Symplectic almost squeezings of *B*⁴ joint with **Emmanuel Opshtein**

21 mai 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gromov : $B^4(a) \stackrel{s}{\hookrightarrow} Z^4(1) = D^2(1) \times \mathbb{R}^2$ only for $a \leq 1$

Question : For a > 1, what is the "smallest" set $S(a) \subset B^4(a)$ such that

$$B^4(a) \setminus S(a) \stackrel{s}{\hookrightarrow} Z^4(1)$$
?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

Let's try ...

Gromov : $B^4(a) \stackrel{s}{\hookrightarrow} Z^4(1) = D^2(1) \times \mathbb{R}^2$ only for $a \leq 1$

Question : For a > 1, what is the "smallest" set $S(a) \subset B^4(a)$ such that

$$B^4(a)\setminus S(a)\stackrel{s}{\hookrightarrow} Z^4(1)$$
?

Let's try ...

Theorem \geq 2 (Sackel–Song–Varolgunes–Zhu 2021) The Minkowski-dimension of S(a) must be \geq 2.

Theorem ≤ 2 : dim S(a) = 2 works for a < 3: **Sackel–Song–Varolgunes–Zhu 2021** for $a \leq 2$:

$$B^{4}(2) \setminus \{(x_{1}, x_{2}) = 0\} \stackrel{s}{=} E(1, 4) \setminus \{(x_{1}, y_{1}) = 0\}$$

Brendel 2022 : for *a* < 3

Question : $a_{crit} = 3$ or $a_{crit} = \infty$?

Main theorem : $a_{crit} = \infty$: Take d even. Then

$$B^4(d/2)\setminus \Delta_d \stackrel{s}{\hookrightarrow} Z^4(1)$$

where Δ_d is a union of $(d/2)^2$ evenly distributed Lagrangian discs.

Question : $a_{crit} = 3$ or $a_{crit} = \infty$?

Main theorem : $a_{crit} = \infty$: Take d even. Then

$$B^4(d/2)\setminus \Delta_d \stackrel{s}{\hookrightarrow} Z^4(1)$$

where Δ_d is a union of $(d/2)^2$ evenly distributed Lagrangian discs.

Biran 2001 : take the finite group

$$G_d = \left\{ egin{pmatrix} \xi^k & 0 \ 0 & \xi^\ell \end{pmatrix} \mid \xi = e^{2\pi i/d}
ight\}$$

of order d^2 .

$$\Delta_d := G_d \cdot \mathbb{R}^2(x_1, x_2)$$

Corollaries

1. Capacity killing

For all normalized symplectic capacities c:

$$c_G \leq c \leq c^Z$$

Biran showed

$$c_{\mathsf{G}}(B^4(1)\setminus\Delta_d) \leq 1/d$$

but the main theorem shows

$$c(B^4(1)\setminus\Delta_d) \leq c^Z(B^4(1)\setminus\Delta_d) \leq 2/d.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Lagrangian intersection with Δ_d

 $\mathbb{T}_{\mathrm{Cliff}}(1,1)\subset\mathbb{C}^2$ cannot be displaced from $\Delta(d)$ in $B^4(d/2).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Lagrangian intersection with Δ_d

 $\mathbb{T}_{\mathrm{Cliff}}(1,1)\subset\mathbb{C}^2$ cannot be displaced from $\Delta(d)$ in $B^4(d/2)$.

3. Reeb chords to $\Lambda \cup \Delta_d$

Let $U \subset B^4(1)$ be starshaped, $\Lambda \subset \partial U \setminus \Delta_d$ a Legendrian knot. Then there exists a Reeb chord from Λ to $\Lambda \cup \Delta_d$ of length $T \leq \frac{2}{d}$.

Variations

1. The set Δ_d "accumulates" near 0 for *d* large.

But there is also a "universal" Lagrangian skeleton ...

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variations

1. The set Δ_d "accumulates" near 0 for d large.

But there is also a "universal" Lagrangian skeleton ...

2. Main Theorem' For every $\varepsilon > 0$ there exists a symplectic embedding

$$B^4(1) \setminus \Delta_d \stackrel{s}{\hookrightarrow} (1 + \varepsilon) E(1/d, d)$$

for d sufficiently large.

Corollary Let (M^4, ω) be a closed symplectic manifold of volume 1/2. Then for every $\varepsilon > 0$ there exists d such that

$$B^4(1-\varepsilon)\setminus\Delta_d \stackrel{s}{\hookrightarrow} (M,\omega).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sketch of proof of

$$B^4(d/2) \setminus \Delta_d \stackrel{s}{\hookrightarrow} Z^4(1)$$

Main idea : use polarizations on both sides

Sketch of proof of

$$B^4(d/2) \setminus \Delta_d \stackrel{s}{\hookrightarrow} Z^4(1)$$

Main idea : use polarizations on both sides

 (M^4,ω) closed Polarization : $\Sigma\subset M$ symplectic surface such that $[\Sigma]=\mu\,{\sf PD}[\omega],\quad \mu>0$

Then $\omega = d\lambda$ on $M \setminus \Sigma$

Liouville vector field X_{λ} : $\iota_{X_{\lambda}} d\lambda := \lambda$

Get **two** decompositions of M :

1.
$$M = \Sigma \cup M \setminus \Sigma$$

hypersurface + Liouville domain
2. $M = SDB(M, \Sigma, \lambda) \cup \Delta$
disc bundle over Σ + isotropic skeleton
basin of attraction + unstable manifold

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples on $(\mathbb{C}P^2, \omega_{FS})$ **1.** $\Sigma = \mathbb{C}P^1$ with $\lambda = \sum_j x_j dy_j - y_j dx_j = \sum_j R_j d\theta_j$ $(R_j := r_j^2)$

have $\Delta = \{pt\}$

Examples on $(\mathbb{C}P^2, \omega_{FS})$ **1.** $\Sigma = \mathbb{C}P^1$ with $\lambda = \sum_j x_j dy_j - y_j dx_j = \sum_j R_j d\theta_j$ $(R_j := r_j^2)$ have $\Delta = \{pt\}$

2.
$$\Sigma_d = \{z_0^d + z_1^d + z_2^d = 0\}, \quad [\Sigma_d] = d \operatorname{PD}[\omega_{FS}]$$

with $\lambda_d = -d^c \log \frac{|z_0^d + z_1^d + z_2^d|}{(|z_0|^2 + |z_1|^2 + |z_2|^2)^2}$
have $\Delta = \overline{\Delta}_d = G_d \cdot \mathbb{R}\mathsf{P}^2$

Since $X_{\lambda}|_{\mathbb{C}\mathsf{P}^1}$ is tangent to $\mathbb{C}\mathsf{P}^1$: $B^4 \setminus \Delta_d \stackrel{s}{=} \mathsf{SDB}(\mathring{\Sigma}_d)$

Polarize **also** $S^2 \times S^2$ For this : Use **singular** polarization (**Opshtein**) :

 $\Sigma_0 \cup \Sigma_1 \cup \cdots \cup \Sigma_k, \qquad \Sigma_i \cap \Sigma_j \quad \omega ext{-orthogonal}$ such that $\mathsf{PD}[\omega] = \sum \mu_j [\Sigma_j], \qquad \mu_j \ge 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Polarize **also** $S^2 \times S^2$ For this : Use **singular** polarization (**Opshtein**) :

 $\Sigma_0 \cup \Sigma_1 \cup \cdots \cup \Sigma_k, \qquad \Sigma_i \cap \Sigma_j \quad \omega ext{-orthogonal}$ such that $\mathsf{PD}[\omega] = \sum \mu_j [\Sigma_j], \qquad \mu_j \ge 0$

In this setting, Opshtein showed :

One can choose the Liouville form λ on $M \setminus \bigcup_j \Sigma_j$ such that X_{λ} has a normal form near Σ_j , determined by μ_j , pointing inwards

Examples on $S^{2}(1) \times S^{2}(b)$ **1.** $\Sigma_{1} = (S^{2}(1), \mu_{1} = b), \quad \Sigma_{2} = (S^{2}(b), \mu_{2} = 1)$ with $\lambda = (R_{1} - 1) d\theta_{1} + (R_{2} - b) d\theta_{2}$ have $\Delta = \{pt\}$

Examples on $S^{2}(1) \times S^{2}(b)$ **1.** $\Sigma_{1} = (S^{2}(1), \mu_{1} = b), \quad \Sigma_{2} = (S^{2}(b), \mu_{2} = 1)$ with $\lambda = (R_{1} - 1) d\theta_{1} + (R_{2} - b) d\theta_{2}$ have $\Delta = \{\text{pt}\}$

2. $\Sigma_0 = \Sigma_{m,n}$: smoothing of *m A*-spheres and *n B*-spheres

$$PD[\omega_{1,b}] = bA + B$$

= $\mu_0 (\underline{mA + nB}) + (b - \mu_0 m) A + (1 - \mu_0 n) B$
 $[\Sigma_{m,n}]$

So : have singular polarization of $S^2(1) \times S^2(b)$ if

$$\mu_0 m < b$$
 and $\mu_0 n \leq 1$

Want :
$$B^4(d/2) \setminus \Delta_d \stackrel{s}{=} \text{SDB}\left(\overset{\circ}{\Sigma}_d, \mu = \frac{1}{2}\right)$$

 $\stackrel{s}{\hookrightarrow} \text{SDB}\left(\Sigma_{m,n}, \mu_0 = \frac{1}{2}\right)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Want :
$$B^4(d/2) \setminus \Delta_d \stackrel{s}{=} \text{SDB}\left(\overset{\circ}{\Sigma}_d, \mu = \frac{1}{2}\right)$$

 $\stackrel{s}{\hookrightarrow} \text{SDB}\left(\Sigma_{m,n}, \mu_0 = \frac{1}{2}\right)$

For this, **need** :

$$egin{array}{rcl} {
m genus}\left(\Sigma_d
ight)&\leq&{
m genus}\left(\Sigma_{m,n}
ight)\ {
m area}(\Sigma_d)&<&{
m area}(\Sigma_{m,n})\ rac{1}{2}\,m&<&b\ rac{1}{2}\,n&\leq&1. \end{array}$$

Want :
$$B^4(d/2) \setminus \Delta_d \stackrel{s}{=} \text{SDB}\left(\mathring{\Sigma}_d, \mu = \frac{1}{2}\right)$$

 $\stackrel{s}{\hookrightarrow} \text{SDB}\left(\Sigma_{m,n}, \mu_0 = \frac{1}{2}\right)$

For this, need :

$$egin{array}{rcl} {
m genus}\left(\Sigma_d
ight)&\leq&{
m genus}\left(\Sigma_{m,n}
ight)\ {
m area}(\Sigma_d)&<&{
m area}(\Sigma_{m,n})\ {rac{1}{2}}\,m&<&b\ {rac{1}{2}}\,n&\leq&1. \end{array}$$

With n = 2, this becomes :

$$egin{array}{rcl} rac{1}{2}(d-1)(d-2) &< m-1\ rac{1}{2}d^2 &< m+2b\ rac{1}{2}m &< b. \end{array}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

OK for m = b large