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Abstract. We prove the existence of periodic bounce orbits of prescribed energy on an
open bounded domain in R

N . We derive explicit bounds on the period and the number of
bounce points.

1. Introduction

Throughout this article we fix an open, bounded domain Ω ⊂ R
N with smooth boundary

and a smooth function V ∈ C∞(Ω).1 We study periodic bounce orbits of the Lagrangian
system given by

L : TΩ = Ω× R
N → R

(q, v) 7→ 1
2 |v|

2 − V (q)
(1.1)

that is, continuous and piecewise smooth maps γ : R/τZ → Ω, τ > 0, satisfying the following.
There exists a (possibly empty) finite subset B ⊂ [0, τ ] such that

(1) γ solves the Euler-Lagrange equation

γ′′(t) +∇V (γ(t)) = 0 ∀t 6∈ B (1.2)

(2) for each t ∈ B we have γ(t) ∈ ∂Ω, the left resp. right derivatives

γ′(t±) := lim
s→t±

γ′(s) (1.3)

exist and γ satisfies the law of reflection
〈
γ′(t+), ν(γ(t))

〉
= −

〈
γ′(t−), ν(γ(t))

〉
6= 0 ,

γ′(t+)−
〈
γ′(t+), ν(γ(t))

〉
· ν(γ(t)) = γ′(t−)−

〈
γ′(t−), ν(γ(t))

〉
· ν(γ(t)) ,

(1.4)

where ν is the outer normal to ∂Ω.

Remark 1.1.

• The times t ∈ B are called bounce times and γ(t) bounce points. In case V is a
constant function bounce orbits are billiard trajectories, see [KT91, Tab05] for more
details on billiards.

• A periodic bounce orbit with B = ∅ is a smooth periodic solution of (1.2).
• For a periodic bounce orbit γ the energy

E(γ) := 1
2 |γ

′(t)|2 + V (γ(t)) (1.5)

is an integral of motion, namely it is independent of t 6∈ B.
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Theorem 1.2. For all E > maxΩ V there exists a periodic bounce orbit γ : R/τZ −→ Ω with

energy E(γ) = E, at most dimΩ+ 1 bounce points, and period bounded as follows

τ ≤ C diam(Ω)

(
E −minΩV

)5/2

(E −maxΩ V )3
, (1.6)

where C is a constant independent of Ω, V and E (see Propositions 3.2 and 3.7 for an explicit

estimate for τ).

Remark 1.3. In dimension two the bound on the number of bounce points in sharp in
general. In fact, already for billiard trajectories there are domains Ω ⊂ R

2 where every
billiard trajectory has at least three bounce points, see for instance [Tab05, Figure 6.6]. It is
conceivable that the bound on the number of bounce points is also sharp in higher dimension.

Corollary 1.4. If in Theorem 1.2 we further require

E(γ) > maxΩ V + 1
2diam(Ω)maxΩ |∇V | (1.7)

then the periodic bounce orbit γ has at least one bounce point.

The proofs of Theorem 1.2 and Corollary 1.4 are carried out at the end of Section 3.
Inequality (1.6) confirms the physical intuition that there exist orbits whose period decreases
as the energy increases. Moreover, asymptotically the minimal period decreases at least as
fast as the inverse of the square root of the energy.

Remark 1.5. In their influential work [BG89] Benci-Giannoni prove existence of periodic
bounce orbits of prescribed period and with at most dimΩ+1 bounce points. This is achieved
by studying the classical fixed-time action functional of an approximating smooth Lagrangian
system. In this article we replace this by the free-time action functional. Therefore, we detect
periodic orbits of prescribed energy rather than period.

A new difficulty in the approximation scheme is to obtain bounds on the periods for ap-
proximate solutions independent of the approximation parameter. This is necessary to pass
to the limit. To achieve this we employ techniques from symplectic geometry as opposed
to the variational techniques used by Benci-Giannoni. This also enables us to give explicit
bounds on the period of the periodic bounce orbits in the limit.

We point out that in the case of a constant potential V , say V ≡ 0, the result by Benci-
Giannoni and the statement of Theorem 1.2 reduce to the mere existence of only one periodic
billiard trajectory. In fact, if V ≡ 0, given any T -periodic billiard trajectory γ of energy E,
the reparametrized curve γ( ·

τ ) is a τT -periodic billiard trajectory of energy τ−2E.

Remark 1.6. Finally, we want to mention two natural generalizations of the set-up considered
here. Both seem nontrivial to us, and we will treat them further in future research.

The first generalization is to allow general Riemannian metrics. The approximation scheme
can be formulated entirely in Riemannian terms and we are optimistic that is carries over. The
same applies to the symplectic topology part. Nevertheless, it is harder to ensure the existence
of bouncing points for a sequence of approximating solutions. Indeed, if the Riemannian
metric allows a closed geodesic in Ω and the potential V vanishes along such a geodesic then
for any energy this closed geodesic (suitably reparametrized) gives a periodic orbit with no
bounce points.

Another possible generalization is to add a magnetic field, i.e. “twisting” the symplectic
structure on T ∗Ω by adding to the canonical symplectic form a closed 2-form σ defined on
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the base Ω. If σ is non-exact then it seems impossible to generalize the methods employed
here. First or all, there is no Lagrangian formulation of the problem, in particular, there is no
approximation scheme. Second, the approximating energy hypersurfaces in the Hamiltonian
formulation may cease to be of contact type, in particular, might be without periodic orbits.
Moreover, there is no period-action inequality. These two problems disappear if the magnetic
field σ is exact: indeed, in this case, twisting the symplectic form on T ∗Ω amounts to adding
a primitive of σ to the Hamiltonian while keeping the canonical symplectic structure. Then,
there is a Lagrangian formulation and the energy hypersurfaces are of contact type for suffi-
ciently large energy. Nevertheless, the statement of the approximation scheme doesn’t readily
generalize since near the boundary the magnetic field interacts with the perturbation poten-
tial. Also, from a physical point of view one might expect to see “creeping” orbits, that is,
orbits which after bouncing are very soon forced back towards the boundary by the magnetic
field. Thus, effective bounds on the number of bounce points might be hard to obtain.

Organization of the article. In Section 2 we define the approximation scheme for the
free-time action functional and prove that a sequence of approximating solutions converge to
periodic bounce orbits of prescribed energy provided their Morse index is uniformly bounded.
In Section 3 we study the Hamiltonian formulation of the approximation scheme and prove
existence of solutions using techniques from symplectic geometry. Moreover, we derive effec-
tive bounds on the period and Morse index. Combining this with the results from Section 2
leads to a proof of Theorem 1.2.

Acknowledgments. This article was written during visits of the authors at the Institute
for Advanced Study, Princeton. The authors thank the Institute for Advanced Study for its
stimulating working atmosphere. The second author has been supported by a postdoctoral
fellowship granted by the Max Planck Institute for Mathematics in the Sciences (Leipzig,
Germany). Both authors thank Felix Schlenk for helpful remarks.

This material is based upon work supported by the National Science Foundation under
agreement No. DMS-0635607 and DMS-0903856. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

2. The approximation scheme

Our proof of Theorem 1.2 makes it necessary to modify the beautiful approximation scheme
due to Benci-Gianonni [BG89] by replacing the fixed-time action functional by the free-time
action functional.

We recall that Ω ⊂ R
N is an open, bounded domain with smooth boundary and V ∈

C∞(Ω). We fix d0 ∈ (0, 12 ) sufficiently small, in particular, such that the distance function

dist∂Ω(q) = min
{
|q − q′|

∣
∣ q′ ∈ ∂Ω

}
is smooth at all points q ∈ Ω with dist∂Ω(q) ≤ 2d0. Let

k : [0,∞) → [0, 2d0] be a smooth function such that 0 ≤ k′ ≤ 1, k(x) = x if x ≤ d0 and
k(x) = const if x ≥ 2d0. Then, we define a function h ∈ C∞(Ω) by

h(q) := k(dist∂Ω(q)). (2.1)

Notice that h satisfying the following.

• h(q) = dist∂Ω(q) for all q ∈ Ω with dist∂Ω(q) ≤ d0,
• h(q) > d0 if dist∂Ω(q) > d0,
• 0 ≤ h ≤ 1 and h(q) = const if dist∂Ω(q) ≥ 2d0,
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• |∇h| ≤ 1.

Finally we define a function U ∈ C∞(Ω) by

U(q) :=
1

h2(q)
. (2.2)

Thus, U is a positive function that grows like (dist∂Ω)
−2 near ∂Ω and is constant in the region

{dist∂Ω(q) ≥ 2d0}, see Figure 1.

U

∂Ω

Ω

h

Figure 1.

For ǫ > 0, we introduce the modified Lagrangian

Lǫ : TΩ = Ω× R
N → R

(q, v) 7→ 1
2 |v|

2 − V (q)− ǫU(q) .
(2.3)

For each energy value E ∈ R the free-time action functional L E
ǫ : H1(R/Z,Ω)×R>0 → R is

given by

L
E
ǫ (Γ, τ) := τ

∫ 1

0

[

Lǫ

(
Γ(t), 1τ Γ

′(t)
)
+ E

]

dt =

∫ τ

0

[

Lǫ(γ, γ
′
)
+E

]

dt, (2.4)
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where γ(t) := Γ( tτ ). The differential of L E
ǫ is given by

dL E
ǫ (Γ, τ)(Ψ, σ) = τ

∫ 1

0

[

∂vLǫ

(
Γ, 1τ Γ

′
)
1
τΨ

′ + ∂qLǫ

(
Γ, 1τ Γ

′
)
Ψ
]

dt

+ σ

∫ 1

0

[

E − ∂vLǫ

(
Γ, 1τ Γ

′
)
1
τ Γ

′ − Lǫ

(
Γ, 1τ Γ

′
)]

dt

= τ

∫ 1

0

[

τ−2〈Γ′,Ψ′〉 − 〈∇V (Γ) + ǫ∇U(Γ),Ψ〉
]

dt

+ σ

∫ 1

0

[

E − (2τ2)−1|Γ′|2 + V (Γ) + ǫU(Γ)
]

dt

=

∫ τ

0

[

〈γ′, ψ′〉 − 〈∇V (γ) + ǫ∇U(γ), ψ〉
]

dt

+
σ

τ

∫ 1

0

[

E − 1
2 |γ

′|2 + V (γ) + ǫU(γ)
]

dt,

(2.5)

where ψ(t) := Ψ( tτ ). Therefore (Γ, τ) is a critical point of L E
ǫ if and only if the corresponding

τ -periodic curve γ is a solution of the Euler-Lagrange system

γ′′ +∇V (γ) + ǫ∇U(γ) = 0 (2.6)

with energy
Eǫ(γ) :=

1
2 |γ

′(t)|2 + V (γ(t)) + ǫU(γ(t)) = E . (2.7)

We prove the analogue of [BG89, Proposition 2.3] for the free-time action functional.

Proposition 2.1. Let K > 0 and T2 > T1 > 0. For each ǫ > 0, let (Γǫ, τǫ) be a critical

point of L Eǫ

ǫ with T1 ≤ τǫ ≤ T2 and Eǫ ≤ K. Then, up to a subsequence, (Γǫ, τǫ) converges

to (Γ, τ) in H1(S1,Ω) × R>0 as ǫ → 0. Moreover, if we define the curve γ(t) := Γ( tτ ), there
exists a finite Borel measure µ on C = {t ∈ R/τZ | γ(t) ∈ ∂Ω} such that

(i)

∫ τ

0

[

〈γ′, ψ′〉 − 〈∇V (γ), ψ〉
]

dt =

∫

C
〈ν(γ), ψ〉 dµ for all ψ ∈ H1(R/τZ;RN ),

(ii) γ is a smooth solution of the Euler-Lagrange system of L outside supp(µ), with energy

E(γ) = limǫ→0Eǫ,

(iii) γ has left and right derivatives that are left and right continuous on R/τZ respectively.

Moreover, γ satisfies the law of reflection (1.4) at each time t which is an isolated point

of supp(µ).

In particular, if supp(µ) is a finite set then γ is a periodic bounce orbit of the Lagrangian

system given by L and B := supp(µ) is its set of bouncing times.

Proof. Since the sequences {τǫ} and {Eǫ} are bounded, up to a subsequence for ǫ → 0, we
have τǫ → τ and Eǫ → E with T1 ≤ τ ≤ T2 and E ≤ K. We show that up to further passing
to a subsequence, Γǫ also converges in H1.

Let γǫ(t) = Γǫ(
t
τǫ
) be the periodic orbit corresponding to (Γǫ, τǫ). By equations (2.5) and

(2.7) we know that the energy Eǫ(γǫ) is equal to Eǫ, and therefore

(2τǫ)
−1|Γ′

ǫ|
2 + V (Γǫ) + ǫU(Γǫ) ≡ Eǫ . (2.8)

Moreover, γǫ is a solution of the Euler-Lagrange equation (2.6) associated to Lǫ, which can
be written in terms of (Γǫ, τǫ) as

τ−2
ǫ Γ′′

ǫ +∇V (Γǫ) + ǫ∇U(Γǫ) = 0. (2.9)
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In particular, for each (Ψ, σ) ∈ H1(S1;RN )×R we have dL Eǫ

ǫ (Γǫ, τǫ)(Ψ, σ) = 0 and choosing
σ = 0 in equation (2.5) we get

∫ 1

0

[

τ−2
ǫ 〈Γ′

ǫ,Ψ
′〉 − 〈∇V (Γǫ),Ψ〉

]

dt =

∫ 1

0
〈ǫ∇U(Γǫ),Ψ〉 dt, ∀Ψ ∈ H1(S1;RN ). (2.10)

We fix Ψ = Ψǫ = −∇h(Γǫ). By equation (2.8), Γ′
ǫ is uniformly bounded in L∞, and so is

Ψ′
ǫ. Hence, with our choice of Ψ the first two summands on the left hand side of (2.10) are

uniformly bounded in ǫ, and thus, so must be the third summand, i.e.
∫ 1

0
〈ǫ∇U(Γǫ),Ψǫ〉 dt =

∫ 1

0

2ǫ

h3(Γǫ)
|∇h(Γǫ)|

2 dt ≤ C. (2.11)

Let Ω′ ⊂ Ω be the compact neighborhood of ∂Ω given by

Ω′ = {q ∈ Ω |h(q) ≤ d0}, (2.12)

where d0 is the positive constant that enters the definition of the function h. Notice that on
Ω′ we have h = dist∂Ω and in particular |∇h| = 1. Moreover, on Ω \ Ω′ we have h > d0 and
|∇h| ≤ 1. These properties, together with the estimate (2.11), give the uniform bound

∫ 1

0

2ǫ

h3(Γǫ)
dt ≤

∫ 1

0

2ǫ

h3(Γǫ)
|∇h(Γǫ)|

2 dt+
2ǫ

d30
≤ C +

2ǫ

d30
. (2.13)

This proves that ǫ∇U(Γǫ) is uniformly bounded in L1 because

ǫ∇U(Γǫ) = −
2ǫ

h3(Γǫ)
∇h(Γǫ) (2.14)

and |∇h| ≤ 1. Since ∇V (Γǫ) is also uniformly bounded in L1 (actually in L∞), the Euler-
Lagrange equation (2.9) together with T1 ≤ τǫ ≤ T2 forces Γ′′

ǫ to be uniformly bounded in
L1 as well. Thus, Γǫ is uniformly bounded in W 2,1. By the compactness of the embedding
W 2,1(S1;RN ) →֒ H1(S1;RN ), up to passing to a subsequence for ǫ → 0, we have that Γǫ

converges to some Γ : S1 → Ω in H1.
Now, since the functions µ̃ǫ := 2ǫh−3(Γǫ) are uniformly bounded in L1, up to passing to

a subsequence for ǫ → 0, µ̃ǫ converges to some µ̃ in L1 weak-∗. By the Riesz representation
Theorem, µ̃ is a positive, finite Borel measure. We set

C′ := {t ∈ S1 |Γ(t) ∈ ∂Ω} . (2.15)

Since, for each t 6∈ C′, the function µ̃ǫ converges uniformly to 0 in a neighborhood of t the
support of µ̃ is contained in C′. Moreover, if t ∈ C′, for ǫ→ 0 the sequence∇h(Γǫ(t)) converges
to −ν(Γ(t)). Thus, taking the limit ǫ→ 0 in (2.10) we obtain

τ−2

∫ 1

0
〈Γ′,Ψ′〉 dt−

∫ 1

0
〈∇V (Γ),Ψ〉 dt =

∫

C′

〈ν(Γ),Ψ〉 dµ̃, ∀Ψ ∈ H1(S1;RN ). (2.16)

By the reparametrization R/τZ → S1 given by t 7→ t
τ the measure µ̃ is pulled-back to a

measure µ on C := {t ∈ R/τZ | γ(t) ∈ ∂Ω} and the above equation can be rewritten as in
point (i) of the statement.

Now, if t 6∈ supp(µ), we can take ǫ > 0 sufficiently small such that [t−ǫ, t+ǫ]∩supp(µ) = ∅.
For each ψ ∈ H1(R/τZ;RN ) supported in [t− ǫ, t+ ǫ], point (i) reduces to

∫ t+ǫ

t−ǫ

[

〈γ′, ψ′〉 − 〈∇V (γ), ψ〉
]

dt = 0, (2.17)
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and a usual bootstrap argument readily implies that γ is a smooth solution of the Euler-
Lagrange equation of L on [t− ǫ, t+ ǫ]. This establishes point (ii).

Now, point (i) also implies that γ′ is a curve of bounded variation. Therefore γ has left and
right derivatives at each point and they are left and right continuous respectively. In order to
conclude the proof, we only need to establish that the reflection rule is satisfied at each time
t ∈ supp(µ).

Up to passing to a subsequence for ǫ → 0, the sequence ǫU(γǫ) converges to 0 almost
everywhere. Indeed, assume that ǫU(γǫ) does not converge to zero on a set I ⊂ R/τZ. Then,
h(γǫ) → 0 and |∇h(γǫ)| → 1 pointwise on I. Since

ǫ∇U(γǫ) = ǫU(γǫ)
−2∇h(γǫ(t))

h(γǫ(t))
, (2.18)

then |ǫ∇U(γǫ)| → +∞ pointwise on I. Now, assume that I has positive Lebesgue measure.
By Fatou’s Lemma we get

lim inf
ǫ→0

∫

I
|ǫ∇U(γǫ)| dt ≥

∫

I
lim inf
ǫ→0

|ǫ∇U(γǫ)| dt = +∞, (2.19)

which contradicts the fact that ǫ∇U(γǫ) is uniformly bounded in L1.
Since ǫU(γǫ) converges to 0 almost everywhere and Eǫ → E, we have that 1

2 |γ
′|+V (γ) = E

almost everywhere, and since γ′ has bounded variation we actually obtain

1
2 |γ

′(t±)|+ V (γ(t)) = E ∀t ∈ R/τZ. (2.20)

Now, let us consider a time t which is an isolated point in supp(µ). In point (i) of the
statement, let us choose ψ to be supported in the interval [t − ǫ, t + ǫ], where ǫ > 0 is
sufficiently small so that [t− ǫ, t+ ǫ]∩ supp(µ) = {t}. After an integration by parts we obtain

〈γ′(t−)− γ′(t+), ψ(t)〉 −

∫

[t−ǫ,t+ǫ]\{t}
〈γ′′ +∇V (γ), ψ〉 dt = 〈ν(γ(t)), ψ(t)〉µ({t}) . (2.21)

Since γ is a solution of the Euler-Lagrange equation of L on [t− ǫ, t+ ǫ] \ {t}, the integral on
the left-hand side is zero and we actually have

〈γ′(t−)− γ′(t+), v〉 = 〈ν(γ(t)), v〉µ({t}), ∀v ∈ R
N . (2.22)

Choosing v to be an arbitrary vector tangent to ∂Ω at γ(t), namely 〈ν(γ(t)), v〉 = 0, we obtain
that the components of γ′(t−) and γ′(t+) tangent to ∂Ω are the same, i.e.

γ′(t+)− 〈ν(γ(t)), γ′(t+)〉 · ν(γ(t)) = γ′(t−)− 〈ν(γ(t)), γ′(t−)〉 · ν(γ(t)) . (2.23)

This, together with conservation of energy (2.20), implies that

|〈ν(γ(t)), γ′(t+)〉| = |〈ν(γ(t)), γ′(t−)〉|, (2.24)

and if this latter quantity is nonzero then we must have

〈ν(γ(t)), γ′(t+)〉 = −〈ν(γ(t)), γ′(t−)〉. (2.25)

Finally, by choosing v = ν(γ(t)) in equation (2.22) we obtain

〈ν(γ(t)), γ′(t+)〉 = 1
2〈γ

′(t−)− γ′(t+), ν(γ(t))〉 = 1
2µ({t}) 6= 0. (2.26)

This concludes the proof of point (iii). �
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Proposition 2.2. We consider the situation of Proposition 2.1. Then, up to taking a subse-

quence of {(Γǫ, τǫ)}, the cardinality |supp(µ)| of the support of the measure µ is bounded from

above by the Morse index of the restricted functional L Eǫ

ǫ |H1×{τǫ} at Γǫ for all ǫ sufficiently

small, i.e.

|supp(µ)| ≤ lim inf
ǫ→0

µMorse

(
Γǫ;L

Eǫ

ǫ |H1×{τǫ}

)
. (2.27)

Proof. With the notation adopted in the proof of Proposition 2.1 (see in particular the
paragraph of equation (2.15)), the measure µ is the pullback of a measure µ̃ on S1 = R/Z via
the reparametrization ι : R/τZ → S1 given by ι(t) = t

τ . In particular ι(supp(µ)) = supp(µ̃)
and

|supp(µ)| = |supp(µ̃)|. (2.28)

Hence, in order to prove the proposition it is enough to establish the following: for each point
t ∈ supp(µ̃) and for each ǫ > 0 sufficiently small, there exists a vector field Ψǫ ∈ H1(S1;RN )
supported on an sufficiently small neighborhood of t and such that

HessL Eǫ

ǫ (Γǫ, τǫ)[(Ψǫ, 0), (Ψǫ, 0)] < 0. (2.29)

In fact, assume that this is verified. Then, for k distinct points t1, ..., tk ∈ supp(µ̃) and
sufficiently small ǫ > 0 we can find k vector fields Ψǫ,1, ...,Ψǫ,k such that each Ψǫ,j is supported
in a sufficiently small neighborhood of tj and verifies (2.29). In particular, we may assume
that the supports of the Ψǫ,j’s are pairwise disjoint. Therefore, these vector fields span a

k-dimensional vector subspace of H1(S1;RN ) over which the Hessian of the restricted action
functional2 L Eǫ

ǫ |H1×{τǫ} at Γǫ is negative definite, which implies

µMorse

(
Γǫ;L

Eǫ

ǫ |H1×{τǫ}

)
≥ k. (2.30)

Let us now establish the assertion made at the beginning of the proof. From now on we
fix t ∈ supp(µ̃) and ǫ > 0 sufficiently small. For δ > δ′ > 0 we choose a smooth function
φǫ : R/Z → [0, 1] such that supp(φǫ) ⊆ [t − δ, t + δ] and φǫ ≡ 1 on [t − δ′, t + δ′]. We define
the vector field Ψǫ ∈ H1(S1;RN ) by

Ψǫ(s) := −φǫ(s)∇h(Γǫ(s)). (2.31)

We will show that Ψǫ satisfies (2.29). The left-hand side of (2.29) computes to

HessL Eǫ

ǫ (Γǫ, τǫ)[(Ψǫ, 0), (Ψǫ, 0)]

= τǫ

∫ 1

0

[

τ−2
ǫ 〈∂vvLǫ(Γǫ,

1
τǫ
Γ′
ǫ)Ψ

′
ǫ,Ψ

′
ǫ〉+ 〈∂qqLǫ(Γǫ,

1
τǫ
Γ′
ǫ)Ψǫ,Ψǫ〉

]

ds

= Aǫ −Bǫ,

(2.32)

where

Aǫ = τǫ

∫ 1

0

[

τ−2
ǫ |Ψ′

ǫ|
2 − 〈∇2V (Γǫ)Ψǫ,Ψǫ〉+ 2ǫ

〈∇2h(Γǫ)Ψǫ,Ψǫ〉

h3(Γǫ)

]

dt,

Bǫ = 6τǫǫ

∫ 1

0

〈∇h(Γǫ),Ψǫ〉
2

h4(Γǫ)
ds.

(2.33)

Now, the term |Aǫ| is uniformly bounded in ǫ. Indeed, since Γǫ converges in H1, the vector
field Ψǫ is uniformly bounded in H1, which implies that Ψ′

ǫ is uniformly bounded in L2.
Moreover, in the proof of Proposition 2.1 (see equation (2.13)) we showed that 2ǫh−3(Γǫ) is

2Notice that HessL Eǫ

ǫ |H1×{τǫ}(Γǫ)[Ψ,Ξ] = HessL Eǫ

ǫ (Γǫ, τǫ)[(Ψ, 0), (Ξ, 0)].
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uniformly bounded in L1, and therefore the last summand under the integral in Aǫ is also
uniformly bounded in L1.

As for Bǫ, we want to show that it goes to +∞ as ǫ→ 0. Since Γǫ → Γ in H1 (in particular
in C0) as ǫ → 0 and |∇h| = 1 on ∂Ω, we can find δ′′ ∈ (0, δ′] such that |∇h(Γǫ(s))|

4 ≥ 1
2 for

each s ∈ [t− δ′′, t+ δ′′] and ǫ > 0 sufficiently small. Therefore we can estimate

Bǫ ≥ 6T1ǫ

∫ t+δ′′

t−δ′′

〈∇h(Γǫ),Ψǫ〉
2

h4(Γǫ)
ds

= 6T1ǫ

∫ t+δ′′

t−δ′′

|∇h(Γǫ)|
4

h4(Γǫ)
ds

≥
6T1ǫ

2

∫ t+δ′′

t−δ′′

1

h4(Γǫ)
ds

(by Hölder ineq.) ≥
6T1ǫ

2(2δ′′)1/3

(∫ t+δ′′

t−δ′′

1

h3(Γǫ)
ds

)4/3

=
6T1

2(2δ′′)1/3

(∫ t+δ′′

t−δ′′

ǫ

h3(Γǫ)
ds

︸ ︷︷ ︸

=: B′
ǫ

)(∫ t+δ′′

t−δ′′

1

h3(Γǫ)
ds

︸ ︷︷ ︸

=: B′′
ǫ

)1/3

.

(2.34)

As we showed in the proof of Proposition 2.1 (see the paragraph of equation (2.15)), up to a
subsequence the function 2ǫh−3(Γǫ) converges to the measure µ̃ in L1 weak-∗, which implies
that B′

ǫ converges to a constant B′ ≥ 1
2 µ̃({t}) > 0. Hence, it remains to be shown that

B′′
ǫ → +∞ as ǫ→ 0. By the Hölder inequality we get

B′′
ǫ =

∫ t+δ′′

t−δ′′

1

h3(Γǫ)
ds ≥ (2δ′′)−1/2

(∫ t+δ′′

t−δ′′

1

h2(Γǫ)
ds

︸ ︷︷ ︸

=: B′′′
ǫ

)3/2

. (2.35)

We recall that up to a subsequence Γǫ → Γ as ǫ → 0 in H1, and that Γ(t) ∈ ∂Ω. By the
definition of h, if we choose δ′′ small enough we have that

h(Γǫ(s)) = dist∂Ω(Γǫ(s)), ∀s ∈ [t− δ′′, t+ δ′′]. (2.36)

for all ǫ > 0 sufficiently small. Then, let D > 0 be a uniform upper bound for the L2 norm
of the vector fields Γ′

ǫ. For each s ∈ [t− δ′′, t+ δ′′] we can estimate using |∇h| ≤ 1

|h(Γǫ(s))− h(Γǫ(t))| ≤ |Γǫ(s)− Γǫ(t)| ≤ |s− t|1/2‖Γ′
ǫ‖L2 ≤ |s− t|1/2D. (2.37)

This implies

B′′′
ǫ =

∫ t+δ′′

t−δ′′

1

h2(Γǫ(s))
ds ≥

∫ t+δ′′

t−δ′′

1

(h(Γǫ(0)) + |s− t|1/2D)2
ds

=

∫ δ′′

−δ′′

1

(h(Γǫ(0)) + |s|1/2D)2
ds = 2

∫ δ′′

0

1

(h(Γǫ(0)) + s1/2D)2
ds

≥

∫ δ′′

0

1

h2(Γǫ(0)) + sD2
ds =

1

D2
ln

(

1 +
D2δ′′

h(Γǫ(0))

)

.

(2.38)

Since up to a subsequence for ǫ→ 0 we have h(Γǫ(0)) → 0, from the above estimate we infer
that B′′′

ǫ → +∞. Thus, this shows that Bǫ → +∞ and therefore the proposition follows. �
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Next, we examine the case in Proposition 2.1 where the periods go to zero.

Proposition 2.3. Let K > 0 and (Γǫ, τǫ) be a critical point of L Eǫ

ǫ with Eǫ ≤ K and τǫ → 0
as ǫ → 0. Then, up to a subsequence for ǫ → 0, Γǫ converges in C0 to a constant curve

γ ≡ q ∈ Ω. Moreover, one of the following holds.

(i) q is a critical point of the potential V .

(ii) q lies in ∂Ω and there exists a > 0 such that ∇V (q) = −aν(q), where ν is the outer

normal to ∂Ω.

Remark 2.4. In case (ii) of Proposition 2.3 the stationary curve γ(t) ≡ q describes a particle
confined by the potential, see Figure 2.

V

−∇V (q)

potential wall

particle at q ∈ ∂Ω

Figure 2.

Proof. We choose a sequence of positive integers {κǫ} such that T1 < κǫτǫ < T2 for suitable
T2 > T1 > 0 and we define (Θǫ, σǫ) ∈ H1(S1; Ω) × R>0 by Θǫ(t) := Γǫ(κǫt) and σǫ := κǫτǫ.
We point out that (Θǫ, σǫ) is a critical point of the action functional L Eǫ

ǫ . By Proposition 2.1
we conclude that, up to a subsequence, (Θǫ, σǫ) → (Θ, σ) in H1(S1,Ω) × R>0 as ǫ → 0. In
particular Θǫ → Θ in C0.

We claim that Θ is a constant curve. Indeed, let us assume by contradiction that there
exist t1 < t2 such that

|Θ(t1)−Θ(t2)| > 0 (2.39)

Notice that each Θǫ is κǫ
−1 periodic, and in particular

Θǫ(t2) = Θǫ(t2 − jκ−1
ǫ ), ∀j ∈ N . (2.40)

Since κǫ → ∞, we can find a sequence of positive integers {jǫ} such that jǫκ
−1
ǫ → t2 − t1.

This, together with the C0 convergence Θǫ → Θ, implies

Θ(t1) = lim
ǫ→0

Θǫ(t1) = lim
ǫ→0

Θǫ(t2 − jǫκ
−1
ǫ ) = lim

ǫ→0
Θǫ(t2) = Θ(t2), (2.41)

which contradicts (2.39).
Since each curve Θǫ is an iteration of Γǫ, the fact that Θǫ converges in C0 to a constant

curve forces Γǫ to converge in C0 to the same constant curve Γ = Θ ≡ q ∈ Ω. Then, the
integral equation in point (i) of Proposition 2.1 reduces to

−

∫ σ

0
〈∇V (q), ψ〉 dt =

∫

C
〈ν(q), ψ〉 dµ ∀ψ ∈ C∞(R/σZ;RN ). (2.42)

Here, C = ∅ if q ∈ Ω and C = R/σZ if q ∈ ∂Ω. This immediately implies the proposition. �
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3. Proof of Theorem 1.2

In order to prove Theorem 1.2, it only remains to build the sequence {(Γǫ, τǫ)} of critical
points of the free-time action functionals {L Eǫ

ǫ }, as needed in Proposition 2.1. This will be
carried out in the Hamiltonian formulation, by considering the Hamiltonian function

Hǫ : T
∗Ω = Ω× R

N → R

(q, p) 7→ 1
2 |p|

2 + V (q) + ǫU(q) .
(3.1)

This Hamiltonian is the Legendre-dual to the Lagrangian Lǫ defined in (2.3). By Legendre
duality, τ -periodic Hamiltonian orbits v : R/τZ → Ω× R

N of Hǫ with energy Hǫ(v) = E are
in one-to-one correspondence to τ -periodic solutions γ = π(v) of the Euler-Lagrange system
of Lǫ with energy Eǫ(γ) = E via the projection π : T ∗Ω → Ω.

We begin with the following

Lemma 3.1. Any energy value E > maxΩ V is a regular value of the Hamiltonian function

Hǫ provided ǫ > 0 is sufficiently small.

Proof. Since Hǫ is a classical Hamiltonian (i.e. of the form kinetic energy plus potential),
the energy hypersurface Σǫ is regular provided the boundary of its projection into the base,
i.e. the set

Υǫ = ∂ π(Σǫ) = {V + ǫU = E} ⊂ R
N , (3.2)

does not contain any critical point of the potential V + ǫU . This is always verified if ǫ is
sufficiently small. Indeed, for q ∈ Υǫ we have by (2.2)

h2(q) =
ǫ

E − V (q)
, (3.3)

and therefore

|∇V (q) + ǫ∇U(q)| ≥ |ǫ∇U(q)| − |∇V (q)|

=
2ǫ

h3(q)
|∇h(q)| − |∇V (q)|

= 2ǫ−1/2(E − V (q))3/2|∇h(q)| − |∇V (q)|

≥ 2ǫ−1/2(E −maxΩV )3/2|∇h(q)| − |∇V (q)| .

(3.4)

Equation (3.3) implies that h|Υǫ
→ 0 uniformly as ǫ → 0. Hence, for sufficiently small ǫ we

have h|Υǫ
= dist∂Ω|Υǫ

and |∇h| ≥ 1
2 on Υǫ. Combining this with (3.4) we obtain

|∇V (q) + ǫ∇U(q)| ≥ ǫ−1/2(E −maxΩV )3/2 − |∇V (q)|, ∀q ∈ Υǫ, (3.5)

from which we conclude that ∇V + ǫ∇U does not vanish on Υǫ for ǫ sufficiently small. �

From now on we fix an energy value E > maxΩ V and we consider ǫ > 0 small enough so
that Lemma 3.1 holds. In particular, the energy hypersurface

Σǫ := {Hǫ = E} (3.6)

is a smooth and non-empty closed manifold. Notice that π : T ∗Ω → Ω projects Σǫ into the
compact set Ωǫ := {ǫU ≤ E}. Thus, we can modify the potential ǫU outside Ωǫ and extend
it to a global potential Uǫ ∈ C∞(RN ) such that Uǫ = ǫU on Ωǫ/2, Uǫ > E outside Ωǫ/2 and
U ≡ E′ > E outside Ω, see Figure 3. Analogously, we extend V to a compactly supported
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ǫU

Uǫ

ǫU ≡ Uǫ

E

E′

∂Ωǫ

∂Ωǫ/2

Ω

Figure 3. The potential ǫU and its modification Uǫ.

function V ∈ C∞(RN ) such that V > −(E′ − E). In particular V + Uǫ > E outside Ωǫ, and
V + Uǫ ≡ E′ outside a compact neighborhood of Ω.

For technical reasons we compactify R
N to SN in such a way that

vol(SN ) ≫ vol(Ω), (3.7)

and we further extend Uǫ and V to smooth functions on SN that we still denote by Uǫ and
V . Finally, we introduce the modified Hamiltonian

Kǫ : T
∗SN → R

(q, p) 7→ 1
2 |p|

2 + V (q) + Uǫ(q) .
(3.8)

Notice that Σǫ = {Kǫ = E} and the Hamiltonian flows of Hǫ and Kǫ agree on Σǫ.
Since Kǫ is a classical Hamiltonian a well-known result in Hamiltonian dynamics asserts

that the energy hypersurface Σǫ is of restricted contact type, i.e. there exists a primitive λǫ
of the canonical symplectic form ω of T ∗SN such that λǫ|Σǫ

is a contact form. We recall that
a primitive λǫ of ω restricts to a contact form on Σǫ if and only if the associated Liouville
vector field Pǫ, defined by ω(Pǫ, ·) = λǫ, is transverse to Σǫ. This is equivalent to asking that
λǫ(Xǫ) 6= 0, since

λǫ(Xǫ) = ω(Pǫ,Xǫ) = dKǫ(Pǫ). (3.9)

For later purposes, we need to show that we can choose λǫ such that λǫ(Xǫ) is bounded away
from zero uniformly in ǫ.

Proposition 3.2. We fix E > maxΩ V . For ǫ > 0 small enough there exists a 1-form λǫ on

T ∗SN with dλǫ = ω which restricts to a contact form on Σǫ = {Kǫ = E}. Moreover, on Σǫ

we have the estimate

λǫ(Xǫ) ≥
(E −maxΩ V )3

2
[
(E −maxΩ V )2 + 48(E −minΩV )2

] =: Λ(E) > 0 . (3.10)
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Proof. We denote by λ =
∑

i pidqi the Liouville 1-form on T ∗SN . The Hamiltonian vector
field Xǫ of Kǫ is given in local coordinates by

Xǫ =
∑

i

[

pi
∂

∂qi
−

(
∂Uǫ

∂qi
+
∂V

∂qi

)
∂

∂pi

]

. (3.11)

Thus, we have λ(Xǫ) = |p|2 ≥ 0. Now we consider u : T ∗Ω → R given by

u(q, p) = dU(q)[p] =
∑

i

∂U

∂qi
(q)pi (3.12)

and define the 1-form

λǫ := λ− Cǫ du = λ− Cǫ
∑

i,j

∂2Uǫ

∂qi ∂qj
pi dqj − Cǫ

∑

i

∂Uǫ

∂qi
dpi, (3.13)

where C > 0 is a constant independent of ǫ that we will fix later. Since Uǫ = ǫU on Σǫ and
using the definition of U (see (2.2)), the function λǫ(Σǫ) on Σǫ is given by

λǫ(Xǫ)
∣
∣
Σǫ

= |p|2 − Cǫ2HessU(q)[p, p] +Cǫ3 |∇U |2 + Cǫ2 〈∇U,∇V 〉

= |p|2 + 2Cǫ2h−3 Hessh(q)[p, p] + 4Cǫ3h−6 |∇h|2

− 6Cǫ2h−4 |dh(q)p|2 − 2Cǫ2h−3〈∇h,∇V 〉.

(3.14)

Now we notice that for (q, p) ∈ Σǫ we have

h2(q) =
ǫ

E − V (q)− 1
2 |p|

2
. (3.15)

We choose κ ≥ 0 such that

Hessh(q)[p, p] ≥ −κ|p|2 ∀q ∈ Ω. (3.16)

Then using |∇h| ≤ 1 we have the estimate

λǫ(Xǫ)
∣
∣
Σǫ

≥|p|2
(
1− 6Cǫ2h−4

)
− 2Cǫ2h−3κ|p|2 + 4Cǫ3h−6 |∇h|2 − 2Cǫ2h−3〈∇h,∇V 〉

= |p|2
(
1− 6C(E − V (q)− 1

2 |p|
2)2

)
− 2Cǫ1/2κ|p|2(E − V (q)− 1

2 |p|
2)3/2

+ 4C(E − V (q)− 1
2 |p|

2)3 |∇h|2 − 2Cǫ1/2(E − V (q)− 1
2 |p|

2)3/2〈∇h,∇V 〉

= |p|2
(
1− 6C(E − V (q)− 1

2 |p|
2)2

)
+ 4C(E − V (q)− 1

2 |p|
2)3 |∇h|2

− 2Cǫ1/2(E − V (q)− 1
2 |p|

2)3/2
[

κ|p|2 + 〈∇h,∇V 〉
]

.

(3.17)
Now, we require C ≡ C(E) > 0 to satisfy

6C(E −minΩV )2 < 1, (3.18)

and estimate further

λǫ(Xǫ)
∣
∣
Σǫ

≥ |p|2
(
1− 6C(E −minΩV )2

)
+ 4C (E −maxΩV − 1

2 |p|
2)3 |∇h|2 − cǫ , (3.19)

where

cǫ := 2Cǫ1/2(E −minΩV )3/2
[
2κ(E −minΩV ) + maxΩ|∇V |

]
−→ 0 as ǫ→ 0 . (3.20)
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For ǫ small enough, equation (3.15) and the definition of h implies that we have |∇h| ≥ 1/2 in
the region Σǫ ∩{|p|2 ≤ E−maxΩ V }. Thus, (3.19) implies that on Σǫ ∩{|p|2 ≤ E−maxΩ V }

λǫ(Xǫ) ≥ C(E −maxΩV − 1
2(E −maxΩ V ))3 − cǫ

= 1
8C(E −maxΩ V )3 − cǫ .

(3.21)

On Σǫ ∩ {|p|2 ≥ E −maxΩ V } we can estimate

λǫ(Xǫ) ≥ (E −maxΩ V )
(
1− 6C(E −minΩV )2

)
− cǫ . (3.22)

Since cǫ → 0 as ǫ→ 0, for sufficiently small ǫ we have

λǫ(Xǫ)
∣
∣
Σǫ

≥ 1
2 min

{
1
8C(E −maxΩ V )3, (E −maxΩ V )

(
1− 6C(E −minΩV )2

)}

(3.23)

Hence, by setting

C :=
8

(E −maxΩ V )2 + 48(E −minΩV )2
(3.24)

we obtain

λǫ(Xǫ)
∣
∣
Σǫ

≥
(E −maxΩ V )3

2
[
(E −maxΩ V )2 + 48(E −minΩV )2

] > 0 (3.25)

�

Let Rǫ be the Reeb vector field on Σǫ associated to the contact form λǫ|Σǫ
. The above

proposition implies that Xǫ = rǫRǫ where rǫ : Σǫ → R>0 is a smooth function that is
bounded from below by Λ(E). In particular, the periodic orbits of Xǫ and Rǫ agree up to
reparamentrization. More precisely, if v is a Reeb orbit of period T then the corresponding
orbit of Xǫ has period τǫ satisfying

τǫ · Λ(E) ≤ T . (3.26)

Since π(Σǫ) ⊂ Ω under the projection π : T ∗SN → SN the energy hypersurface Σǫ is Hamil-
tonianly displaceable, that is, there exists a Hamiltonian diffeomorphism φG ∈ Hamc(T

∗SN )
generated by a compactly supported Hamiltonian function G : S1 × T ∗SN → R such that

φG(Σǫ) ∩Σǫ = ∅ . (3.27)

In fact, let a : SN → R be any function which has no critical points in Ω. If we extend a
to A := a ◦ π : T ∗SN → R then the Hamiltonian flow of A displaces any compact subset
of T ∗SN |Ω, in particular, Σǫ. Thus, if we cut off A near infinity we obtain a displacing

Hamiltonian diffeomorphism in Hamc(T
∗SN ).

We recall that the displacement energy e(Σǫ) is defined as

e(Σǫ) := inf

{∫ 1

0

[

max
T ∗SN

G(t, ·) − min
T ∗SN

G(t, ·)
]

dt

∣
∣
∣
∣
φG(Σǫ) ∩ Σǫ = ∅

}

. (3.28)

Lemma 3.3. The displacement energy of Σǫ can be bounded as follows

e(Σǫ) ≤ 2(2E − 2minΩ V )1/2 · diam(Ω) (3.29)

Here diam(Ω) denotes the diameter of Ω ⊂ R
N and E is the energy value we fixed.
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Proof. We recall that Σǫ =
{
1
2 |p|

2 + V (q) + Uǫ(q) = E
}
. We set R := (2E − 2minΩ V )1/2.

Then using Uǫ(q) ≥ 0 we have
Σǫ ⊂ Ω×BR ⊂ R

2N (3.30)

where BR ⊂ R
N is the ball around 0 of radius R. To estimate the displacement energy we

choose a vector v ∈ R
N such that (v + Ω) ∩ Ω = ∅ and set G(q, p) :=

∑
vipi : R

2N → R.
Thus, the corresponding Hamiltonian diffeomorphism is φG(q, p) = (q + v, p). In particular,
φG displaces Σǫ from itself. To get a compactly supported Hamiltonian function we cut off
G to zero outside an arbitrarily small neighborhood of Ω × BR. Thus, for any δ > 0 we can
estimate

e(Σǫ) ≤ e(Ω×BR)

≤

∫ 1

0

[

max
Ω×BR

G(t, ·) − min
Ω×BR

G(t, ·)
]

dt+ δ

= max
Ω×BR

G(q, p) − min
Ω×BR

G(q, p) + δ

≤ max
Ω×BR

|v| · |p| − min
Ω×BR

|v| · |p|+ δ

= 2R|v|+ δ .

(3.31)

Choosing the optimal vector v together with the definition of R = (2E − 2minΩ V )1/2 proves
the Lemma. �

The following theorem was proved by Schlenk in [Sch06], see also [CFP09, Theorem 4.9].

Theorem 3.4. Σǫ carries a Reeb orbit vǫ : R/TZ → Σǫ with period T bounded by the dis-

placement energy of Σǫ, i.e.

T ≤ e(Σǫ) . (3.32)

Remark 3.5. In fact, Schlenk proves a much more general existence result for closed charac-
teristics v on displaceable hypersurfaces with bounds on the symplectic area enclosed by the
closed characteristic. Since Σǫ is of restricted contact type this translates into

T =

∫ T

0
v∗λ ≤ e(Σǫ) . (3.33)

We recall that if vǫ is a Reeb orbit of period T then the corresponding orbit of Xǫ has
period τǫ satisfying

Λ(E)τǫ ≤ T (3.34)

where Λ(E) is the constant from Proposition 3.2. Combining this with Lemma 3.3 we obtain
the following lemma.

Lemma 3.6. The Hamiltonian vector field Xǫ on Σǫ has a periodic orbit of period τǫ satisfying

Λ(E)τǫ ≤ e(Σǫ) ≤ 2(2E − 2minΩ V )1/2 · diam(Ω) , (3.35)

and thus

τǫ ≤
2(2E − 2minΩ V )1/2 · diam(Ω)

Λ(E)
. (3.36)

This, of course, immediately implies that the Euler-Lagrangian equation corresponding to
Lǫ has a solution γǫ of energy Eǫ(γǫ) = E with period τǫ satisfying (3.36).

For later purposes we need the additional information that the Morse index of γǫ is bounded
by 1

2 dimΣǫ+1 = N+1. It is a classical fact that under Legendre duality between L E
ǫ and Kǫ
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the Morse index and the Conley-Zehnder index agree. More precisely, if (Γ, τ) ∈ Crit(L E
ǫ )

and the Reeb orbit v correspond under Legendre duality then

µMorse

(
Γ;L E

ǫ |H1×{τ}

)
= µCZ(v) . (3.37)

This identity has been proved by Viterbo in [Vit90], who extended a previous related result
by Duistermaat [Dui76] (see also [LA98, Abb03] for alternative proofs).

Now, let us first assume that the functional L E
ǫ is Morse-Bott. Via Legendre duality

this translates, in the Hamiltonian formulation, to the fact that on Σǫ is non-degenerate,
i.e. all Reeb orbits are isolated and non-degenerate, that is, the linearized Poincaré return
map along a Reeb orbit has only one eigenvalue equal to 1 (which is necessarily there due to
the autonomous character of the Reeb flow.) Then the proof of Theorem 4.9 in [CFP09] can
be improved to show that Conley-Zehnder index of the Reeb orbit vǫ satisfies

µCZ(vǫ) ∈ {N,N + 1} . (3.38)

In more detail, it is shown in [CFP09] that a certain moduli space would be compact if the
Reeb orbit vǫ did not exist. This leads then to a contradiction. Assuming that Σǫ is non-
degenerate a closer inspection of the proof shows that a gradient flow line (in the sense of
Floer) of the Rabinowitz action functional connecting the orbit vǫ and a maximum of an
auxiliary Morse function on Σǫ has to exists. Using the index formula in [CF09, Proposition
4.1] and the µ-grading for Morse-Bott homology [CF09, Appendix A] (see also the paragraph
below equation (66) therein) this translates to

1 = µ(vǫ)− µ(max)

= µCZ(vǫ) + η(vǫ)−
1
2 − µCZ(max)

︸ ︷︷ ︸

=0

−1
2(2N − 1) (3.39)

where η(vǫ) ∈ {0, 1}. This summand is due to the fact that a critical point on the critical
manifold represented by the periodic orbit vǫ has Morse index 0 or 1. The conventions for
the Conley-Zehnder index in [CF09] agree with the ones here, see [CF09, Equation (60)].
Therefore, we conclude

µCZ(vǫ) ∈ {N,N + 1} . (3.40)

Thus, we conclude that γǫ = π(vǫ) has Morse index N or N +1 under the assumption that
L E

ǫ is Morse-Bott.
If L E

ǫ is degenerate we choose a sequence of compactly supported C∞-small perturbations

fn : T ∗SN → R such that the action functional L
E,fn
ǫ corresponding to the Lagrangian

Lǫ+ fn+E is Morse-Bott, we find by our previous discussion a sequence vnǫ of critical points

of L
E,fn
ǫ such that all vnǫ have period uniformly bounded from above by e(Σǫ) + δ for some

small δ > 0, energy E, and Morse index N or N +1. Since fn is C∞-small and the period of
vnǫ is uniformly bounded (see Lemma 3.6) the sequence (vnǫ ) converges and thus, we obtain a
critical point γǫ : R/TZ → Ω of L E

ǫ with

Λ(E)τǫ ≤ e(Σǫ) + δ, Eǫ(γǫ) = E, µMorse(γǫ) ≤ N + 1 . (3.41)

Moreover, we can choose δ as small as we like. Let us summarize this discussion.
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Proposition 3.7. For any ǫ > 0 and E > maxΩ V there exists a critical point (Γǫ, τǫ) of L E
ǫ

with

τǫ ≤
2(2E − 2minΩ V )1/2 · diam(Ω)

Λ(E)
,

Eǫ

(
Γǫ(

t
τǫ
)
)
= E,

µMorse

(
Γǫ;L

E
ǫ |H1×{τǫ}

)
≤ N + 1 .

(3.42)

We now have all the ingredients to prove Theorem 1.2 and Corollary 1.4.

Proof of Theorem 1.2. We fix an energy value E > maxΩ V and consider the sequence
{(Γǫ, τǫ)} given in Proposition 3.7.

We first show that the sequence {τǫ} is uniformly bounded from below by some constant
T1 > 0. Indeed, assume by contradiction that τǫ → 0 up to a subsequence for ǫ→ 0. Then, up
to taking a further subsequence, by Proposition 2.3 we infer that Γǫ converges uniformly to a
constant curve γ ≡ q with E(γ) = V (q) = E and such that q is either a critical point of V or
q ∈ ∂Ω and ∇V (q) = −aν(q) for some a > 0. This contradicts the assumption E > maxΩ V .

Hence, we have

0 < T1 ≤ τǫ ≤ T2 :=
2(2E − 2minΩ V )1/2 · diam(Ω)

Λ(E)
. (3.43)

By Proposition 2.1, up to taking a further subsequence for ǫ → 0, (Γǫ, τǫ) converges to
some (Γ, τ) in H1(S1;RN ) × R>0, where T1 ≤ τǫ ≤ T2. Let µ be the measure given by
Proposition 2.1. By Proposition 2.2 and by the uniform bound on the Morse index of Γǫ, the
support of µ contains at most N + 1 points. Therefore, by Proposition 2.1, the τ -periodic
curve γ(t) := Γ( tτ ) is a τ periodic bounce orbit of the Lagrangian system given by L with
energy E(γ) = E and at most N + 1 bounce points. �

Proof of Corollary 1.4. If the potential V is constant, say V ≡ c, then the solutions of
the Euler-Lagrange equation of L with energy E > c are straight curves with constant positive
velocity, and therefore each of them will eventually bounce on ∂Ω. Let us now consider the
nontrivial case in which

maxΩ |∇V | > 0, (3.44)

and let γ be a periodic bounce orbit with energy E(γ) = E > maxΩ V and no bounce points.
Then γ is a smooth, periodic solution of the Euler-Lagrange equation

γ′′ +∇V (γ) = 0 . (3.45)
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Since γ(t) ∈ Ω for each t ∈ R, we can estimate

diam(Ω) ≥ |γ(t)− γ(0)|

=

∣
∣
∣
∣

∫ t

0
γ′(s) ds

∣
∣
∣
∣

≥ |γ′(0)| · |t| −

∣
∣
∣
∣

∫ t

0

∫ s

0
γ′′(r) dr ds

∣
∣
∣
∣

≥ |γ′(0)| · |t| −

∫ t

0

∫ s

0
|∇V (γ(r))| dr ds

= 2(E − V (Γ(0)))|t| −

∫ t

0

∫ s

0
|∇V (γ(r))| dr ds

≥ 2(E −maxΩ V )1/2|t| − 1
2(maxΩ |∇V |)t2

≥ 2(E −maxΩ V )1/2t− 1
2 (maxΩ |∇V |)t2.

(3.46)

By (3.44) the above is possible only if
[
2(E −maxΩ V )1/2

]2
− 4diam(Ω)12 maxΩ |∇V | ≤ 0, (3.47)

which can be rewritten as

E ≤ maxΩ V + 1
2diam(Ω)maxΩ |∇V |. (3.48)

This implies that all periodic bounce orbits with energy E > maxΩ V + 1
2diam(Ω)maxΩ |∇V |

have at least one bounce point. �
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