Symplectic almost squeezings of B^{4}
 joint with Emmanuel Opshtein

21 mai 2023

Gromov: $B^{4}(a) \stackrel{s}{\hookrightarrow} Z^{4}(1)=D^{2}(1) \times \mathbb{R}^{2}$ only for $a \leq 1$
Question : For $a>1$, what is the "smallest" set $S(a) \subset B^{4}(a)$ such that

$$
B^{4}(a) \backslash S(a) \stackrel{s}{\hookrightarrow} Z^{4}(1) ?
$$

Let's try ...

Gromov: $B^{4}(a) \stackrel{s}{\hookrightarrow} Z^{4}(1)=D^{2}(1) \times \mathbb{R}^{2}$ only for $a \leq 1$
Question : For $a>1$, what is the "smallest" set $S(a) \subset B^{4}(a)$ such that

$$
B^{4}(a) \backslash S(a) \stackrel{s}{\hookrightarrow} Z^{4}(1) ?
$$

Let's try ...
Theorem ≥ 2 (Sackel-Song-Varolgunes-Zhu 2021)
The Minkowski-dimension of $S(a)$ must be ≥ 2.
Theorem $\leq 2: \operatorname{dim} S(a)=2$ works for $a<3$:
Sackel-Song-Varolgunes-Zhu 2021 for $a \leq 2$:

$$
B^{4}(2) \backslash\left\{\left(x_{1}, x_{2}\right)=0\right\} \stackrel{s}{=} E(1,4) \backslash\left\{\left(x_{1}, y_{1}\right)=0\right\}
$$

Brendel 2022 : for $a<3$

Question: $a_{\text {crit }}=3$ or $a_{\text {crit }}=\infty$?
Main theorem : $a_{\text {crit }}=\infty$: Take d even. Then

$$
B^{4}(d / 2) \backslash \Delta_{d} \stackrel{s}{\hookrightarrow} Z^{4}(1)
$$

where Δ_{d} is a union of $(d / 2)^{2}$ evenly distributed Lagrangian discs.

Question: $a_{\text {crit }}=3$ or $a_{\text {crit }}=\infty$?
Main theorem : $a_{\text {crit }}=\infty$: Take d even. Then

$$
B^{4}(d / 2) \backslash \Delta_{d} \stackrel{s}{\hookrightarrow} Z^{4}(1)
$$

where Δ_{d} is a union of $(d / 2)^{2}$ evenly distributed Lagrangian discs.
Biran 2001 : take the finite group

$$
G_{d}=\left\{\left.\left(\begin{array}{cc}
\xi^{k} & 0 \\
0 & \xi^{\ell}
\end{array}\right) \right\rvert\, \xi=e^{2 \pi i / d}\right\}
$$

of order d^{2}.

$$
\Delta_{d}:=G_{d} \cdot \mathbb{R}^{2}\left(x_{1}, x_{2}\right)
$$

Corollaries

1. Capacity killing

For all normalized symplectic capacities c :

$$
c_{G} \leq c \leq c^{Z}
$$

Biran showed

$$
\mathrm{c}_{\mathrm{G}}\left(B^{4}(1) \backslash \Delta_{d}\right) \leq 1 / d
$$

but the main theorem shows

$$
c\left(B^{4}(1) \backslash \Delta_{d}\right) \leq c^{Z}\left(B^{4}(1) \backslash \Delta_{d}\right) \leq 2 / d
$$

2. Lagrangian intersection with Δ_{d}
$\mathbb{T}_{\text {Cliff }}(1,1) \subset \mathbb{C}^{2}$ cannot be displaced from $\Delta(d)$ in $B^{4}(d / 2)$.
3. Lagrangian intersection with Δ_{d}
$\mathbb{T}_{\text {Cliff }}(1,1) \subset \mathbb{C}^{2}$ cannot be displaced from $\Delta(d)$ in $B^{4}(d / 2)$.
4. Reeb chords to $\Lambda \cup \Delta_{d}$

Let $U \subset B^{4}(1)$ be starshaped, $\Lambda \subset \partial U \backslash \Delta_{d}$ a Legendrian knot. Then there exists a Reeb chord from \wedge to $\wedge \cup \Delta_{d}$ of length $T \leq \frac{2}{d}$.

Variations

1. The set Δ_{d} "accumulates" near 0 for d large.

But there is also a "universal" Lagrangian skeleton ...

Variations

1. The set Δ_{d} "accumulates" near 0 for d large.

But there is also a "universal" Lagrangian skeleton ...
2. Main Theorem' For every $\varepsilon>0$ there exists a symplectic embedding

$$
B^{4}(1) \backslash \Delta_{d} \xrightarrow{s}(1+\varepsilon) E(1 / d, d)
$$

for d sufficiently large.
Corollary Let $\left(M^{4}, \omega\right)$ be a closed symplectic manifold of volume $1 / 2$. Then for every $\varepsilon>0$ there exists d such that

$$
B^{4}(1-\varepsilon) \backslash \Delta_{d} \xrightarrow{s}(M, \omega) .
$$

Sketch of proof of

$$
B^{4}(d / 2) \backslash \Delta_{d} \quad \stackrel{s}{\hookrightarrow} Z^{4}(1)
$$

Main idea : use polarizations on both sides

Sketch of proof of

$$
B^{4}(d / 2) \backslash \Delta_{d} \stackrel{s}{\hookrightarrow} Z^{4}(1)
$$

Main idea : use polarizations on both sides
(M^{4}, ω) closed
Polarization : $\Sigma \subset M$ symplectic surface such that

$$
[\Sigma]=\mu \mathrm{PD}[\omega], \quad \mu>0
$$

Then $\omega=d \lambda$ on $M \backslash \Sigma$
Liouville vector field $X_{\lambda}: \quad{ }^{X_{\lambda}} d \lambda:=\lambda$

Get two decompositions of M :

$$
\text { 1. } M=\sum_{\text {hypersurface }+ \text { Liouville domain }}^{\sum} \cup M \backslash \Sigma
$$

2. $M=\operatorname{SDB}(M, \Sigma, \lambda) \quad \Delta$ disc bundle over $\Sigma+$ isotropic skeleton basin of attraction + unstable manifold

Examples on $\left(\mathbb{C P}^{2}, \omega_{\mathrm{FS}}\right)$

1. $\Sigma=\mathbb{C} P^{1}$

$$
\text { with } \quad \lambda=\sum_{j} x_{j} d y_{j}-y_{j} d x_{j}=\sum_{j} R_{j} d \theta_{j} \quad\left(R_{j}:=r_{j}^{2}\right)
$$

have $\Delta=\{\mathrm{pt}\}$

Examples on $\left(\mathbb{C P}^{2}, \omega_{\mathrm{FS}}\right)$

1. $\Sigma=\mathbb{C} P^{1}$

$$
\text { with } \quad \lambda=\sum_{j} x_{j} d y_{j}-y_{j} d x_{j}=\sum_{j} R_{j} d \theta_{j} \quad\left(R_{j}:=r_{j}^{2}\right)
$$

have $\Delta=\{\mathrm{pt}\}$
2. $\quad \Sigma_{d}=\left\{z_{0}^{d}+z_{1}^{d}+z_{2}^{d}=0\right\}, \quad\left[\Sigma_{d}\right]=d \operatorname{PD}\left[\omega_{\mathrm{FS}}\right]$
with $\quad \lambda_{d}=-d^{c} \log \frac{\left|z_{0}^{d}+z_{1}^{d}+z_{2}^{d}\right|}{\left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{2}}$
have $\Delta=\bar{\Delta}_{d}=G_{d} \cdot \mathbb{R} P^{2}$
Since $\left.X_{\lambda}\right|_{\mathbb{C} P^{1}}$ is tangent to $\mathbb{C} P^{1}: \quad B^{4} \backslash \Delta_{d} \stackrel{s}{=} \operatorname{SDB}\left(\Sigma_{d}\right)$

Polarize also $S^{2} \times S^{2}$
For this: Use singular polarization (Opshtein) :

$$
\Sigma_{0} \cup \Sigma_{1} \cup \cdots \cup \Sigma_{k}, \quad \Sigma_{i} \cap \Sigma_{j} \quad \omega \text {-orthogonal }
$$

such that

$$
\operatorname{PD}[\omega]=\sum \mu_{j}\left[\Sigma_{j}\right], \quad \mu_{j} \geq 0
$$

Polarize also $S^{2} \times S^{2}$
For this: Use singular polarization (Opshtein) :

$$
\Sigma_{0} \cup \Sigma_{1} \cup \cdots \cup \Sigma_{k}, \quad \Sigma_{i} \cap \Sigma_{j} \quad \omega \text {-orthogonal }
$$

such that $\quad \operatorname{PD}[\omega]=\sum \mu_{j}\left[\Sigma_{j}\right], \quad \mu_{j} \geq 0$
In this setting, Opshtein showed:
One can choose the Liouville form λ on $M \backslash \bigcup_{j} \Sigma_{j}$ such that X_{λ} has a normal form near Σ_{j}, determined by μ_{j}, pointing inwards

Examples on $S^{2}(1) \times S^{2}(b)$

1. $\quad \Sigma_{1}=\left(S^{2}(1), \mu_{1}=b\right), \quad \Sigma_{2}=\left(S^{2}(b), \mu_{2}=1\right)$

$$
\text { with } \quad \lambda=\left(R_{1}-1\right) d \theta_{1}+\left(R_{2}-b\right) d \theta_{2}
$$

have $\Delta=\{\mathrm{pt}\}$

Examples on $S^{2}(1) \times S^{2}(b)$

1. $\quad \Sigma_{1}=\left(S^{2}(1), \mu_{1}=b\right), \quad \Sigma_{2}=\left(S^{2}(b), \mu_{2}=1\right)$

$$
\text { with } \quad \lambda=\left(R_{1}-1\right) d \theta_{1}+\left(R_{2}-b\right) d \theta_{2}
$$

have $\Delta=\{\mathrm{pt}\}$
2. $\quad \Sigma_{0}=\Sigma_{m, n}$: smoothing of $m A$-spheres and $n B$-spheres

$$
\begin{aligned}
\operatorname{PD}\left[\omega_{1, b}\right] & =b A+B \\
& =\mu_{0}(\underbrace{m A+n B}_{\left[\Sigma_{m, n}\right]})+\left(b-\mu_{0} m\right) A+\left(1-\mu_{0} n\right) B
\end{aligned}
$$

So : have singular polarization of $S^{2}(1) \times S^{2}(b)$ if

$$
\mu_{0} m<b \quad \text { and } \quad \mu_{0} n \leq 1
$$

Want: $\quad B^{4}(d / 2) \backslash \Delta_{d} \stackrel{s}{=} \operatorname{SDB}\left(\sum_{d}, \mu=\frac{1}{2}\right)$

$$
\stackrel{s}{\hookrightarrow} \operatorname{SDB}\left(\Sigma_{m, n}, \mu_{0}=\frac{1}{2}\right)
$$

Want : $\quad B^{4}(d / 2) \backslash \Delta_{d} \stackrel{s}{=} \operatorname{SDB}\left(\Sigma_{d}, \mu=\frac{1}{2}\right)$

$$
\stackrel{s}{\hookrightarrow} \operatorname{SDB}\left(\Sigma_{m, n}, \mu_{0}=\frac{1}{2}\right)
$$

For this, need :

$$
\begin{aligned}
\operatorname{genus}\left(\Sigma_{d}\right) & \leq \operatorname{genus}\left(\Sigma_{m, n}\right) \\
\operatorname{area}\left(\Sigma_{d}\right) & <\operatorname{area}\left(\Sigma_{m, n}\right) \\
\frac{1}{2} m & <b \\
\frac{1}{2} n & \leq 1
\end{aligned}
$$

Want: $B^{4}(d / 2) \backslash \Delta_{d} \stackrel{s}{=} \operatorname{SDB}\left(\sum_{d}, \mu=\frac{1}{2}\right)$

$$
\stackrel{s}{\hookrightarrow} \operatorname{SDB}\left(\Sigma_{m, n}, \mu_{0}=\frac{1}{2}\right)
$$

For this, need :

$$
\begin{aligned}
\operatorname{genus}\left(\Sigma_{d}\right) & \leq \operatorname{genus}\left(\Sigma_{m, n}\right) \\
\operatorname{area}\left(\Sigma_{d}\right) & <\operatorname{area}\left(\Sigma_{m, n}\right) \\
\frac{1}{2} m & <b \\
\frac{1}{2} n & \leq 1
\end{aligned}
$$

With $n=2$, this becomes:

$$
\begin{aligned}
\frac{1}{2}(d-1)(d-2) & <m-1 \\
\frac{1}{2} d^{2} & <m+2 b \\
\frac{1}{2} m & <b .
\end{aligned}
$$

OK for $m=b$ large

