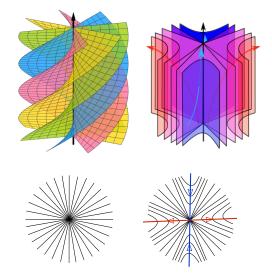
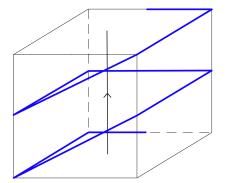
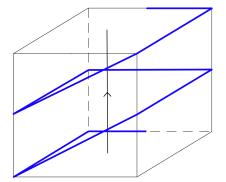
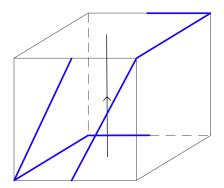

Broken book decompositions and Birkhoff sections for Reeb vector fields of SHS

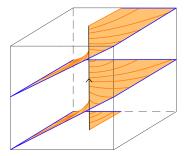
Ana Rechtman in collaboration with R. Cardona figures by P. Dehornoy and R. Cardona

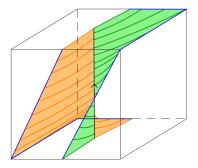

IRMA Université de Strasbourg

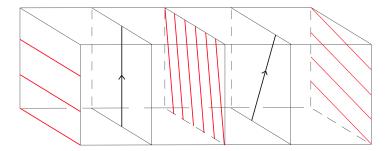

May 25, 2023


Bindings of broken books




Bindings of broken books





Finite number of periodic orbits

Theorem 1

Let X be an aperiodic Reeb vector field of a SHS (λ, ω) on a closed 3-manifold M. Then one of the following holds:

- $M = T^3$ or a positive parabolic torus bundle over \mathbb{S}^1 and the flow is a suspension;
- Of M is a hyperbolic torus bundle over S¹, and the flow is a suspension on M \ T².

Finite number of periodic orbits

Theorem 2

Let (λ, ω) be a contact non-degenerate SHS on a closed 3-manifold M with at least one periodic orbit and finitely many periodic orbits. Then either

- The flow is the suspension of a symplectomorphism of a surface Σ_g with finitely many periodic points.
- The ambient manifold M is the 3-sphere or a lens space and there are exactly two periodic orbits.