).
But YES... if one cuts small oscillations, i.e. removes intersections which do not persist after a mild perturbation.

Tool - persistence modules and barcodes: convenient algebraic/combinatorial tool for book-keeping information on oscillation and topology of (sub)level sets of functions on manifolds.

Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of topological data analysis.
Barcode $\mathcal{B}=\left\{l_{j}, m_{j}\right\}$-finite collection of intervals l_{j} with multiplicities $m_{j}, l_{j}=\left(a_{j}, b_{j}\right], a_{j}<b_{j} \leq+\infty$.

Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of topological data analysis.
Barcode $\mathcal{B}=\left\{l_{j}, m_{j}\right\}$-finite collection of intervals l_{j} with multiplicities $m_{j}, l_{j}=\left(a_{j}, b_{j}\right], a_{j}<b_{j} \leq+\infty$.
Bottleneck distance between barcodes: \mathcal{B}, \mathcal{C} are δ-matched, $\delta>0$ if after erasing some intervals in \mathcal{B} and \mathcal{C} of length $<2 \delta$ we can match the rest in 1-to- 1 manner with error at most δ at each end-point.

$$
d_{b o t}(\mathcal{B}, \mathcal{C})=\inf \delta
$$

Figure: Matching

Persistence modules

\mathcal{F} - a field.

Persistence modules

\mathcal{F} - a field.
Persistence module: a pair (V, π), where $V_{t}, t \in \mathbb{R}$ are \mathcal{F}-vector spaces, $\operatorname{dim} V_{t}<\infty, V_{s}=0$ for all $s \ll 0$.
$\pi_{s t}: V_{s} \rightarrow V_{t}, s<t$ linear maps: $\forall s<t<r$

Persistence modules

\mathcal{F} - a field.
Persistence module: a pair (V, π), where $V_{t}, t \in \mathbb{R}$ are \mathcal{F}-vector spaces, $\operatorname{dim} V_{t}<\infty, V_{s}=0$ for all $s \ll 0$.
$\pi_{s t}: V_{s} \rightarrow V_{t}, s<t$ linear maps: $\forall s<t<r$

Regularity: For all but finite number of jump points $t \in \mathbb{R}$, there exists a neighborhood U of t such that $\pi_{s r}$ is an isomorphism for all $s, r \in U$. Extra assumption ("semicontinuity") at jump points.

Structure theorem

Interval module $(\mathcal{F}(a, b], \kappa)$, $a \in \mathbb{R}, b \in \mathbb{R} \cup+\infty$:
$\mathcal{F}(a, b]_{t}=\mathcal{F}$ for $t \in(a, b]$ and $\mathcal{F}(a, b]_{t}=0$ otherwise; $\kappa_{s t}=\mathbb{1}$ for $s, t \in(a, b]$ and $\kappa_{s t}=0$ otherwise.

Figure: Interval module

Interval module $(\mathcal{F}(a, b], \kappa)$, $a \in \mathbb{R}, b \in \mathbb{R} \cup+\infty$:
$\mathcal{F}(a, b]_{t}=\mathcal{F}$ for $t \in(a, b]$ and $\mathcal{F}(a, b]_{t}=0$ otherwise; $\kappa_{s t}=\mathbb{1}$ for $s, t \in(a, b]$ and $\kappa_{s t}=0$ otherwise.

Figure: Interval module

Structure theorem: For every persistence module (V, π) there exists unique barcode $\mathcal{B}(V)=\left\{\left(I_{j}, m_{j}\right)\right\}$ such that $V=\oplus \mathcal{F}\left(l_{j}\right)^{m_{j}}$.

Persistence in Morse theory

M-compact manifold, $f: M \rightarrow \mathbb{R}$-Morse function.

Persistence in Morse theory

M-compact manifold, $f: M \rightarrow \mathbb{R}$-Morse function.
Persistence module $V_{t}(f):=H_{*}(\{f<t\})$
H_{*}-homology with coefficients in a field.
Persistence morphisms are induced by the inclusions of sublevels
$\{f<s\} \hookrightarrow\{f<t\}, \quad s<t$.
$\mathcal{B}(f)$ - barcode of $V(f)$

Persistence in Morse theory

M-compact manifold, $f: M \rightarrow \mathbb{R}$-Morse function.
Persistence module $V_{t}(f):=H_{*}(\{f<t\})$
H_{*}-homology with coefficients in a field.
Persistence morphisms are induced by the inclusions of sublevels
$\{f<s\} \hookrightarrow\{f<t\}, \quad s<t$.
$\mathcal{B}(f)$ - barcode of $V(f)$
Stability Theorem (Cohen-Steiner,Edelsbrunner,Harer, 2007)
$\|f\|:=\max |f|$-uniform norm
$\left(C^{\infty}(X),\|\cdot\|\right) \rightarrow\left(\right.$ Barcodes, $\left.d_{b o t}\right), \quad f \mapsto \mathcal{B}(f)$ is 1-Lipshitz.

Persistence in Morse theory

M-compact manifold, $f: M \rightarrow \mathbb{R}$-Morse function.
Persistence module $V_{t}(f):=H_{*}(\{f<t\})$
H_{*}-homology with coefficients in a field.
Persistence morphisms are induced by the inclusions of sublevels
$\{f<s\} \hookrightarrow\{f<t\}, \quad s<t$.
$\mathcal{B}(f)$ - barcode of $V(f)$
Stability Theorem (Cohen-Steiner,Edelsbrunner,Harer, 2007)
$\| f| |:=\max |f|$-uniform norm
$\left(C^{\infty}(X),\|\cdot\|\right) \rightarrow\left(\right.$ Barcodes, $\left.d_{\text {bot }}\right), \quad f \mapsto \mathcal{B}(f)$ is 1-Lipshitz.
"Long" bars: $N_{\delta}(f)$ - number of bars in $\mathcal{B}(f)$ of length $>\delta$.
Cohen-Steiner-Edelsbrunner-Mileyko (2010)

Long bars vs. Sobolev norms

Theorem[BP $\left.{ }^{3} S^{2}\right], 2022$
$N_{\delta}(|f|) \leq C_{1} \delta^{-n / k}| | f \|_{k, p}^{n / k}+C_{2}, \forall \delta>0$

Long bars vs. Sobolev norms

Theorem[BP $\left.{ }^{3} S^{2}\right], 2022$
$N_{\delta}(|f|) \leq C_{1} \delta^{-n / k}| | f \|_{k, p}^{n / k}+C_{2}, \forall \delta>0$

Earlier results:

$p=\infty$ (uniform derivative bounds) Kronrod, Vitushkin (50-ies), Yomdin (1985)

Long bars vs. Sobolev norms

Theorem $\left[B P^{3} S^{2}\right], 2022$
$N_{\delta}(|f|) \leq C_{1} \delta^{-n / k}\|f\|_{k, p}^{n / k}+C_{2}, \forall \delta>0$
Earlier results:
$p=\infty$ (uniform derivative bounds) Kronrod, Vitushkin (50-ies), Yomdin (1985)
$k=1, p=\infty$ Cohen-Steiner-Edelsbrunner-Mileyko (uses N_{δ})

Long bars vs. Sobolev norms

Theorem $\left[B P^{3} S^{2}\right], 2022$
$N_{\delta}(|f|) \leq C_{1} \delta^{-n / k}\|f\|_{k, p}^{n / k}+C_{2}, \forall \delta>0$
Earlier results:
$p=\infty$ (uniform derivative bounds) Kronrod, Vitushkin (50-ies), Yomdin (1985)
$k=1, p=\infty$ Cohen-Steiner-Edelsbrunner-Mileyko (uses N_{δ})
$n=2, k=2, p=2$ P.-M.Sodin (2007) (geometric trick) + I.P.- P.-Stojisavljevic (2017) (uses N_{δ})

Long bars vs. Sobolev norms

Theorem $\left[B P^{3} S^{2}\right], 2022$
$N_{\delta}(|f|) \leq C_{1} \delta^{-n / k}\|f\|_{k, p}^{n / k}+C_{2}, \forall \delta>0$
Earlier results:
$p=\infty$ (uniform derivative bounds) Kronrod, Vitushkin (50-ies), Yomdin (1985)
$k=1, p=\infty$ Cohen-Steiner-Edelsbrunner-Mileyko (uses N_{δ})
$n=2, k=2, p=2$ P.-M.Sodin (2007) (geometric trick) +
I.P.- P.-Stojisavljevic (2017) (uses N_{δ})

Generalization: oscillation of sections of vector bundles (cf. a problem of V.Arnold, 2003)

Long bars vs. Sobolev norms

Theorem[$\left.B P^{3} S^{2}\right], 2022$
$N_{\delta}(|f|) \leq C_{1} \delta^{-n / k}\|f\|_{k, p}^{n / k}+C_{2}, \forall \delta>0$

Earlier results:

$p=\infty$ (uniform derivative bounds) Kronrod, Vitushkin (50-ies), Yomdin (1985)
$k=1, p=\infty$ Cohen-Steiner-Edelsbrunner-Mileyko (uses N_{δ})
$n=2, k=2, p=2$ P.-M.Sodin (2007) (geometric trick) +
I.P.- P.-Stojisavljevic (2017) (uses N_{δ})

Generalization: oscillation of sections of vector bundles (cf. a problem of V.Arnold, 2003)

Symplectic digression: Floer persistence modules P.-Shelukhin (2014). N_{δ}-count related to entropy Cineli-Ginzburg-Gurel (2021), G-G-Mazzucchelli (2022)

Ideas of the proof

Step 1. Approximate by polynomials on small cubes, use Milnor's bound (1964) \sharp (critical points) \leq deg $^{\text {dim }}$, and Morse theory. Cf.

Yomdin, innovation: multiscale/stopping time.

Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit for persistence modules (non-existent in 1985).

Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit for persistence modules (non-existent in 1985).

Subadditivity Theorem. $\left[B P^{3} S^{2}\right]$, 2022 Let $U \rightarrow V \rightarrow W$ be an exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.

Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit for persistence modules (non-existent in 1985).

Subadditivity Theorem. $\left[B P^{3} S^{2}\right], 2022$ Let $U \rightarrow V \rightarrow W$ be an exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.

Uses algebraic ideas (extension of persistence modules) inspired by Skraba-Turner (2020)

Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit for persistence modules (non-existent in 1985).

Subadditivity Theorem. $\left[B P^{3} S^{2}\right]$, 2022 Let $U \rightarrow V \rightarrow W$ be an exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.

Uses algebraic ideas (extension of persistence modules) inspired by Skraba-Turner (2020)

Cf. Amplitudes (Giunti, Nolan, Otter, Waas, 2021) - mind 2δ.

Spectral geometry

Laplace-Beltrami operator: M^{n} - closed Riemannian manifold

Spectral geometry

Laplace-Beltrami operator: M^{n} - closed Riemannian manifold $\Delta f=-\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}(M)$

Spectral geometry

Laplace-Beltrami operator: M^{n} - closed Riemannian manifold $\Delta f=-\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}(M)$
Discrete positive spectrum: $\Delta f_{\lambda}=\lambda f_{\lambda}$.
\mathcal{F}_{λ} - span of eigenfunctions with eigenvalues $\leq \lambda$ Donnelly-Fefferman philosophy (1988) : $f \in \mathcal{F}_{\lambda}, \lambda \gg 1$, "similar" to polynomial of deg $=\sqrt{\lambda}$

Spectral geometry

Laplace-Beltrami operator: M^{n} - closed Riemannian manifold $\Delta f=-\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}(M)$
Discrete positive spectrum: $\Delta f_{\lambda}=\lambda f_{\lambda}$.
\mathcal{F}_{λ} - span of eigenfunctions with eigenvalues $\leq \lambda$
Donnelly-Fefferman philosophy (1988) : $f \in \mathcal{F}_{\lambda}, \lambda \gg 1$, "similar" to polynomial of deg $=\sqrt{\lambda}$
$Z_{f}=\{f=0\}$ - nodal set

Spectral geometry

Laplace-Beltrami operator: M^{n} - closed Riemannian manifold $\Delta f=-\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}(M)$
Discrete positive spectrum: $\Delta f_{\lambda}=\lambda f_{\lambda}$.
\mathcal{F}_{λ} - span of eigenfunctions with eigenvalues $\leq \lambda$
Donnelly-Fefferman philosophy (1988) : $f \in \mathcal{F}_{\lambda}, \lambda \gg 1$,
"similar" to polynomial of deg $=\sqrt{\lambda}$
$Z_{f}=\{f=0\}$ - nodal set
Example: On sphere S^{n} with round metric,
let f_{1}, \ldots, f_{n} - be generic eigenfunctions with eigenvalue $\lambda=d(d+n-1)$
f_{i} - homogeneous polynomial of degree d on \mathbb{R}^{n+1}
Then $\left|\bigcap_{i} Z_{f_{i}}\right| \leq \operatorname{const}(n) \cdot \lambda^{n / 2}$, agrees with Bézout thm.

Spectral geometry

Laplace-Beltrami operator: M^{n} - closed Riemannian manifold $\Delta f=-\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}(M)$
Discrete positive spectrum: $\Delta f_{\lambda}=\lambda f_{\lambda}$.
\mathcal{F}_{λ} - span of eigenfunctions with eigenvalues $\leq \lambda$
Donnelly-Fefferman philosophy (1988) : $f \in \mathcal{F}_{\lambda}, \lambda \gg 1$,
"similar" to polynomial of deg $=\sqrt{\lambda}$
$Z_{f}=\{f=0\}$ - nodal set
Example: On sphere S^{n} with round metric, let f_{1}, \ldots, f_{n} - be generic eigenfunctions with eigenvalue $\lambda=d(d+n-1)$
f_{i} - homogeneous polynomial of degree d on \mathbb{R}^{n+1}
Then $\left|\bigcap_{i} Z_{f_{i}}\right| \leq \operatorname{const}(n) \cdot \lambda^{n / 2}$, agrees with Bézout thm.
Random setting: Expectation $\approx \lambda^{n / 2}$ (Gichev, 2009). Similar bound on certain homogeneous Riemannian manifolds (Akhiezer-Kazarnovskii, 2017).

Coarse Bezout

Persistent intersection count: $Z_{f}:=\{f=0\}$
$z_{0}(f, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(Z_{f}\right) \rightarrow H_{0}(\{|f|<\delta\})\right)$

Coarse Bezout

Persistent intersection count: $Z_{f}:=\{f=0\}$
$z_{0}(f, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(Z_{f}\right) \rightarrow H_{0}(\{|f|<\delta\})\right)$
Let $f_{1}, \ldots, f_{n} \in \mathcal{F}_{\lambda},\left\|f_{j}\right\|_{L^{2}}=1, j=1, \ldots n$, $f=\left(f_{1}^{2}+\cdots f_{n}^{2}\right)^{1 / 2}, Z_{f}=\cap_{i} Z_{f_{i}}$.

Coarse Bezout

Persistent intersection count: $Z_{f}:=\{f=0\}$
$z_{0}(f, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(Z_{f}\right) \rightarrow H_{0}(\{|f|<\delta\})\right)$
Let $f_{1}, \ldots, f_{n} \in \mathcal{F}_{\lambda},\left\|f_{j}\right\|_{L^{2}}=1, j=1, \ldots n$, $f=\left(f_{1}^{2}+\cdots f_{n}^{2}\right)^{1 / 2}, Z_{f}=\cap_{i} Z_{f_{i}}$.

$n=2, Z_{f_{1}} \cap Z_{f_{2}}=\{f=0\}=\{1,2,3\}$.
$z_{0}=2$ as points 2,3 land in the same component of $\{f<\delta\}$.

Coarse Bezout

Persistent intersection count: $Z_{f}:=\{f=0\}$
$z_{0}(f, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(Z_{f}\right) \rightarrow H_{0}(\{|f|<\delta\})\right)$
Let $f_{1}, \ldots, f_{n} \in \mathcal{F}_{\lambda},\left\|f_{j}\right\|_{L^{2}}=1, j=1, \ldots n$, $f=\left(f_{1}^{2}+\cdots f_{n}^{2}\right)^{1 / 2}, Z_{f}=\cap_{i} Z_{f_{i}}$.

$n=2, Z_{f_{1}} \cap Z_{f_{2}}=\{f=0\}=\{1,2,3\}$.
$z_{0}=2$ as points 2,3 land in the same component of $\{f<\delta\}$.
Theorem $\left[B P^{3} S^{2}\right], 2022$ Let $k>n / 2$ be an integer, $\delta>0$.

$$
z_{0}(f, \delta) \leq \frac{C_{1}}{\delta^{n / k}}(\lambda+1)^{\frac{n}{2}}+C_{2}
$$

where C_{1}, C_{2} depend on n, k and metric.

In progress with Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

In progress with Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Transcendental Bézout problem

In progress with Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Starting point: Serre's G.A.G.A.: complex projective analytic geometry reduces to algebraic geometry.

Transcendental Bézout problem

In progress with Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Starting point: Serre's G.A.G.A.: complex projective analytic geometry reduces to algebraic geometry.

Example - Chow's thm.: Every closed complex submanifold of $\mathbb{C} P^{n}$ is algebraic.

Transcendental Bézout problem

In progress with Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Starting point: Serre's G.A.G.A.: complex projective analytic geometry reduces to algebraic geometry.

Example - Chow's thm.: Every closed complex submanifold of $\mathbb{C} P^{n}$ is algebraic.

Fails in affine setting:
$f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=e^{z}-1=\left(e^{x} \cos y-1\right)+i e^{x} \sin y, z=x+i y$. $Z_{f}=\{2 \pi k i, k \in \mathbb{Z}\}$.
Not biholomorphically equivalent to any algebraic (and hence finite) proper subset of \mathbb{C}.

Transcendental Bézout problem

In progress with Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Starting point: Serre's G.A.G.A.: complex projective analytic geometry reduces to algebraic geometry.

Example - Chow's thm.: Every closed complex submanifold of $\mathbb{C} P^{n}$ is algebraic.

Fails in affine setting:
$f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=e^{z}-1=\left(e^{x} \cos y-1\right)+i e^{x} \sin y, z=x+i y$.
$Z_{f}=\{2 \pi k i, k \in \mathbb{Z}\}$.
Not biholomorphically equivalent to any algebraic (and hence finite) proper subset of \mathbb{C}.

Resolution: replace the notion of the degree of a polynomial.

Maximum modulus

B_{r}-closed ball of radius $r, \mu(f, r)=\max _{z \in B_{r}}|f(z)|$
B_{r}-closed ball of radius $r, \mu(f, r)=\max _{z \in B_{r}}|f(z)|$

Degree-like features:

- If $\frac{\log \mu(f, r)}{\log r} \leq k, \forall r \gg 1$, then f is a polynomial of $\operatorname{deg} \leq k$. (generalization of Liouville's theorem).

Maximum modulus

B_{r}-closed ball of radius $r, \mu(f, r)=\max _{z \in B_{r}}|f(z)|$

Degree-like features:

- If $\frac{\log \mu(f, r)}{\log r} \leq k, \forall r \gg 1$, then f is a polynomial of $\operatorname{deg} \leq k$. (generalization of Liouville's theorem).
- Let $\zeta(f, r)$ be the number of zeros of an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ inside a ball $B_{r}, f(0) \neq 0$. Then, for $a>1$, $\zeta(f, r) \leq C \log \mu(f, a r) \forall r>0$, where C - positive constant depending on a and $f(0)$.

Maximum modulus

B_{r}-closed ball of radius $r, \mu(f, r)=\max _{z \in B_{r}}|f(z)|$
Degree-like features:

- If $\frac{\log \mu(f, r)}{\log r} \leq k, \forall r \gg 1$, then f is a polynomial of $\operatorname{deg} \leq k$. (generalization of Liouville's theorem).
- Let $\zeta(f, r)$ be the number of zeros of an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ inside a ball $B_{r}, f(0) \neq 0$. Then, for $a>1$, $\zeta(f, r) \leq C \log \mu(f, a r) \forall r>0$, where C - positive constant depending on a and $f(0)$.
In Example above ζ and $\log \mu$ grow linearly in r.

Cornalba-Shiffman Example (1972)

$n \geq 2$. There exists entire map f with $\log \mu(f, r) \leq C r^{\epsilon}$ for every $\epsilon>0$ with $\zeta(f, r)$ growing arbitrarily fast.

Cornalba-Shiffman Example (1972)

$n \geq 2$. There exists entire map f with $\log \mu(f, r) \leq C r^{\epsilon}$ for every $\epsilon>0$ with $\zeta(f, r)$ growing arbitrarily fast.
Griffiths: "This is the first instance known to this author when the analogue of a general result in algebraic geometry fails to hold in analytic geometry."

Coarse zero count

$$
f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \text {-analytic, } \delta, r>0
$$

Coarse zero count

$f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$-analytic, $\delta, r>0$
Coarse zero count:
$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$

Coarse zero count

$f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$-analytic, $\delta, r>0$
Coarse zero count:
$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$
This is the number of connected components of the set $f^{-1}\left(B_{\delta}\right) \cap B_{r}$ which contain zeros of f.

Coarse transcendental Bézout

$$
\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.
$$

Coarse transcendental Bézout

$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$
Theorem. $\left(B P^{2} S^{2}, 2023\right)$ For $a>1, \delta \in\left(0, \frac{\mu(f, a r)}{e}\right)$
$\zeta(f, r, \delta) \leq C\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{2 n-1}$,
where C depends on a and n, but not on r or δ.

Coarse transcendental Bézout

$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$
Theorem. $\left(B P^{2} S^{2}, 2023\right)$ For $a>1, \delta \in\left(0, \frac{\mu(f, a r)}{e}\right)$
$\zeta(f, r, \delta) \leq C\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{2 n-1}$,
where C depends on a and n, but not on r or δ.
Example: $f: \mathbb{C}^{n} \rightarrow C^{n}, f\left(z_{1}, \ldots, z_{n}\right)=\left(e^{z_{1}}-1, \ldots, e^{z_{n}}-1\right)$. Then $\log \mu(f, r) \approx r, \zeta(f, r) \approx r^{n}, r \rightarrow \infty$.

Coarse transcendental Bézout

$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$
Theorem. $\left(B P^{2} S^{2}, 2023\right)$ For $a>1, \delta \in\left(0, \frac{\mu(f, a r)}{e}\right)$
$\zeta(f, r, \delta) \leq C\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{2 n-1}$,
where C depends on a and n, but not on r or δ.
Example: $f: \mathbb{C}^{n} \rightarrow C^{n}, f\left(z_{1}, \ldots, z_{n}\right)=\left(e^{z_{1}}-1, \ldots, e^{z_{n}}-1\right)$.
Then $\log \mu(f, r) \approx r, \zeta(f, r) \approx r^{n}, r \rightarrow \infty$.
CS Example, $n=2: \log \mu(f, r) \approx(\log r)^{2}, \zeta(f, r, \delta) \approx \log r$.
Our results state $\zeta(f, r, \delta) \lesssim\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{3}$.

Coarse transcendental Bézout

$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$
Theorem. $\left(B P^{2} S^{2}, 2023\right)$ For $a>1, \delta \in\left(0, \frac{\mu(f, a r)}{e}\right)$
$\zeta(f, r, \delta) \leq C\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{2 n-1}$,
where C depends on a and n, but not on r or δ.
Example: $f: \mathbb{C}^{n} \rightarrow C^{n}, f\left(z_{1}, \ldots, z_{n}\right)=\left(e^{z_{1}}-1, \ldots, e^{z_{n}}-1\right)$.
Then $\log \mu(f, r) \approx r, \zeta(f, r) \approx r^{n}, r \rightarrow \infty$.
CS Example, $n=2: \log \mu(f, r) \approx(\log r)^{2}, \zeta(f, r, \delta) \approx \log r$.
Our results state $\zeta(f, r, \delta) \lesssim\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{3}$.
Thus our estimate on \log-scale (for $\log \zeta$) is sharp.

Coarse transcendental Bézout

$\zeta(f, r, \delta)=\operatorname{dim} \operatorname{Im}\left(H_{0}\left(\{f=0\} \cap B_{r}\right) \rightarrow H_{0}\left(\{|f|<\delta\} \cap B_{r}\right)\right.$
Theorem. $\left(B P^{2} S^{2}, 2023\right)$ For $a>1, \delta \in\left(0, \frac{\mu(f, a r)}{e}\right)$
$\zeta(f, r, \delta) \leq C\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{2 n-1}$,
where C depends on a and n, but not on r or δ.
Example: $f: \mathbb{C}^{n} \rightarrow C^{n}, f\left(z_{1}, \ldots, z_{n}\right)=\left(e^{z_{1}}-1, \ldots, e^{z_{n}}-1\right)$.
Then $\log \mu(f, r) \approx r, \zeta(f, r) \approx r^{n}, r \rightarrow \infty$.
CS Example, $n=2: \log \mu(f, r) \approx(\log r)^{2}, \zeta(f, r, \delta) \approx \log r$.
Our results state $\zeta(f, r, \delta) \lesssim\left(\log \left(\frac{\mu(f, a r)}{\delta}\right)\right)^{3}$.
Thus our estimate on log-scale (for $\log \zeta$) is sharp.
Question: Is the power $2 n-1$ at \log in Theorem sharp?

Proof of subadditivity theorem

Subadditivity Theorem: $\left[B P^{3} S^{2}\right]$, 2022 Let
$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.

Proof of subadditivity theorem

Subadditivity Theorem: $\left[B P^{3} S^{2}\right], 2022$ Let
$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.
Lemma: $N_{0}(V) \leq N_{0}(U)+N_{0}(W)$.

Proof of subadditivity theorem

Subadditivity Theorem: $\left[B P^{3} S^{2}\right], 2022$ Let
$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.
Lemma: $N_{0}(V) \leq N_{0}(U)+N_{0}(W)$.
Proof (Govc-Hepworth, 2021): Assume for simplicity all barcodes are finite. Denote (a_{i}^{V}, b_{i}^{V}] etc.-bars.

Proof of subadditivity theorem

Subadditivity Theorem: $\left[B P^{3} S^{2}\right], 2022$ Let
$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.

Lemma: $N_{0}(V) \leq N_{0}(U)+N_{0}(W)$.
Proof (Govc-Hepworth, 2021): Assume for simplicity all barcodes are finite. Denote (a_{i}^{V}, b_{i}^{V}] etc.-bars.
$\operatorname{dim} V_{t}=\operatorname{dim} U_{t}+\operatorname{dim} W_{t} \forall t$.

Proof of subadditivity theorem

Subadditivity Theorem: $\left[B P^{3} S^{2}\right], 2022$ Let
$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.
Lemma: $N_{0}(V) \leq N_{0}(U)+N_{0}(W)$.
Proof (Govc-Hepworth, 2021): Assume for simplicity all barcodes are finite. Denote (a_{i}^{V}, b_{i}^{V}] etc.-bars.
$\operatorname{dim} V_{t}=\operatorname{dim} U_{t}+\operatorname{dim} W_{t} \forall t$.
Differentiate: $\sum\left(\delta_{b_{i}^{V}}-\delta_{a_{i}^{V}}\right)=\sum\left(\delta_{b_{i}^{U}}-\delta_{a_{i}^{U}}\right)+\sum\left(\delta_{b_{i}^{W}}-\delta_{a_{i}^{w}}\right)$.

Proof of subadditivity theorem

Subadditivity Theorem: $\left[B P^{3} S^{2}\right], 2022$ Let
$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of persistence modules. Then $N_{2 \delta}(V) \leq N_{\delta}(U)+N_{\delta}(W)$.
Lemma: $N_{0}(V) \leq N_{0}(U)+N_{0}(W)$.
Proof (Govc-Hepworth, 2021): Assume for simplicity all barcodes are finite. Denote (a_{i}^{V}, b_{i}^{V}] etc.-bars.
$\operatorname{dim} V_{t}=\operatorname{dim} U_{t}+\operatorname{dim} W_{t} \forall t$.
Differentiate: $\sum\left(\delta_{b_{i}^{v}}-\delta_{a_{i}^{v}}\right)=\sum\left(\delta_{b_{i}^{U}}-\delta_{a_{i}^{U}}\right)+\sum\left(\delta_{b_{i}^{w}}-\delta_{a_{i}^{w}}\right)$.
Look at the cancellations. Q.E.D.

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$
Consider free resolution $0 \rightarrow R \xrightarrow{j} G \rightarrow W$.

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$
Consider free resolution $0 \rightarrow R \stackrel{j}{\rightarrow} G \rightarrow W$.
"Free" $=R, G$ have no finite bars, e.g. for $a<b$
$0 \rightarrow(b,+\infty) \rightarrow(a,+\infty) \rightarrow(a, b] \rightarrow 0$

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$
Consider free resolution $0 \rightarrow R \xrightarrow{j} G \rightarrow W$.
"Free" $=R, G$ have no finite bars, e.g. for $a<b$
$0 \rightarrow(b,+\infty) \rightarrow(a,+\infty) \rightarrow(a, b] \rightarrow 0$
Fact: (Skraba-Turner, 2020)
$\exists g: R \rightarrow U: V=\operatorname{coker}(j \oplus g: R \rightarrow G \oplus U)$.

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$
Consider free resolution $0 \rightarrow R \xrightarrow{j} G \rightarrow W$.
"Free" $=R, G$ have no finite bars, e.g. for $a<b$
$0 \rightarrow(b,+\infty) \rightarrow(a,+\infty) \rightarrow(a, b] \rightarrow 0$
Fact: (Skraba-Turner, 2020)
$\exists g: R \rightarrow U: V=\operatorname{coker}(j \oplus g: R \rightarrow G \oplus U)$.
Take U^{\prime}, W^{\prime} as U, W with bars of length $<\delta$ erased. Modify j, g to j^{\prime}, g^{\prime} to get $V^{\prime}=\operatorname{coker}\left(j^{\prime} \oplus g^{\prime}\right)$:
short exact sequence $0 \rightarrow U^{\prime}[\delta] \rightarrow V^{\prime} \rightarrow W^{\prime}$.

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$
Consider free resolution $0 \rightarrow R \xrightarrow{j} G \rightarrow W$.
"Free" $=R, G$ have no finite bars, e.g. for $a<b$
$0 \rightarrow(b,+\infty) \rightarrow(a,+\infty) \rightarrow(a, b] \rightarrow 0$
Fact: (Skraba-Turner, 2020)
$\exists g: R \rightarrow U: V=\operatorname{coker}(j \oplus g: R \rightarrow G \oplus U)$.
Take U^{\prime}, W^{\prime} as U, W with bars of length $<\delta$ erased. Modify j, g to j^{\prime}, g^{\prime} to get $V^{\prime}=\operatorname{coker}\left(j^{\prime} \oplus g^{\prime}\right)$: short exact sequence $0 \rightarrow U^{\prime}[\delta] \rightarrow V^{\prime} \rightarrow W^{\prime}$.

Estimate that V^{\prime} is close to V is interleaving distance.

Proof of Subadditivity Theorem

Short exact sequence: $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$
Consider free resolution $0 \rightarrow R \xrightarrow{j} G \rightarrow W$.
"Free" $=R, G$ have no finite bars, e.g. for $a<b$
$0 \rightarrow(b,+\infty) \rightarrow(a,+\infty) \rightarrow(a, b] \rightarrow 0$
Fact: (Skraba-Turner, 2020)
$\exists g: R \rightarrow U: V=\operatorname{coker}(j \oplus g: R \rightarrow G \oplus U)$.
Take U^{\prime}, W^{\prime} as U, W with bars of length $<\delta$ erased. Modify j, g to j^{\prime}, g^{\prime} to get $V^{\prime}=\operatorname{coker}\left(j^{\prime} \oplus g^{\prime}\right)$:
short exact sequence $0 \rightarrow U^{\prime}[\delta] \rightarrow V^{\prime} \rightarrow W^{\prime}$.
Estimate that V^{\prime} is close to V is interleaving distance.
Conclude (lemma):
$N_{2 \delta}(V) \leq N_{0}\left(V^{\prime}\right) \leq N_{0}\left(U^{\prime}\right)+N_{0}\left(W^{\prime}\right)=N_{\delta}(U)+N_{\delta}(W)$. QED.

