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Abstract

We study inverse semigroup amalgams [S1, S2;U ], where S1 and S2 are finitely

presented inverse semigroups with decidable word problem and U is an inverse

semigroup with decidable membership problem in S1 and S2. We use a modified

version of Bennett’s work on the structure of Schützenberger graphs of the

R-classes of S1 ∗U S2 to state sufficient conditions for the amalgamated free

products S1 ∗U S2 having decidable word problem.
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1. Introduction

A semigroup S is regular when for each s ∈ S there exists t ∈ S (called an inverse

of s) such that s = sts and t = tst. If each s ∈ S has a unique inverse (denoted by
s−1) then S is called an inverse semigroup. For any inverse semigroup S, the natural

partial order ≤ is defined by u ≤ v if and only if u ∈ ESv, where ES denotes the
semilattice of idempotents of S. The set [u ↑] = {v ∈ S |u ≤ v} is called order filter

of u ∈ S. We refer the reader to Petrich [12] for many other standard results and
ideas about inverse semigroups.

If C is a category of semigroups, S1 and S2 are C -semigroups such that S1∩S2 =
U is a non-empty C -subsemigroup of both S1 and S2, the triple U = [S1, S2;U ] is
called an amalgam of C -semigroups {S1, S2} with core U . The amalgam U is said
to be strongly embeddable in a C -semigroup if there exist a C -semigroup S and
embeddings φi : Si →֒ S such that φ1|U = φ2|U and φ1(S1) ∩ φ2(S2) = φ1(U) =
φ2(U). A semigroup amalgam is not necessarily (strongly) embeddable and a large
literature is devoted to the (strong) embeddability of semigroup amalgam, we refer
the reader to Howie [7] for some references on this problem. In this paper we will be
concerned only with inverse semigroup amalgams, i.e. in amalgams [S1, S2;U ] where
S1, S2 and U are inverse semigroups. A very important theorem of Hall [5] states
that the category of inverse semigroups has the Strong Amalgamation Property. The
amalgamated free product (or the free product with amalgamation) of S1 and S2, with
core U , in the category of inverse semigroups, is denoted by S1 ∗U S2. If U = ∅ we
have the free product S1 ∗ S2.

We briefly recall the notion of presentation of inverse semigroups (see Stephen

[13] for more details). Given a finite alphabet X, let X−1 be a disjoint alphabet
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of formal inverses of X so that there exists an involutory one-to-one correspon-
dence between X and X−1, i.e. for each x ∈ X there exists a unique x−1 ∈ X−1

and (x−1)−1 = x. We denote with
(
X ∪X−1

)+
[
(
X ∪X−1

)∗
] the free semigroup

[monoid ] with involution on X, whose elements are also called words. Let ρ be

the Vagner congruence on
(
X ∪X−1

)+
(we write ρX if X needs to be specified),

the quotient semigroup FIS(X) =
(
X ∪X−1

)+
/ρ is the free inverse semigroup on

X. The free group on X is denoted FG(X). For each w ∈
(
X ∪X−1

)∗
, r(w) de-

notes the reduced form (in the sense of FG(X)) of w. It is well known that FG(X)
can be represented via the set r

((
X ∪X−1

)∗)
of reduced words over the alphabet(

X ∪X−1
)
. Now let R be a binary relation on a semigroup, we denote with Re

[Rc] the equivalence [congruence] generated by R. A presentation of an inverse semi-

group is a pair (X;R), where R is a binary relation on
(
X ∪X−1

)+
. The inverse

semigroup S =
(
X ∪X−1

)+
/ (R ∪ ρ)c is said to be presented by the generators

X and the relation R, and is denoted by S = Inv 〈X|R〉. The fundamental ques-
tion associated with the concept of a presentation is the decidability of the word

problem, i.e. the existence of an effective algorithm that, for a given inverse semi-
group S = Inv 〈X|R〉 =

(
X ∪X−1

)+
/τ with τ = (R ∪ ρ)c and two arbitrary words

u, v ∈
(
X ∪X−1

)+
, decides whether or not uτ and vτ are the same element of S or

not.

In this work all the automata and the underlying graphs that appear will be
inverse automata and inverse graphs. An X-inverse word graph Γ is a strongly
connected labeled digraph with a non-empty vertex set V(Γ), whose set of edges
E(Γ) is labeled by elements of

(
X ∪X−1

)
and is involutive, i.e. (v′, x, v′′) ∈ E(Γ) if

and only if (v′, x, v′′)−1 = (v′′, x−1, v′) ∈ E(Γ). Recall that a graph is called strongly

connected when for each pair of vertices v′ and v′′ there exists a v′ − v′′ path. An
X-inverse subgraph Λ of Γ is an X-inverse word graph whose vertex and edge sets
are subset of the respective sets of Γ, and we write Λ ⊆ Γ. Note that in particular Λ
must be strongly connected. A morphism from the X-inverse word graph Γ to the
X-inverse word graph Ω is a pair of maps φ = (φV, φE), where φV : V(Σ) → V(Ω)
and φE : E(Σ) → E(Ω), such that φE(v

′, x, v′′) = (φV(v
′), x, φV(v

′′)). Note that φ is
completely determined by φV. In the following we will use the same symbol φ for
both φV and φE. An X-inverse word automaton is a triple A = (v′,Γ, v′′), where v′

and v′′ are vertices of Γ, and are called starting and terminal vertices respectively.
The language Lang[A] ⊆

(
X ∪X−1

)∗
is the set of words that label a v′ − v′′ path

on Γ. A morphism from the X-inverse automaton A to the X-inverse automaton A′

is a morphism of the underlying graphs that send the starting and terminal vertices
of A into the starting and terminal vertices of A′ respectively. It is easy to see that
the X-inverse word graphs [resp. X-inverse word automaton] with their morphisms
form a category.

Given an equivalence relation µ on the vertex set of the X-inverse automaton
A = (v′,Γ, v′′), the quotient graph Γ/µ has vertex set V(Γ/µ) = V(Γ)/µ and edge
set induced by the quotient projection in the obvious way. The quotient automaton

is the X-inverse automaton A/µ = (v′µ,Γ/µ, v′′µ). An X-inverse word graph Γ
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is deterministic when (w, x,w′), (w, x,w′′) ∈ E(Γ) implies w′ = w′′. Given an X-
inverse word graph Γ it is easy to prove that there is a minimum equivalence µdet
on the vertices such that the quotient graph is deterministic. We call the quotient
Γ/µdet the determinized form of Γ, and we denote it by Γdet. Similarly we define the
determinized form Adet of an X-inverse automaton A. See Stephen [13] for more
details concerning the categories of X-inverse word graphs and X-inverse automata.

Central to all of this work is the notion of Schützenberger automaton A(X;R; s)

of an element s ∈ Inv 〈X|R〉 =
(
X ∪X−1

)+
/τ . The underlying graph of A(X;R; s)

is the Schützenberger graph SΓ(X;R; s), whose vertex and edge sets are respectively

V(SΓ(X;R; s)) = {v ∈ Inv 〈X|R〉 | vRs} ,(1)

E(SΓ(X;R; s)) = {(v1, x, v2) | v1, v2 ∈ V(SΓ(X;R; s)), v2 = v1 · xτ} .

where (v1, x, v2) ∈ E(SΓ(X;R; s)) denotes the edge whose starting and terminal
vertices are respectively v1 and v2, and x ∈

(
X ∪X−1

)
is the label of the edge. The

relation R in (1) is as usual the right Green’s relation. We recall that sRt if and
only if ss−1 = tt−1. The main property of Schützenberger automata is that uτ = vτ
if and only if A(X;R;uτ) = A(X;R; vτ), so these automata can be employed to
study the word problem in Inv 〈X|R〉.

In [13] Stephen describes an iterative procedure to “build” a Schützenberger au-
tomaton A(X;R; s) from a sequence {An}n∈N of approximate automata. We recall

that, given a word w ∈
(
X ∪X−1

)+
, an automaton A is an approximate automaton

for the Schützenberger automaton A(X;R;wτ), written A  A(X;R;wτ), when
the language Lang[A] is contained in the language Lang[A(X;R;wτ)] of the second
and w′τ = wτ for some w′ ∈ Lang[A]. More precisely the Stephen iterative procedure

sets up a direct system (of approximate automata) in the category AX of X-inverse
automata whose direct limit is the Schützenberger automaton A(X;R;wτ). We refer
the reader to the original work of Stephen [13] for all needed details.

This paper developes sufficient conditions for the decidability of the word problem
for the amalgamated free product S1∗US2 for a given inverse semigroup amalgam U =
[S1, S2;U ] where S1 and S2 have given presentations and decidable word problem.

In [3] Birget, Margolis and Meakin showed that the word problem for a
generic semigroup amalgam U = [S1, S2;U ] is in general undecidable even if S1 and
S2 have given presentations with decidable word problem, and U is a free semigroup
which is unitary in each Si and has decidable membership problem for S1 and S2.
Thus the situation is very different from the situation in group amalgams V =
[G1, G2;V ], where by the normal form theorem (see e.g. Lyndon and Schupp [9])
the word problem is decidable if G1 and G2 have decidable word problem and the
core V has decidable membership problem in each group.

In [1, 2] Bennett introduced the class of lower bounded inverse semigroup amal-
gams and developed an algorithm for setting up direct systems in the category GX

of X-inverse word graphs whose direct limits are the Schützenberger graphs of amal-
gamated free products of lower bounded amalgams. Using his results, Cherubini,
Meakin and Piochi [4] proved the decidability of the word problem for amalga-
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mated free products of the form FIS(X1) ∗U FIS(X2), where the inverse semigroup
U is finitely generated.

In this work we will generalize this result by considering inverse semigroups
S1 and S2 that are not free, in which case the Schützenberger graphs of the R-
classes of S1 and S2 may be infinite. To overcome this difficulty we make use of
appropriate approximate Munn trees: given two arbitrary words w and z, we provide
a construction that builds a Munn tree MT(ŵ1) of a word ŵ1 such that ŵ1 and w
represent the same element of S1 ∗U S2, then we build up a sequence of Munn tree
{MT(ŵk)}k such that reading z by the Schützenberger automaton of the element of
S1 ∗U S2 represented by w is simulated using the Munn trees {MT(ŵk)}k∈{1,...,K},

where K ∈ N+ is a computable integer.

2. Background

We briefly recall the “shape” of the Schützenberger automata for the free inverse
semigroup case. Consider FIS(X) =

(
X ∪X−1

)+
/ρ = Inv 〈X|∅〉 and a word w =

w1w2...w|w| ∈
(
X ∪X−1

)+
where wi ∈

(
X ∪X−1

)
. We call prefix set of w the

following set of words

pref(w) =
{
ε, w1, w1w2, ..., w1w2...w|w|

}
,

where ε denotes the empty word. The Munn Tree of the word w is the X-inverse
word graph MTX(w) having vertex and edge sets respectively1

V(MTX(w)) = {r(v) | v ∈ pref(w)} = r (pref(w)) ,

E(MTX(w)) =
{
(v, x, r(vx)) | v, r(vx) ∈ r (pref(w)) , x ∈

(
X ∪X−1

)}
.

There is an isomorphism between the Schützenberger automata A(X;∅;wρ) and
the Munn automata (ε,MTX(w), r(w)) sending the vertices

(ww−1)ρ,wρ ∈ V(SΓ(X;∅;wρ))

to the vertices

ε, r(w) ∈ V(MTX(w))

respectively.

Let (X1;R1) and (X2;R2) be totally disjoint presentations for the inverse semi-
groups

S1 = Inv 〈X1|R1〉 =
(
X1 ∪X

−1
1

)+
/τ1,

S2 = Inv 〈X2|R2〉 =
(
X2 ∪X

−1
2

)+
/τ2,

1The given definition of Munn tree differs from the original definition on [11] only on the label
of the vertices, but the other properties are preserved.
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where τ1 = (ρX1 ∪R1)
c and τ2 = (ρX2 ∪R2)

c. We also denote

X = X1 ∪X2, X−1 = X−1
1 ∪X−1

2 , R = R1 ∪R2.

Let U be an inverse semigroup isomorphic to a subsemigroup of S1 and S2, so
that the triple U = [S1, S2;U ] forms an amalgam of inverse semigroups. To give a
presentation for the amalgamated free product S1∗U ∗S2 we can fix a pair of injective
maps

w1 : U →
(
X1 ∪X

−1
1

)+
, w2 : U →

(
X2 ∪X

−1
2

)+
,

such that (wi(u))τi = u for each u ∈ U . Then we can define the binary relation

W = {(w1(u),w2(u)) |u ∈ U} ,

and we obtain

S1 ∗ S2 = Inv 〈X|R〉 =
(
X ∪X−1

)+
/τ,

S1 ∗U S2 = Inv 〈X|R ∪W 〉 =
(
X ∪X−1

)+
/η,

where τ = (ρX ∪R)c and η = (ρX ∪R ∪W )c = (τ ∪W )c. Since (X1;R1) and
(X2;R2) are totally disjoint no confusion arises denoting by “≤” the natural partial
order in S1, S2, S1 ∗ S2 and S1 ∗U S2. We define the order filter of an element
s ∈ S1 ∪ S2 restricted to U as the set2

[s↑U ] = {u ∈ U | s ≤ u} .

If [s↑U ] admits a minimum we denote it by f(s), i.e. f(s) ∈ [s↑U ] and f(s) ≤ u for
all u ∈ [s↑U ]. It’s easy to prove that f(e) ∈ EU , if it exists, for each e ∈ ESi

.
Given an X-inverse word graph Γ we call lobe coloured by i each maximal sub-

graph ∆ of Γ whose edge labels are in Xi for a particular i ∈ {1, 2}. If v ∈ V(Γ) is
a vertex of two distinct lobes, it is called an intersection vertex.

The set of all the intersection vertices of Γ is denoted by IV(Γ) and, for v ∈ IV(Γ),
∆1(v) and ∆2(v) denote the adjacent lobes coloured respectively by 1 and 2. The
lobe graph of Γ is the graph LGΓ (in the category G of Serre’s graphs) given by

V(LGΓ) ={∆ ⊆ Γ |∆ is a lobe},

E(LGΓ) ={(∆,∆′) ∈ V(LGΓ)×V(LGΓ) |

∆ = ∆i(v), ∆
′ = ∆3−i(v) for some v ∈ IV(Γ), i ∈ {1, 2}} .

A graph Γ is called cactoid when LGΓ is a finite tree and each pair of adjacent
lobes has only one intersection vertex. Let ∆ be a lobe coloured by i ∈ {1, 2} of
an X-inverse word graph Γ such that ∆ is isomorphic to a Schützenberger graph
SΓ(Xi;Ri; si), then for v ∈ V(∆) we denote by ei(v) the idempotent in ESi

such
that (v,∆, v) ≃ (v,SΓ(Xi;Ri; si), v) ≃ A(Xi;Ri; ei(v)).

An inverse semigroup amalgam U = [S1, S2;U ] is lower bounded when it satisfy
the following two conditions:

2We prefer the suggestive notation [s↑U ] instead of the Bennett notation Ui(s) (where s ∈ Si)
used in [1].
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(LB1) [e↑U ] = ∅ or f(e) ∈ EU exists for each i ∈ {1, 2} and for each e ∈ ESi
;

(LB2) for each i ∈ {1, 2} and for each e ∈ ESi
, if {uk}k is a sequence of idempotents

in EU such that uk+1 6= uk and uk+1 ≤ f(euk) ≤ uk, then the sequence {uk}k
is finite.

It is useful for the sequel to provide a brief description of Bennett procedure
that “build” the Schützenberger automaton A(X;R ∪ W ;wη), where S1 ∗U S2 =

Inv 〈X|R ∪W 〉 =
(
X ∪X−1

)+
/η is the free product of a lower bounded amalgam.

Bennett procedure consists in five constructions, applied starting from the approx-
imate Munn automaton A0 = (α0; Γ0;β0) = (ε,MTX(w), r(w)). Each construction
is iterated until it cannot be applied anymore.

Bennett Construction A ([2, construction 1.10] or [4, step 1]). Starting from the
approximate X-inverse automaton

Ak = (αk,Γk, βk) A(X;R;wτ)

let ∆k ⊆ Γk be a lobe coloured by i ∈ {1, 2} that is not (Xi;Ri)-closed. For vk ∈
V(∆k), a unique idempotent ek ∈ ESi

exists such that (vk,∆k, vk) A(Xi;Ri; ek).
Then (Xi;Ri)-close the lobe ∆k, obtaining the approximate X-inverse automaton
Ak+1 = (αk+1,Γk+1, βk+1), where3

Γk+1 = ((Γk ∐ SΓ(Xi;Ri; ek)) /µ)det , with µ = {((vk, 1), (ek , 2))}

and αk+1, βk+1 are the natural images of αk, βk. �

Bennett Construction B ([2, construction 2.1] or [4, step 2]). Given the X-
inverse word graph Γk such that

Γk ≃ SΓ(X;R; sk)

for some sk ∈ S1 ∗ S2, let v ∈ IV(Γ) be an intersection vertex v ∈ IV(Γ) such that
[e1(v)

x
U
] 6= [e2(v)

x
U
]. Let i ∈ {1, 2} and j = 3− i such that

∅ 6= [ei(v)
x
U
] * [ej(v)

x
U
].

Assign f = f(ei(v)) and build the X-inverse word graph Γ′
k as

Γ′
k = ((Γk ∐ SΓ(Xj ;Rj ; f)) /ζ)det , with ζ = {((v, 1), (f, 2))}e .

and if needed reiterate Bennett construction A starting to obtain the (X;R)-closed
X-inverse word graph Γk+1. �

3We make use of the following notion of disjoint union: given a family of sets {Ak | k ∈ {1, ..., n}}
we define their disjoint union as the set

∐n

k=1 Ak =
⋃n

k=1 (Ak × {k}). If {Γk | k ∈ {1, ..., n}} is
a family of X-inverse word graphs we define their disjoint union as the X-inverse word graph
Γ =

∐n

k=1 Γk having vertex and edge set respectively

V(Γ) =

n∐

k=1

V(Γk), E(Γ) = {((v1, k), x, (v2, k)) | (v1, x, v2) ∈ E(Γk)} .
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An X-inverse automaton A = (α,Γ, β) (or the underlying X-inverse word graph
Γ) has the lower bound equality property (LBE) when [e1(v)

x
U
] = [e2(v)

x
U
] for each

v ∈ IV(Γ). Thus at the end of iterations of Bennett construction B the resulting
X-inverse word graph satisfies (LBE).

An X-inverse word graph Γ with (LBE) property has the related pair separation

property (RPS) when there is no u ∈ U such that w1(u) or w2(u) labels a path,
between two distinct intersection vertices of Γ.

Bennett Construction C ([2, construction 3.3] or [4, step 3]). Let

Γk ≃ SΓ(X;R; sk)

for some sk ∈ S1 ∗ S2, satisfying (LBE) but not (RPS). Let v′, v′′ ∈ IV(Γk) be two
vertices such that ∆i(v

′) = ∆i(v
′′) and let u ∈ U be such that the word wi(u) labels

a v′−v′′ path. Now, by the property (LBE), there exist ṽ′ ∈ ∆j(v
′) and ṽ′′ ∈ ∆j(v

′′)
such that wj(u) labels both a v′ − ṽ′ path and a ṽ′′ − v′′ path. Now partition Γk in

two subgraphs Γ
(1)
k ⊇ ∆i(v

′) and Γ
(2)
k so that V(Γ

(1)
k ) ∩ V(Γ

(2)
k ) = {v′′}, and build

the X-inverse word graph Γ′
k as

Γ′
k =

((
Γ
(1)
k ∐ Γ

(2)
k

)
/ξ
)
det
, with ξ =

{(
(ṽ′, 1), (v′′, 2)

)
,
(
(v′, 1), (ṽ′′, 2)

)}e
.

If Γ′
k is not (X;R)-closed, then Bennett construction A is repeated starting from Γ′

k

until we obtain the (X;R)-closed X-inverse word graph Γ′′
k. Again, if Γ′′

k does not
satisfy (LBE), then Bennett construction B is repeated starting from it until the
X-inverse word graph Γk+1 satisfying (LBE) is obtained. �

Let A = (α,Γ, β) be an X-inverse automaton that satisfy (LBE) and (RPS),
let v ∈ IV(Γ) and RP(v) ⊆ V(∆1(v))×V(∆2(v)) given by

RP(v) = {(v1, v2) ∈ V(∆1(v))×V(∆2(v)) | ∃u ∈ U such that

w1(u) ∈ Lang[(v,∆1(v), v1)], w2(u) ∈ Lang[(v,∆2(v), v2)]}.

Given an X-inverse word graph Γ, the X-inverse word graph

Γass = Γ/γ, with γ =
⋃

v∈IV(Γ)

RP(v) = RP(IV(Γ))

is called the assimilated form of Γ. An X-inverse word graph Γ ≃ SΓ(X;R; s) (for
some s ∈ S1 ∗ S2) satisfying (LBE) and (RPS) is called opuntoid when it concides
with its assimilated form (i.e. Γ = Γass) and its lobe graph LGΓ is a tree.

Bennett Construction D ([2, section 4] or [4, step 4]). Given the X-inverse word
graph Γk ≃ SΓ(X;R; sk) for some sk ∈ S1 ∗ S2, such that Γk satisfies (LBE) and
(RPS), calculate its assimilated form Γ0(w) = (Γk)ass. �
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Given an opuntoid X-inverse word graph Γ a bud is a vertex v ∈ V(Γ) \ IV(Γ) in
a lobe coloured by i ∈ {1, 2}, such that [ei(v)

x
U
] 6= ∅. It can be easily shown that

an opuntoid X-inverse word graph is (X;R ∪W )-closed if and only if it has no bud
(see [2]).

Now, starting from the X-inverse word graph Γ0(w) obtained at the end of the
construction D, the construction E defines a directed system {Γk(w)}k∈N (in the
category GX of X-inverse word graphs) whose direct limit is the Schützenberger
graph SΓ(X;R ∪W ;wη).

Bennett Construction E ([2, construction 5.1] or [4, step 5]). Let Γk(w) be an
opuntoid X-inverse word graph that is not (X;R ∪ W )-closed. Then a bud v ∈
V(Γk(w)) \ IV(Γk(w)) exists in a lobe ∆ coloured by i ∈ {1, 2}. Let f = f(ei(v)),
build an X-inverse word graph Γ′

k(w) as

Γ′
k(w) = (Γk(w) ∐ SΓ(Xj ;Rj ; f)) /µ, with µ = {((v, 1), (f, 2))}e ,

and calculate the assimilated form of Γ′
k(w) as

Γk+1(w) = Γ′
k(w)ass = Γ′

k(w)/RP(v
′). �

3. Solution of the Word Problem

We are ready to approach the word problem. We assume that the amalgam U =
[S1, S2;U ] satisfies the following five conditions:

(A1) the word problem in each Si = Inv 〈Xi|Ri〉 is decidable,

(A2) the injective maps wi : U →
(
Xi ∪X

−1
i

)+
that has been fixed are effectively

calculable (clearly every finitely generated inverse semigroup U fulfills this
condition),

(A3) for each s ∈ Si whether or not [s↑U ] 6= ∅ is decidable, and if it is non-empty
there is an effective procedure to find an element u ∈ [s↑U ],

(A4) the amalgam U satisfies (LB1) and for each e ∈ ESi
such that [e↑U ] 6= ∅

the element f(e) is effectively calculable (recall that f(e) ∈ EU is the minimal
element of [e↑U ]),

(A5) the amalgam U is such that Bennett construction B terminates after finitely
many applications at all intersection vertices starting from an approximate X-
inverse automata A such that A ≃ A(X;R;w′τ) for some w′ ∈

(
X ∪X−1

)+
(this always happens when U also satisfies the (LB2), see [2, lemma 2.3]).

The word problem for S1 ∗U S2 is decidable if for all w, z ∈
(
X ∪X−1

)+
it is

decidable whether or not zη ∈ Lang[A(X;R ∪W ;wη)]. We develop an algorithm
to solve the membership problem for amalgamated free product S1 ∗U S2 satisfying
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(A1)–(A5) using a procedure analogous to the first three Bennett constructions,
but producing each time only suitable Munn trees approximating A(X;R ∪W ;wη)
instead of the Schützenberger graphs of R-classes of the free products S1 ∗ S2. This
gives the advantage of working with finite graphs.

We need to introduce some new notation. Let Γ be a finite X-inverse word graph
isomorphic to a Munn Tree, and let Ω ⊆ Γ be an X-inverse word subgraph of Γ,
which obviously must be isomorphic to a Munn Tree (recall that an X-inverse word
subgraph must be strongly connected). For each pair v1, v2 ∈ V(Ω), a word w̃ is a
spanning word for (v1,Ω, v2) when it is the label of a v1 − v2 path on Ω touching
each vertex in V(Ω) at least once. Thus, if w̃ is a spanning word for (v1,Ω, v2), we
obtain

(v1,Ω, v2) ≃ (ε,MTX(w̃), r(w̃)).(2)

Of course there are infinitely many words w̃ that have such a property, but it’s easy
to construct a calculable map

̟Ω : V(Ω)×V(Ω) →
(
X ∪X−1

)+
,

selecting a spanning word w̃ = ̟Ω(v1, v2) for (v1,Ω, v2) satisfying (2).

Since

(ε,MTX(w), r(w)) A(X;R;wτ)

there exists a natural morphism

ψ(w) : (ε,MTX(w), r(w)) → A(X;R;wτ).

We say that the Munn Tree MTX(y) of the word y has the good lobe ordering

property (GLO) if

(GLO1) LGMTX(y) ≃ LGSΓ(X;R;yτ) by the isomorphism mapping the lobe containing
the vertex ε ∈ V(MTX(y)) into the lobe containing the vertex (yy−1)τ ∈
V(SΓ(X;R; yτ)),

(GLO2) for each lobe ∆ ∈ V(LGMTX(y)) coloured by i ∈ {1, 2}, let ∆̃ ⊇ ψ(y)(∆) be the
corresponding lobe of SΓ(X;R; yτ), then the isomorphism

(v1,∆, v2) ≃ (ε,MTXi
(ỹ), r(ỹ))

implies (
ψ(y)(v1), ∆̃, ψ

(y)(v2)
)
≃ A(Xi;Ri; ỹτi),

for v1, v2 ∈ V(∆), ỹ = ̟∆(v1, v2).

Our first construction is analogous to Bennett construction A, but it replaces
the Schützenberger graph SΓ(X;R;wτ) by a Munn Tree MTX(w′), with w′τ = wτ ,
satisfying (GLO).
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Construction 1. Let ∆k ∈ LGMTX(w(k)) be a lobe coloured by i ∈ {1, 2} of the

Munn automaton
(
ε,MTX(w(k)), r(w(k))

)
approximating for A(X;R;wτ). Consider

two distinct intersection vertices v1, v2 ∈ IV(MTX(w(k))) ∩V(∆k) such that

̟∆k
(v1, v2)τi =

(
̟∆k

(v1, v2)̟∆k
(v1, v2)

−1
)
τi.

If there not exist two distinct vertices with this property, simply skip this construc-
tion. Then

ψw(k)
(v1) = ψw(k)

(v2),

and the Munn tree MTX(w(k)) does not satisfy (GLO1). For j = 3 − i, the mor-

phism ψw(k)
maps ∆j(v1) and ∆j(v2) into the same lobe of SΓ(X;R;w(k)τ) and

LGMTX(y) 6≃ LGSΓ(X;R;yτ) (recall that ∆j(vh) is the lobe adjacent to vh that is
coloured by j).

Partition MTX(w(k)) in two subgraphs T
(1)
k and T

(2)
k such that

v1 ∈ V(T
(1)
k ), V(T

(1)
k ) ∩V(T

(2)
k ) = {v2} ,

then build the X-inverse word graph

Tk =
((
T
(1)
k ∐ T

(2)
k

)
/µ

)
det
, with µ = {((v1, 1), (v2, 2))}

e ,

and denote by ak, bk ∈ V(Tk) the natural images in Tk of the vertices ε, r(w(k)) ∈
V(MTX(w(k))). Then putting w(k+1) = ̟Tk

(ak, bk) the construction terminates
returning the approximate Munn automaton

(
ε,MTX(w(k+1)), r(w(k+1))

)
≃ (ak, Tk, bk) A(X;R;wτ).

�

Moreover each sequence of iterations of construction 1 starting from MTX(w) ter-
minates after finitely many steps returning a Munn Tree with the desired properties.

Lemma 3.1. Let
(
ε,MTX(w(k+1)), r(w(k+1))

)
be a Munn automaton obtained by(

ε,MTX(w(k)), r(w(k))
)

with an application of construction 1. Then w(k+1)τ =

w(k)τ .

Proof. For simplicity we assume that MTX(w(k)) has only three lobes, the general
case is a trivial extension of this. Let v1, v2 ∈ IV(MTX(w(k))) such that ∆i(v1) =
∆i(v2). We can assume without loss of generality that ε ∈ ∆j(v1) and r(w(k)) ∈
∆j(v2), as shown in figure 1. Define

w
(k)
1 = ̟∆j(v1)(ε, v1), w

(k)
2 = ̟∆i(v1)(v1, v2), w

(k)
3 = ̟∆j(v2)(v2, r(w

(k)))

such that v1 = r(w
(k)
1 ) and v2 = r(w

(k)
1 w

(k)
2 ). Note that w

(k)
1 w

(k)
2 w

(k)
3 is a spanning

word for (ε,MTX(w(k)), r(w(k)), so

(
ε,MTX(w(k)), r(w(k))

)
=

(
ε,MTX(w

(k)
1 w

(k)
2 w

(k)
3 ), r(w

(k)
1 w

(k)
2 w

(k)
3 )

)
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v1 v2

∆i (v1)∆j (v1) ∆j (v2)

MTX(w(k))

w
(k)
1 w

(k)
3

w
(k)
2

ε r(w(k))

Figure 1. Situation at the beginning of construction 1.

or, equivalently, (
w

(k)
1 w

(k)
2 w

(k)
3

)
ρ = w(k)ρ,

in particular, since ρ ⊆ τ ,
(
w

(k)
1 w

(k)
2 w

(k)
3

)
τ = w(k)τ.

The operations performed on MTX(w(k)) to obtain MTX(w(k+1)) give that w(k+1)

is ρ-related (so also τ -related) to

w
(k)
1 w

(k)
2

(
w

(k)
2

)−1
w

(k)
3 ,

hence

w(k+1)τ =

(
w

(k)
1 w

(k)
2

(
w

(k)
2

)−1
w

(k)
3

)
τ =

(
w

(k)
1

)
τ

(
w

(k)
2

(
w

(k)
2

)−1
)
τ
(
w

(k)
3

)
τ =

=
(
w

(k)
1

)
τ
(
w

(k)
2

)
τ
(
w

(k)
3

)
τ =

(
w

(k)
1 w

(k)
2 w

(k)
3

)
τ = w(k)τ. �

Theorem 3.2. Let w(0) = w and
{
w(k)

}
k≥0

be a sequence of words such that(
ε,MTX(w(k+1)), r(w(k+1))

)
is obtained from

(
ε,MTX(w(k)), r(w(k))

)
with an iter-

ation of construction 1. Then the sequence finitely terminates in a word w(N) such

that w(N)τ = wτ and the Munn Tree MTX(w(N)) satisfies (GLO).

Proof. Since the number of lobes of MTX(w(k)) decreases by one for an application
of construction 1, the sequence

{
w(k)

}
k

terminates in a word w(N), with N bounded

by the number of lobes of MTX(w(0)). From lemma 3.1 it follows that that w(N)τ =
wτ , that is

(
ε,MTX(w(N)), r(w(N))

)
 A(X;R;wτ),(3)



12 M. MAZZUCCHELLI AND A. CHERUBINI

Given an arbitrary lobe ∆ ⊆ MTX(w(N)) coloured by i ∈ {1, 2} and two intersection
vertices v1, v2 ∈ IV(MTX(w(N))) ∩V(∆), it follows that

(v1,∆, v2) A(Xi;Ri;̟∆(v1, v2)τi) ≃ A(X;R;̟∆(v1, v2)τ).

From the properties of MTX(w(N)) we know that

̟∆(v1, v2)τi 6=
(
̟∆(v1, v2)̟∆(v1, v2)

−1
)
τi,

hence

̟∆(v1, v2)τ 6=
(
̟∆(v1, v2)̟∆(v1, v2)

−1
)
τ.(4)

so ̟∆(v1, v2)τ 6∈ ES1∗S2 . Now consider an arbitrary approximate X-inverse automa-
ton

(α,Γ, β) A(X;R;̟∆(v1, v2)τ).

The (X;R)-closure (see Stephen [13]) of this automaton is the Schützenberger
automaton of ̟∆(v1, v2)τ , and the natural images of α, β ∈ V(Γ) are respectively

(
̟∆(v1, v2)̟∆(v1, v2)

−1
)
τ,̟∆(v1, v2)τ ∈ V(SΓ(X;R;̟∆(v1, v2)τ)).

Condition (4) guarantees that α 6= β, hence no sequence of (X;R)-expansions applied
from ∆ can identify v1 and v2. Since the lobe graph LGMTX(w(N)) is a tree, no

sequence of (X;R)-expansions applied starting from MTX(w(N)) can identify v1
and v2. This means that each (X;R)-expansion on MTX(w(N)) operates only inside
the lobes, leaving unchanged the lobe graph. This implies (GLO1). Since (X;R)-
expansions operate only inside the lobes, equation (4) gives condition (GLO2). �

Remark 3.1. The Munn tree of the word w′ = w(N) does not represent a normal

form for the τ -class of w. In fact, let v ∈
(
X ∪X−1

)+
such that v 6= w and vτ = wτ ,

iterations of construction 1 starting from MTX(v) may terminate in MTX(v(N
′))

satisfying (GLO) with MTX(v(N
′)) 6= MTX(w(N)). �

The next construction closely follows Bennett construction B, but it works, again,
on Munn trees, hence the finiteness property of the produced graphs is guaranteed.
The correspondence between the Munn automaton of w(k) and the Schützenberger
automaton of w(k)τ is given by the morphism (in the category AX of X-inverse
automata)

ψ(w(k)) :
(
ε,MTX(w(k)), r(w(k))

)
→ A(X;R;w(k)τ).

Construction 2 (Expansion of the intersections). Given the approximate Munn
automaton (

ε,MTX(w(k)), r(w(k))
)
 A(X;R;wτ),
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let v ∈ IV(MTX(w(k))) be such that

[̟∆i(v)(v, v)τi
x
U
] 6= ∅,

for an i ∈ {1, 2}, and

[̟∆j(v)(v, v)τj

x
U
] = ∅ or f

(
̟∆i(v)(v, v)τi

)
6= f

(
̟∆j(v)(v, v)τj

)
.

with j = 3− i. Let f = f
(
̟∆i(v)(v, v)τi

)
. Build the X-inverse word graph Tk as

Tk =
((

MTX(w(k))∐MTXj
(wj(f))

)
/ζ

)
det
, with ζ = {((v, 1), (ε, 2))}e ,

and as usual denote by ak, bk ∈ V(Tk) the respective images of ε, r(w(k)) ∈ V(MTX(w(k))).
Then (

ε,MTX(w̃(k)), r(w̃(k))
)
≃ (ak, Tk, bk) ,

with w̃(k) = ̟Tk
(ak, bk). If the Munn tree MTX(w̃(k)) does not satisfy (GLO),

apply all possible iterations of construction 1 to obtain MTX(w(k+1)), getting the
Munn automaton (

ε,MTX(w(k+1)), r(w(k+1))
)
.

�

Before stating the main result, we need a technical lemma.

Lemma 3.3. Let MTX(w(k)) be a Munn tree that satisfies (GLO), and let Ak be

the Schützenberger automaton

Ak = (αk,Γk, βk) = A(X;R;w(k)τ).

Let MTX(w(k+1)) be obtained from MTX(w(k)) applying the construction 2 to the

vertex v ∈ IV(MTX(w(k))). Let Ak+1 = (αk+1,Γk+1, βk+1) theX-inverse automaton

obtained applying Bennett construction B to the vertex

v′ = ψ(w(k))(v) ∈ IV(Γk).

Then

Ak+1 = (αk+1,Γk+1, βk+1) ≃ A(X;R;w(k+1)τ).

Proof. Let h = ̟MTX(w(k))(v, ε). The Munn automaton (ε,MTX(w(k)), r(w(k)))

approximates Ak, i.e. (ε,MTX(w(k)), r(w(k))) Ak, thus we obtain

(
ε,MTX(hw(k)), r(hw(k))

)
≃

(
v,MTX(w(k)), r(w(k))

)
 

 
(
v′,Γk, βk

)
≃ A(X;R; (hw(k))τ).
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With the same notation as in Bennett construction B and construction 2 we have
f = f

(
̟∆i(v)(v, v)τi

)
= f(ei(v

′)). The X-inverse word graphs Γ′
k and Tk can be

similarly built as

(
α′
k,Γ

′
k, β

′
k

)
≃ A(X;R; f) •det

(
v′,Γk, βk

)
 A(X;R; f (hw(k))τ),

(
a′k, Tk, bk

)
≃

(
ε,MTXj

(wj(f)wj(f)
−1), ε

)
•det

(
v,MTX(w(k)), r(w(k))

)
≃

≃
(
ε,MTX(wj(f)wj(f)

−1hw(k)), r(hw(k))
)
.

Here the symbol •det denotes the determinized form of the product and it is easily
defined as follows: given two X-inverse automata (α,Γ, β) and (γ,Ω, δ), we define
(α,Γ, β) •det (γ,Ω, δ) = (α̃,Λ, δ̃), where

Λ = ((Γ ∐ Ω)/µ)det , with µ = {((β, 1), (γ, 2))}e ,

and α̃, β̃ are the natural projection of α, β.
The X-inverse word graph Γk+1 obtained in Bennett construction A is the un-

derlying graph of the (X;R)-closure of (α′
k,Γ

′
k, β

′
k), thus

(
α′
k,Γ

′
k, β

′
k

)
 (α̃k+1,Γk+1, βk+1) ≃ A(X;R; f (hw(k))τ).

Then the word h labels a α̃k+1 − αk+1 path on Γk+1 for some αk+1 ∈ V(Γk+1), and
it is easy to verify that αk+1 is the natural image of αk ∈ V(Γk), thus

(αk+1,Γk+1, βk+1) ≃ A(X;R;h−1τf (hw(k))τ).

Since f is an idempotent, we observe that
(
wj(f)wj(f)

−1hw(k)
)
τ = ff−1(hw(k))τ = f (hw(k))τ,(5)

thus (a′k, Tk, bk) A(X;R; f (hw(k))τ). From the definition of Tk we know that the
word h labels an a′k − ak path on Tk for some ak ∈ V(Tk). The vertex ak is clearly
the natural image of ε ∈ V(MTX(w(k))), and it results

(ak, Tk, bk) ≃
(
ε,MTX(w̃(k)), r(w̃(k))

)
, with w̃(k) = h−1 wj(f)wj(f)

−1hw(k).

From equation (5) and for the well-known properties of the approximate automata
we obtain

(ak, Tk, bk) A(X;R;h−1τf (hw(k))τ).

Construction 2 terminates applying a sequence of iterations of construction 1 on Tk,
returning the Munn tree MTX(w(k+1)) which satisfies (GLO) and

w(k+1)τ = w̃(k)τ = h−1τ f (hw(k))τ.

Then the claim follows from

(αk+1,Γk+1, βk+1) ≃ A(X;R;h−1τ f (hw(k))τ) = A(X;R;w(k+1)τ). �
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v′ v′′

∆∆j(v
′) ∆j(v

′′)

MTX(w̄(k))

̟∆(v′, v′′)

T
(2)
kT

(1)
k

Figure 2. Situation at the beginning of construction 3.

From the previous lemma and condition (A5) we can easily derive the main result.

Theorem 3.4. Let
(
ε,MTX(w(N)), r(w(N))

)
be the Munn automaton with (GLO)

obtained at the end of construction 1, and let
{
w(k)

}
k≥N

be a sequence of words

such that the Munn automaton of w(k+1) is obtained from the Munn automaton of

w(k) with one application of construction 2. Then the sequence finitely terminates

in a word w(M) = w, with M ≥ N , such that

(ε,MTX(w), r(w)) A(X;R;wτ) A(X;R ∪W ;wη) = A(X;R ∪W ;wη),

and the Schützenberger automaton A(X;R;wτ) satisfies (LBE). �

Now we describe the last construction (an analogue of Bennett construction C).
Our task is to obtain a Munn automaton approximating the Schützenberger automa-
ton of an element w̃τ ∈ S1 ∗ S2 and satisfying (RPS) such that w̃η = wη.

Construction 3 (Lobe Separation). Let

(
ε,MTX(w̄(k)), r(w̄(k))

)
 A(X;R; w̄(k)τ)

such that A(X;R; w̄(k)τ) satisfies (LBE) and MTX(w̄(k)) satisfies (GLO). Let ∆ ⊆
MTX(w̄(k)) be a lobe coloured by i ∈ {1, 2} such that

[̟∆(v
′, v′′)τi

x
U
] 6= ∅,(6)

for distinct v′, v′′ ∈ IV(MTX(w̄(k))) ∩V(∆) (see figure 2). For

u ∈ [̟∆(v
′, v′′)τi

x
U
]
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the word wi(u) labels a ψ(w̄(k))(v′)−ψ(w̄(k))(v′′) path on the Schützenberger automa-
ton A(X;R; w̄(k)τ).

Partition MTX(w̄(k)) in two subgraphs T
(1)
k and T

(2)
k such that

v′ ∈ V(T
(1)
k ), V(T

(1)
k ) ∩V(T

(2)
k ) =

{
v′′
}
,

then build the X-inverse word graph

T k =
((
T
(1)
k ∐ T

(2)
k ∐MTXj

(wj(u))
)
/ξ
)
det
,

where

ξ =
{(

(v′′, 2), (r(wj(u)), 3)
)
,
(
(v′, 1), (ε, 3)

)}e
.

As usual denote by āk, b̄k ∈ V(T k) the natural images of ε, r(w̄(k)) ∈ V(MTX(w̄(k))).

The X-inverse word graph T k is isomorphic to the Munn tree of w̌(k+1) =
̟T k

(āk, b̄k). If the Munn tree MTX(w̌(k+1)) does not satisfies (GLO) and if its

(X;R)-closure SΓ(X;R; w̌(k+1)τ) does not satisfies (LBE) iteratively apply con-
structions 1 and 2 (starting from MTX(w̌(k+1))) obtaining as a result the Munn
automaton (

ε,MTX(w̄(k+1)), r(w̄(k+1))
)
.

�

The next result is analogous to lemma 3.3, so we omit the proof (close to the proof
of the previous lemma).

Theorem 3.5. Let MTX(w̄(k)) be a Munn tree and

Ak =
(
αk,Γk, βk

)
= A(X;R; w̄(k)τ)

such that MTX(w̄(k)) satisfies (GLO) and Ak satisfies (LBE). Let

v′, v′′ ∈ IV(MTX(w̄(k))) ∩V(∆)

for some lobe ∆ ∈ LGMTX(w̄(k))) colored by i, such that

[̟∆(v
′, v′′)τi

x
U
] 6= ∅.

Let MTX(w̄(k+1)) be the Munn tree obtained from MTX(w̄(k)) by an application of

construction 3 to v′, v′′. Let

v̄′ = ψ(w̄(k))(v′) ∈ IV(Γk), v̄′′ = ψ(w̄(k))(v′′) ∈ IV(Γk),

and let Ak+1 =
(
αk+1,Γk+1, βk+1

)
be the X-inverse automaton obtained from Ak

with one application of Bennett construction C to vertices v̄′, v̄′′. Then

Ak+1 =
(
αk+1,Γk+1, βk+1

)
≃ A(X;R; w̄(k+1)τ). �
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Consider the word w ∈
(
X ∪X−1

)+
. The iterations of the first three construc-

tions starting from MTX(w) lead (in a finite number of steps) to the Munn Tree
MTX(ŵ), such that wη = ŵη, MTX(ŵ) satisfies (GLO) and A(X;R; ŵτ) satisfies
(LBE), (RPS). If we apply (the iterations of) the first three Bennett constructions
starting from (ε,MTX(w), r(w)) we would obtain an X-inverse automaton (cactoid,
that satisfies (LBE) and (RPS)) isomorphic to A(X;R; ŵτ), and with the fourth
Bennett construction we obtain its assimilated form

A0(w) ≃ A(X;R; ŵτ)ass  A(X;R ∪W ;wη).

At this point consider the second word z ∈
(
X ∪X−1

)+
which factorizes as

z = z(1)z(2)...z(N),

where the factors z(k) are alternatively in
(
X1 ∪X

−1
1

)+
and

(
X2 ∪X

−1
2

)+
for each

k ∈ {1, ..., n}. Now we will demonstrate how to “simulate” the reading of z on the
Schützenberger automaton A(X;R∪W ;wη) using an appropriate sequence of Munn
Trees {MTX(ŵk)}k.

Starting with k = 1, we define

ŵ1 = ŵ, v1 = ε ∈ V(MTX(ŵ)),

then we explain how to carry out the kth iteration.

Let i ∈ {1, 2} such that z(k) ∈
(
Xi ∪X

−1
i

)+
, and let j = 3 − i. We denote by

∆k ⊆ MTX(ŵk) the lobe containing the vertex vk ∈ V(MTX(ŵk)), i.e. vk ∈ V(∆k).
If vk is an intersection vertex we call ∆k the adjacent lobe coloured like z(k), i.e.
∆k = ∆i(vk). We define

∆̃k ⊇ ψ(ŵk)(∆k), ṽk = ψ(ŵk)(vk).

Then we have the following mutually exclusive cases:

(1) ∆k is coloured by i,

(2) ∆k is coloured by j.

In case (1) we need to verify if the factor z(k) labels a path in lobe ∆̃k starting from
vertex ṽk. For this purpose we make use of the following result.

Lemma 3.6. The factor z(k) ∈
(
Xi ∪X

−1
i

)+
labels a path in lobe ∆̃k ⊆ SΓ(X;R; ŵkτ)

starting from vertex ṽk ∈ V(SΓ(X;R; ŵkτ)) if and only if

(
z(k)z

−1
(k)̟∆k

(vk, vk)
)
τi = ̟∆k

(vk, vk)τi.(7)
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Proof. Since ∆k is isomorphic to a Munn tree, it follows that

(vk,∆k, vk) ≃ (ε,MTX(̟∆k
(vk, vk)), r(̟∆k

(vk, vk))) A(Xi;Ri;̟∆k
(vk, vk)τi).

From the properties of ŵk each sequence of (X;R)-expansions applied starting from
MTX(ŵk) works only internally to the lobes, so the (X;R)-closure of MTX(ŵk)
transforms the lobe ∆k in ∆̃k, whence

A(Xi;Ri;̟∆k
(vk, vk)τi) ≃

(
ṽk, ∆̃k, ṽk

)
.

The claim then follows from the well-known properties of the Schützenberger au-
tomata. �

We remark that it’s possible to verify condition (7) thanks to (A1). If we obtain

(
z(k)z

−1
(k)̟∆k

(vk, vk)
)
τi 6= ̟∆k

(vk, vk)τi,

then zη � wη and we can terminate the entire procedure answering zη 6= wη.
Otherwise if (

z(k)z
−1
(k)̟∆k

(vk, vk)
)
τi = ̟∆k

(vk, vk)τi,

we “simulate” the reading of z(k) on A(X;R; ŵkτ) starting from the vertex ṽk building

a new word ŵk+1 ∈
(
X ∪X−1

)+
such that

• ŵk+1η = ŵkη,

• V(MTX(ŵk+1)) ⊇ V(MTX(ŵk)),

• MTX(ŵk+1) contains a vk − r(vkz(k)) path labelled with z(k).

We build ŵk+1 as

ŵk+1 = vkz(k)z
−1
(k)v

−1
k ŵk, vk+1 = r(vkz(k)),

then we proceed with the (k + 1)th iteration.
Now we consider case (2) in which ∆k is coloured by j = 3 − i. The factor

z(k) labels a path in a (X;R ∪W )-expanded form4 of A(X;R; ŵkτ) starting from
the (image of) vertex ṽk if and only if (ṽk, ṽ

′′
k) ∈ RP(ṽ′k) for some pair of vertices

ṽ′k, ṽ
′′
k ∈ V(SΓ(X;R; ŵkτ)) \ {ṽk}, or ṽk is a bud. So it’s clear that if vk is an

intersection vertex, i.e. vk ∈ IV(MTX(ŵk)), then the two possibilities fail to be
satisfied, and the entire procedure terminates answering zη � wη, in particular
zη 6= wη. So we assume that vk is not an intersection vertex, i.e.

vk ∈ V(MTX(ŵk)) \ IV(MTX(ŵk)).

Again, we have three mutually exclusive cases:

4We say that an X-inverse word graph Γ′ is an (X;R)-expanded form of the X-inverse word
graph Γ if it is obtained from this with a finite sequence of (X;R)-expansions.
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(2a) [̟∆k
(vk, v

′
k)τj

x
U
] = ∅ for each v′k ∈ V(∆k),

(2b) [̟∆k
(vk, v

′
k)τj

x
U
] 6= ∅ for a (unique) intersection vertex v′k ∈ IV(∆k),

(2c) a vertex v′k ∈ V(∆k) exists such that [̟∆k
(vk, v

′
k)τj

x
U
] 6= ∅, but there is no

vertex v′′k ∈ IV(∆k) such that [̟∆k
(vk, v

′′
k)τj

x
U
] 6= ∅.

In case (2a) the vertex vk is not a bud and does not occur in any element of
the relation RP(ṽ′k) for any vertex ṽ′k ∈ IV(A(X;R; ŵkτ)). Then no sequence of
(X;R ∪ W )-expansions could introduce a path labelled by z(k) starting from (an
image of) vk, whence we can terminate the entire procedure answering zη � wη, in
particular zη 6= wη.

In case (2b), the image of the vertex ṽk in the assimilated form A(X;R; ŵkτ)ass
is an intersection vertex ˜̃vk ∈ IV(A(X;R; ŵkτ)ass).

Putting ṽ′k = ψ(ŵk)(v′k) ∈ V(SΓ(X;R; ŵkτ)), a vertex ṽ′′k ∈ V(∆i(ṽ
′
k)) exists such

that (ṽk, ṽ
′′
k) ∈ RP(ṽ′k). We build the word ŵ′

k ∈
(
X ∪X−1

)+
such that

• ŵ′
kη = ŵkη,

• V(MTX(ŵ′
k)) ⊇ V(MTX(ŵk)),

• MTX(ŵ′
k) contains a vertex v′′k whose image in A(X;R; ŵkτ) is ṽ′′k , i.e. ṽ′′k =

ψ(ŵk)(v′′k).

For u ∈ [̟∆k
(vk, v

′
k)τj

x
U
], the words wj(u) and wi(u)

−1 label respectively a ṽk− ṽ
′
k

path and a ṽ′k − ṽ′′k path on A(X;R; ŵkτ). We proceed putting

ŵ′
k = v′k wi(u)

−1 wi(u)(v
′
k)

−1ŵk, v′′k = r(v′k wi(u)
−1),

and we call ∆′
k ⊆ MTX(ŵ′

k) the lobe of MTX(ŵ′
k) containing the vertex v′k. We

remark that v′k ∈ V(∆i(v
′
k)) ⊆ V(∆′

k). Now we can terminate the current iteration
applying case (1) with ŵ′

k, v
′′
k , z(k): if we have

(
z(k)z

−1
(k)̟∆′

k
(v′′k , v

′′
k)
)
τi 6= ̟∆′

k
(v′′k , v

′′
k)τi

we terminate the entire procedure answering zη � wη, hence zη 6= wη; otherwise if
we have (

z(k)z
−1
(k)̟∆′

k
(v′′k , v

′′
k)
)
τi = ̟∆′

k
(v′′k , v

′′
k)τi

we proceed with the (k + 1)th iteration with

ŵk+1 = v′′kz(k)z
−1
(k)(v

′′
k)

−1ŵ′
k, vk+1 = r(v′′kz(k)).

In the last case (2c), we remark that, for an arbitrary u ∈ [̟∆k
(vk, v

′
k)τj

x
U
],

uu−1 ∈ [̟∆k
(vk, vk)τj

x
U
] 6= ∅, and since v′k cannot be an intersection vertex then

it is a bud. So we take
f = f (̟∆k

(vk, vk)τj) ∈ EU ,
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and we verify whether or not z(k) labels or not a path on A(Xi, Ri; f) starting
from the vertex f ∈ V(SΓ(Xi, Ri; f)). To perform this verification we make use of
lemma 3.6: since f is an idempotent we have

(
wi(f)wi(f)

−1
)
τi = ff−1 = f =

wi(f)τi, so if (
z(k)z

−1
(k) wi(f)

)
τi 6= wi(f)τi

we terminate the entire procedure answering zη � wη, in particular zη 6= wη. If

(
z(k)z

−1
(k) wi(f)

)
τi = wi(f)τi

we “simulate” the reading of z(k) on the new lobe SΓ(Xi;Ri; f) glued to A(X;R; ŵkτ)
in the vertex ṽk: we assign

ŵk+1 = vk wi(f)wi(f)
−1z(k)z

−1
(k)v

−1
k ŵk, vk+1 = r(vkz(k)),

and we pass to the (k + 1)th iteration.
Now suppose that we perform5 N iterations without establishing that zη 6= wη.

If we have vN 6= r(ŵN ) we terminate answering zη � wη, in particular zη 6= wη.
Otherwise if we have vN = r(ŵN ), the word z labels a (ww−1)η − wη path on the
Schützenberger automaton A(X;R ∪ W ;wη), hence we obtain zη ≥ wη. In this
latest case we have to repeat the entire procedure inverting the roles of z and w: if
we obtain zη ≥ wη, then we can assert zη = wη.

4. A concrete realization

We conclude the paper providing a very simple example of inverse semigroup amal-
gam U = [S1, S2;U ], where Si = Inv 〈Xi|Ri〉, such that it satisfies (A1),...,(A5) and
each Si has infinite R-classes (that is infinite Schützenberger graphs). Let

Xi = {ai, bi, ci} , Ri =
{
(aia

−1
i , aiaia

−1
i bib

−1
i a−1

i )
}

so that the semigroups Si = Inv 〈Xi|Ri〉 =
(
Xi ∪X

−1
i

)+
/τi are isomorphic inverse

semigroups such that [ciτi]Si
≃ FIS ({ci}), where [t]T denotes the inverse subsemi-

group of T generated by the element t. Note that the congruences τi that appear
in the definition of the Si are idempotent pure, and an elegant result of Margolis

and Meakin [10] guarantees that the word problem for inverse semigroups presented
with idempotent pure congruences is decidable, so we satisfy (A1).

Now we take U = FIS({c}) with the injective maps wi : U → Si defined on the
generator {c} as

w1(cρ{c}) = c1, w2(cρ{c}) = c2,

and then extended to the entire domain U in the unique way such that the maps
U ∋ u 7→ wi(u)τi ∈ Si are embeddings. It’s clear that the injective maps wi so
defined are effectively calculable, so we satisfy (A2).

5Remember that N is the number of monochromatic factors of z, i.e. z = z(1)z(2)...z(N).
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Given two arbitrary elements s1 = z1τ1 ∈ S1 and s2 = z2τ2 ∈ S2 (for some

zi ∈
(
Xi ∪X

−1
i

)+
) it is easy to verify that

[ziτi↑U ] =
{(
cni c

−(n+m)
i cmi

)
τi | ziρXi

≤
(
cni c

−(n+m)
i cmi

)
ρXi

}
,

so [ziτi↑U ] is finite and effectively calculable. Moreover it admits a minimum f(ziτi)
(with respect to the natural partial order ≤) that is clearly effectively calculable.
These remarks are sufficient to prove that we satisfy (A3) and (A4).

The last condition (A5) follows in analogy with the amalgamated free product
of inverse semigroups case, in particular it follows from a results of Cherubini,
Meakin and Piochi [4, lemma 3].

It is easy to show that the semigroups S1 and S2 have infinite R-classes, for
instance we consider w0 = aia

−1
i ∈

(
Xi ∪X

−1
i

)+
and we define inductively

wn+1 = aiwnbib
−1
i a−1

i .

Now we have a sequence {wn}n∈N of words in
(
Xi ∪X

−1
i

)+
such that wnτi = wmτi

for each n,m ∈ N. Note also that |V(MTXi
(wn))| > n and the Schützenberger au-

tomaton A(Xi;Ri;wnτi) contains a subtree isomorphic to the Munn tree MTXi
(wm)

for each n,m ∈ N, thus the cardinality of V(A(Xi;Ri;w0τi)) is not finite.
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