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What is this lecture about?

Bézout theorem, 1779 d generic hypersurfaces in CPd have a
number of intersection points given by the product of their degrees.

Can we extend this statement in the following directions?

(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on
Riemannian manifolds (inspired by Arnold, 2003 combined
with Donnelly-Fefferman, 1998);

(ii) Intersection of affine submanifolds - the transcendental
Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.

NO! Evidence ( à la Buhovsky-M.Sodin-Logunov) for (i), famous
Cornalba-Shiffman counterexample for (ii).
But YES... if one cuts small oscillations, i.e. removes
intersections which do not persist after a mild perturbation.

Tool - persistence modules and barcodes: convenient
algebraic/combinatorial tool for book-keeping information on
oscillation and topology of (sub)level sets of functions on
manifolds.
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Leonid Polterovich, Tel Aviv University Bézout’s theorem and topological persistence



What is this lecture about?
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Leonid Polterovich, Tel Aviv University Bézout’s theorem and topological persistence



Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of
topological data analysis.
Barcode B = {Ij ,mj}-finite collection of intervals Ij with
multiplicities mj , Ij = (aj , bj ], aj < bj ≤ +∞.

Bottleneck distance between barcodes: B, C are δ-matched ,
δ > 0 if after erasing some intervals in B and C of length < 2δ we
can match the rest in 1-to-1 manner with error at most δ at each
end-point.

dbot(B, C) = inf δ .

Figure: Matching
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Persistence modules

F – a field.

Persistence module: a pair (V , π), where Vt , t ∈ R are F-vector
spaces, dimVt < ∞, Vs = 0 for all s ≪ 0.
πst : Vs → Vt , s < t linear maps: ∀s < t < r

Vt

πtr

  
Vs

πst

>>

πsr // Vr

Regularity: For all but finite number of jump points t ∈ R, there
exists a neighborhood U of t such that πsr is an isomorphism for
all s, r ∈ U. Extra assumption (”semicontinuity”) at jump points.
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Structure theorem

Interval module (F(a, b], κ), a ∈ R, b ∈ R ∪+∞:
F(a, b]t = F for t ∈ (a, b] and F(a, b]t = 0 otherwise;
κst = 1l for s, t ∈ (a, b] and κst = 0 otherwise.

Figure: Interval module

Structure theorem: For every persistence module (V , π) there
exists unique barcode B(V ) = {(Ij ,mj)} such that V = ⊕F(Ij)

mj .
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Persistence in Morse theory

M-compact manifold, f : M → R-Morse function.

Persistence module Vt(f ) := H∗({f < t})
H∗-homology with coefficients in a field.
Persistence morphisms are induced by the inclusions of sublevels
{f < s} ↪→ {f < t}, s < t.
B(f ) - barcode of V (f )

Stability Theorem (Cohen-Steiner,Edelsbrunner,Harer, 2007)
||f || := max |f |-uniform norm
(C∞(X ), || · ||) → (Barcodes, dbot), f 7→ B(f ) is 1-Lipshitz.

“Long” bars: Nδ(f ) - number of bars in B(f ) of length > δ.
Cohen-Steiner-Edelsbrunner-Mileyko (2010)
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Long bars vs. Sobolev norms

Theorem[BP3S2], 2022

Nδ(|f |) ≤ C1δ
−n/k ||f ||n/kk,p + C2, ∀δ > 0

Earlier results:
p = ∞ (uniform derivative bounds) Kronrod, Vitushkin (50-ies),
Yomdin (1985)

k = 1, p = ∞ Cohen-Steiner-Edelsbrunner-Mileyko (uses Nδ)

n = 2, k = 2, p = 2 P.-M.Sodin (2007) (geometric trick) +
I.P.- P.-Stojisavljevic (2017) (uses Nδ)

Generalization: oscillation of sections of vector bundles (cf. a
problem of V.Arnold, 2003)

Symplectic digression: Floer persistence modules P.-Shelukhin
(2014). Nδ-count related to entropy Cineli-Ginzburg-Gurel (2021),
G-G-Mazzucchelli (2022)
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Ideas of the proof

Step 1. Approximate by polynomials on small cubes, use Milnor’s

bound (1964) ♯(critical points) ≤ degdim , and Morse theory. Cf.

Yomdin, innovation: multiscale/stopping time .

Leonid Polterovich, Tel Aviv University Bézout’s theorem and topological persistence



Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit
for persistence modules (non-existent in 1985).

Subadditivity Theorem.[BP3S2], 2022 Let U → V → W be an
exact sequence of persistence modules. Then
N2δ(V ) ≤ Nδ(U) + Nδ(W ).

Uses algebraic ideas (extension of persistence modules) inspired by
Skraba-Turner (2020)

Cf. Amplitudes (Giunti, Nolan, Otter, Waas, 2021) - mind 2δ.
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Leonid Polterovich, Tel Aviv University Bézout’s theorem and topological persistence



Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit
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Spectral geometry

Laplace-Beltrami operator: Mn- closed Riemannian manifold

∆f = −div(grad f ), f ∈ C∞(M)
Discrete positive spectrum: ∆fλ = λfλ.
Fλ - span of eigenfunctions with eigenvalues ≤ λ
Donnelly-Fefferman philosophy (1988) : f ∈ Fλ, λ ≫ 1,
“similar” to polynomial of deg =

√
λ

Zf = {f = 0} - nodal set

Example: On sphere Sn with round metric,
let f1, . . . , fn - be generic eigenfunctions with eigenvalue
λ = d(d + n − 1)
fi - homogeneous polynomial of degree d on Rn+1

Then |
⋂

i Zfi | ≤ const(n) · λn/2, agrees with Bézout thm.

Random setting: Expectation ≈ λn/2 (Gichev, 2009). Similar
bound on certain homogeneous Riemannian manifolds
(Akhiezer-Kazarnovskii, 2017).
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Coarse Bezout

Persistent intersection count: Zf := {f = 0}
z0(f , δ) = dim Im(H0(Zf ) → H0({|f | < δ}))

Let f1, . . . , fn ∈ Fλ, ||fj ||L2 = 1, j = 1, . . . n,
f = (f 21 + · · · f 2n )1/2, Zf = ∩iZfi .

n = 2, Zf1 ∩ Zf2 = {f = 0} = {1, 2, 3}.
z0 = 2 as points 2, 3 land in the same component of {f < δ}.

Theorem [BP3S2], 2022 Let k > n/2 be an integer, δ > 0.

z0(f , δ) ≤
C1

δn/k
(λ+ 1)

n
2 + C2,

where C1,C2 depend on n, k and metric.
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Transcendental Bézout problem

In progress with Lev Buhovsky, Iosif Polterovich, Egor Shelukhin
and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps
Cn → Cn.

Starting point: Serre’s G.A.G.A.: complex projective analytic
geometry reduces to algebraic geometry.

Example - Chow’s thm.: Every closed complex submanifold of
CPn is algebraic.

Fails in affine setting:
f : C → C, f (z) = ez − 1 = (ex cos y − 1) + iex sin y , z = x + iy .
Zf = {2πki , k ∈ Z}.
Not biholomorphically equivalent to any algebraic (and hence
finite) proper subset of C.

Resolution: replace the notion of the degree of a polynomial.
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Maximum modulus

Br -closed ball of radius r , µ(f , r) = maxz∈Br |f (z)|

Degree-like features:

If log µ(f ,r)
log r ≤ k, ∀r ≫ 1, then f is a polynomial of deg ≤ k.

(generalization of Liouville’s theorem).

Let ζ(f , r) be the number of zeros of an entire function
f : C → C inside a ball Br , f (0) ̸= 0. Then, for a > 1,
ζ(f , r) ≤ C logµ(f , ar) ∀r > 0, where C - positive constant
depending on a and f (0).

In Example above ζ and logµ grow linearly in r .
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Cornalba-Shiffman Example (1972)

n ≥ 2. There exists entire map f with log µ(f , r) ≤ Cr ϵ for every
ϵ > 0 with ζ(f , r) growing arbitrarily fast.

Griffiths: “This is the first instance known to this author when the
analogue of a general result in algebraic geometry fails to hold in
analytic geometry.”
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Coarse zero count

f : Cn → Cn-analytic, δ, r > 0

Coarse zero count:
ζ(f , r , δ) = dim Im(H0({f = 0} ∩ Br ) → H0({|f | < δ} ∩ Br )

This is the number of connected components of the set
f −1(Bδ) ∩ Br which contain zeros of f .
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Coarse transcendental Bézout

ζ(f , r , δ) = dim Im(H0({f = 0} ∩ Br ) → H0({|f | < δ} ∩ Br )

Theorem. (BP2S2, 2023) For a > 1, δ ∈ (0, µ(f ,ar)e )

ζ(f , r , δ) ≤ C
(
log

(
µ(f ,ar)

δ

))2n−1
,

where C depends on a and n, but not on r or δ.

Example: f : Cn → Cn, f (z1, . . . , zn) = (ez1 − 1, . . . , ezn − 1) .
Then log µ(f , r) ≈ r , ζ(f , r) ≈ rn, r → ∞.

CS Example, n = 2: logµ(f , r) ≈ (log r)2, ζ(f , r , δ) ≈ log r .

Our results state ζ(f , r , δ) ⪅
(
log

(
µ(f ,ar)

δ

))3
.

Thus our estimate on log-scale (for log ζ) is sharp .

Question: Is the power 2n − 1 at log in Theorem sharp?
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Proof of subadditivity theorem

Subadditivity Theorem:[BP3S2], 2022 Let
0 → U → V → W → 0 be a short exact sequence of persistence
modules. Then N2δ(V ) ≤ Nδ(U) + Nδ(W ).

Lemma: N0(V ) ≤ N0(U) + N0(W ).

Proof (Govc-Hepworth, 2021): Assume for simplicity all
barcodes are finite. Denote (aVi , b

V
i ] etc.-bars.

dimVt = dimUt + dimWt ∀t.

Differentiate:
∑

(δbVi
− δaVi

) =
∑

(δbUi
− δaUi

) +
∑

(δbWi
− δaWi

) .

Look at the cancellations. Q.E.D.
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Proof of Subadditivity Theorem

Short exact sequence: 0 → U → V → W → 0

Consider free resolution 0 → R
j−→ G → W .

“Free” = R,G have no finite bars, e.g. for a < b
0 → (b,+∞) → (a,+∞) → (a, b] → 0

Fact: (Skraba-Turner, 2020)
∃g : R → U: V = coker (j ⊕ g : R → G ⊕ U).

Take U ′,W ′ as U,W with bars of length < δ erased. Modify j , g
to j ′, g ′ to get V ′ = coker (j ′ ⊕ g ′):
short exact sequence 0 → U ′[δ] → V ′ → W ′.

Estimate that V ′ is close to V is interleaving distance.

Conclude (lemma):
N2δ(V ) ≤ N0(V

′) ≤ N0(U
′) + N0(W

′) = Nδ(U) + Nδ(W ). QED.
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“Free” = R,G have no finite bars, e.g. for a < b
0 → (b,+∞) → (a,+∞) → (a, b] → 0

Fact: (Skraba-Turner, 2020)
∃g : R → U: V = coker (j ⊕ g : R → G ⊕ U).

Take U ′,W ′ as U,W with bars of length < δ erased. Modify j , g
to j ′, g ′ to get V ′ = coker (j ′ ⊕ g ′):
short exact sequence 0 → U ′[δ] → V ′ → W ′.

Estimate that V ′ is close to V is interleaving distance.

Conclude (lemma):
N2δ(V ) ≤ N0(V

′) ≤ N0(U
′) + N0(W

′) = Nδ(U) + Nδ(W ). QED.
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The End
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