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Abstract. A classical theorem due to Wadsley implies that, on a connected

contact manifold all of whose Reeb orbits are closed, there is a common period
for the Reeb orbits. In this paper we show that, for any Reeb flow on a

closed connected 3-manifold, the following conditions are actually equivalent:

(1) every Reeb orbit is closed; (2) all closed Reeb orbits have a common period;
(3) the action spectrum has rank 1. We also show that, on a fixed closed

connected 3-manifold, a contact form with an action spectrum of rank 1 is

determined (up to pull-back by diffeomorphisms) by the set of minimal periods
of its closed Reeb orbits.

1. Introduction

A much studied problem in Riemannian geometry asks to what degree a Rie-
mannian manifold is determined by its length spectrum, that is, the set of lengths
of its closed geodesics. It is known that the length spectrum does not in general
recover the metric, but more refined conjectures and results exist, see for example
[Cro90, Ota90, GL18b] and references therein.

In contact geometry, an analogous question exists, but little is known. Recall
that a contact form on a closed (2n+1)-manifold Y is a 1-form λ such that λ∧(dλ)n

is a volume form on Y . The kernel of dλ is then generated by a unique vector field
Rλ such that λ(Rλ) ≡ 1, called the Reeb vector field, which defines a Reeb flow
φtλ : Y → Y . A Reeb orbit γ : R → Y , γ(t) = φtλ(z) is said to be closed if it is
τ -periodic for some τ > 0, i.e. γ(t) = γ(t+ τ) for all t ∈ R. As usual, the minimal
period of a closed Reeb orbit γ is the minimal τ > 0 such that γ is τ -periodic; the
multiples of such τ will be simply called periods of γ. The subset σ(Y, λ) ⊂ (0,∞)
consisting of the (not necessarily minimal) periods of the closed Reeb orbits of φtλ is
the action spectrum of the contact manifold, whereas its subset σp(Y, λ) ( σ(Y, λ)
consisting of the minimal periods of the closed Reeb orbits of φtλ is the prime action
spectrum. One can now ask to what degree we can characterize λ from its action
and prime action spectra. In the present note we establish some positive results in
dimension 3.

1.1. Setup and main results. A contact form λ is called Besse when every orbit of
its Reeb flow is closed. Our first result states that one can recognize whether a
contact form on a closed connected 3-manifold is Besse from its action spectrum.
We define the rank of the action spectrum σ(Y, λ) to be the rank of the Z-submodule
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of R that it generates (this is the same as the rank of the submodule generated by
the prime action spectrum σp(Y, λ)). In particular, σ(Y, λ) has rank 1 if and only
if it is contained in a subset of the form {nT | n ∈ N} for some T > 0.

Theorem 1.1. Let (Y, λ) be a closed connected 3-manifold equipped with a contact
form. The following conditions are equivalent:

(i) The contact manifold (Y, λ) is Besse.
(ii) The closed orbits of the Reeb flow φtλ have a common period, i.e. there is

τ > 0 such that τ/τ ′ is an integer for all τ ′ ∈ σp(Y, λ).
(iii) The action spectrum σ(Y, λ) has rank 1.

The fact that the closed Reeb orbits of a Besse contact manifold admit a common
period, and thus that the action spectrum has rank 1, is a consequence of a classical
theorem due to Wadsley [Wad75], together with Sullivan’s remark [Sul78] that Reeb
flows are geodesible. The novelty, here, is the reverse implication, namely that the
fact that the action spectrum has rank 1 forces a contact form to be Besse.

A contact form λ is called Zoll when it is Besse and its closed Reeb orbits have
the same minimal period. Namely, when there exists τ > 0 such that φτλ = id, and
for all t ∈ (0, τ) the map φtλ has no fixed points. Theorem 1.1 has the following
immediate corollary.

Corollary 1.2. A closed contact 3-manifold is Zoll if and only if its closed Reeb
orbits have the same minimal period. �

Remark 1.3. In [MS18a, Question 1.2], the second author and Suhr asked whether a
reversible contact form on the unit cotangent bundle of any surface must be Zoll if all
its closed Reeb orbits have the same minimal period. (The motivation for this comes
from the connection between the contact geometry of the unit cotangent bundle and
Riemannian and Finsler geometry, which we say more about below.) Corollary 1.2
answers this in the affirmative, and without the reversibility requirement on the
contact form.

To the best of the authors’ knowledge, for general higher dimensional closed
contact manifolds it is not known whether the Besse or the Zoll properties can be
read off from the action spectra.

Question 1.4. Let (Y, λ) be a closed contact manifold of dimension n ≥ 5. If all
its closed Reeb orbits have the same minimal period, is λ necessarily Zoll? Y is
connected and the action spectrum σ(Y, λ) has rank 1, is λ necessarily Besse?

By Theorem 1.1, from the action spectrum one can determine whether or not
a contact form on a closed connected 3-manifold is Besse. However, it is not
possible to recover the contact form (up to pull-back by diffeomorphisms) from
the action spectrum in the Besse case. For example, the standard 1-form λstd =
1
2

∑
i=1,2

(
xidyi − yidxi

)
on R4 restricts as a contact form to the boundary of any

symplectic ellipsoid

E(a, b) :=

{
π|z1|2

a
+
π|z2|2

b
≤ 1

}
⊂ C2 = R4.
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Its Reeb flow always has two closed orbits of minimal period a and b. When b/a is
rational, the contact form is Besse and the other closed Reeb orbits have minimal
period lcm(a, b). Thus, ∂E(1, 1) and ∂E(1, 2) have the same action spectrum, but
their contact forms cannot be diffeomorphic. We can distinguish these ellipsoids,
however, through the prime action spectrum. Indeed, our next theorem states that,
in the Besse case, the prime action spectrum always determines the contact form
up to pull-back by diffeomorphisms.

Theorem 1.5. Let Y be a closed connected 3-manifold, and λ1, λ2 two Besse contact
forms on Y . Then σp(Y, λ1) = σp(Y, λ2) if and only if there exists a diffeomorphism
ψ : Y → Y such that ψ∗λ2 = λ1.

In the Zoll case, Theorem 1.5 was proved by Abbondandolo et al. [ABHSa17,
ABHSa18] for S3 and SO(3), and by Benedetti-Kang [BK18, Lemma 2.3] for general
S1-bundles over closed surfaces.

Remark 1.6. Theorems 1.5 and 1.1 in combination provide a spectral recognition
result: the contact form of a fixed closed connected 3-manifold can be recovered
from its prime action spectrum, provided its action spectrum has rank 1. In higher
rank, however, the same cannot in general be done. For example, in [AGZ18,
Theorem 1.2] Albers-Geiges-Zehmisch construct a contact form λ on S3 whose
Reeb flow has a dense orbit and only two closed orbits. The minimal periods a and
b of these two orbits are rationally independent. So, the action spectrum σ(S3, λ)
is the same as σ(∂E(a, b), λstd), but there is no diffeomorphism ψ : S3 → ∂E(a, b)
such that λ = ψ∗λstd.

1.2. Finsler geometry. Theorem 1.1 and Corollary 1.2 apply in particular to Finsler
geodesic flows of 2-spheres. We recall that a Finsler metric on a closed manifold
M is a continuous function F : TM → [0,∞) that is smooth outside the 0-section,
fiberwise positively homogeneous of degree 1, and such that ∂vvF

2(x, v) is positive
definite at every point (x, v) outside the 0-section. The Finsler metric F is reversible
when F (x, v) = F (x,−v) for all (x, v) ∈ TM , and Riemannian when it is of the
form F (x, v) = gx(v, v)1/2 for some Riemannian metric g on M . The geodesic flow
of (M,F ) is precisely the Reeb flow of (SM,λ), where π : SM → M is the F -unit
tangent bundle of M and λ is the Liouville form λ(x,v)(w) = ∂vF (x, v)dπ(x, v)w.
The action spectrum σ(SM,λ) is the usual length spectrum of (M,F ), and is
denoted by σ(M,F ). The Finsler metric F is Besse or Zoll if the associated Liouville
form λ is so.

In [MS18a], the second author and Suhr established (a slightly stronger version
of) Corollary 1.2 for geodesic flows of Riemannian 2-spheres. Theorem 1.1 actually
implies the following more general corollaries for Finsler geodesic flows of surfaces.

Corollary 1.7. Let (M,F ) be a closed connected orientable Finsler surface. The
length spectrum σ(M,F ) has rank 1 if and only if M = S2 and F is Besse. More-
over, if F is reversible, the length spectrum σ(M,F ) has rank 1 if and only if
M = S2 and F is Zoll.

Remark 1.8. The reversibility assumption in the second part of this statement is
essential. Indeed, certain of the so-called Katok’s metrics on the 2-sphere [Zil83]
are examples of non-reversible Finsler metrics that are Besse but not Zoll.
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Proof of Corollary 1.7. The fact that the length spectrum of a Finsler closed con-
nected surface has rank 1 if and only if the metric is Besse follows from Theorem 1.1.
A theorem due to Frauenfelder-Labrousse-Schlenk [FLS15], which extends the clas-
sical Bott-Samelson Theorem [Bot54, Sam63] from Riemannian geometry, implies
that F can be Besse only if the fundamental group of M is finite and the integral
cohomology ring of the universal cover of M agrees with that of a compact rank-one
symmetric space. The only closed orientable surface M with these properties is S2.
Finally, a Besse reversible Finsler metric on S2 is Zoll according to a theorem of
Frauenfelder-Lange-Suhr [FLS16], which generalizes the classical Riemannian result
of Gromoll-Grove [GG81]. �

Corollary 1.9. Let (M,F ) be a closed connected non-orientable Finsler surface.
The length spectrum σ(M,F ) has rank 1 if and only if M = RP2 and F is Besse.
Moreover, if F is Riemannian, the length spectrum σ(M,F ) has rank 1 if and only
if M = RP2 and F is Riemannian with constant curvature (in particular, F is
Zoll).

Proof. Let M ′ be the orientation double cover of M , and F ′ : TM ′ → [0,∞) the
lift of F . By Corollary 1.7, F ′ is Besse if and only if σ(M ′, F ′) has rank 1 and
M ′ = S2. Notice that M ′ = S2 if and only if M = RP2. The length spectra
satisfy σ(M ′, F ′) ⊆ σ(M,F ) and 2σ(M,F ) ⊆ σ(M ′, F ′); in particular, σ(M ′, F ′)
has rank 1 if and only if the same is true for σ(M,F ). Moreover, F ′ is Besse if and
only if the same if true for F . This proves the first part of the statement. Finally,
a Riemannian metric on RP2 is Besse if and only if it has constant curvature,
according to a theorem of Pries [Pri09]. �

1.3. Relationship with previous work and organization of the paper. A corollary of
Theorem 1.1 is that any contact form on a closed 3-manifold has at least two distinct
closed embedded Reeb orbits. This was previously proved by the first author and
Hutchings [CGH16] using embedded contact homology. Our proof of Theorem 1.1
uses a similar method; the main difference here is a strengthening of one of the
key lemmas in that paper, see our Lemma 3.1 below. In contrast, the proof of
Theorem 1.5 does not require embedded contact homology, but instead makes use
of the classification of Seifert fibered spaces, in combination with a Moser trick in
Lemma 4.5.

The paper is organized as follows. In Section 2 we provide the needed background
on embedded contact homology. In Section 3, we prove our main Theorem 1.1;
in the proof, we will need a slightly stronger version of the bumpy contact form
theorem, which we state and prove in Appendix A. In Section 4, after introducing
the needed preliminaries on Seifert fibered spaces, we prove Theorem 1.5.

Acknowledgments. The authors are grateful to the anonymous referee for her/his
careful reading of the manuscript, and for pointing out the statement of Corol-
lary 1.9. Daniel Cristofaro-Gardiner is partially supported by the National Science
Foundation under Grant No. 1711976. Marco Mazzucchelli is partially supported by
the National Science Foundation under Grant No. DMS-1440140 while in residence
at the Mathematical Sciences Research Institute in Berkeley, California, during the
Fall 2018 semester.
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2. Background on Embedded Contact Homology

In this section we will recall the essential features of embedded contact homology
that will be needed in order to prove Theorem 1.1. The interested reader will find
a detailed account and precise references in Hutchings’ survey [Hut14].

2.1. The chain complex. Let (Y, ξ) be a closed connected oriented contact manifold
of dimension 3. Throughout this paper, the contact distribution ξ ⊂ TY is assumed
to be cooriented, and as usual we will call a 1-form λ on Y a supporting contact form
of ξ when ker(λ) = ξ and λ induces the orientation of TY/ξ. The 2-form dλ will then
induce an orientation on ξ. The contact form λ is called bumpy when, for each τ > 0
and z ∈ fix(φτλ), 1 is not an eigenvalue of the linearized Poicaré map dφτλ(z)|ξ. We
will write the symplectization of our contact manifold as (R×Y,d(esλ)), where s is
the variable on R. The embedded contact homology group ECH(Y ) is a topological
invariant obtained as the homology of a chain complex

(
ECC(Y, λ), ∂Y,λ,J

)
, where λ

is a bumpy supporting contact form of (Y, ξ), and J is an almost complex structure
on (R × Y,d(esλ)) such that JRλ = ∂

∂s , Jξ = ξ, dλ(v, Jv) > 0 for each non-zero
v ∈ ξ, and J is chosen generically in order to satisfy suitable technical assumptions.
The chain group ECC(Y, λ) is the Z2-vector space freely generated by finite sets of
pairs {(mi, γi) | i = 1, ..., k}, where k ∈ N, the γi are distinct simple closed orbits
of the Reeb flow φtλ, and mi is a positive integer required to be equal to 1 if γi is
hyperbolic. Here, by “simple” we mean that the closed Reeb orbits γi are viewed
as maps of the form γi : R/τiZ→ Y , where τi > 0 is the minimal period of γi. Two
simple closed Reeb orbits γi, γj are distinct if they are not of the form γi = γj(·+s)
for any s > 0. The definition of the differential ∂Y,λ,J involves counting certain
J-holomorphic curves in the symplectization of (Y, λ), but will not be needed in
the present paper.

2.2. The U map. The embedded contact homology comes equipped with an endo-
morphism

U : ECH(Y )→ ECH(Y )

defined as follows. Let γ = {(mi, γi) | i = 1, ..., k} and ζ = {(ni, ζi) | i = 1, ..., l}
be two chains in ECC(Y, λ). Let (Σ, j) be a punctured Riemann surface, and
u : Σ → R× Y a J-holomorphic curve that is asymptotic as a current to

∑
imiγi

and
∑
i niζi as s → ∞ and s → −∞ respectively. We denote by M(J,γ, ζ) the

space of such J-holomorphic curves modulo equivalence as currents. Notice that,
for every u ∈M(J,γ, ζ), we have∫

Σ

u∗dλ =

k∑
i=1

miAλ(γi)−
l∑
i=1

niAλ(ζi).

Here, Aλ denotes the contact action

Aλ(γ) =

∫
γ

λ.

If γ is a simple closed Reeb orbit, Aλ(γ) is simply its minimal period. To every
u ∈ M(J,γ, ζ) there is an associated integer which is called the ECH-index, and
whose definition will not be needed in the present paper. For a given z ∈ Y , we
denote by M2,z(J,γ, ζ) ⊂ M(J,γ, ζ) the subset of those u : Σ → R × Y having
ECH-index 2 and whose image u(Σ) passes through (0, z). The condition on the
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ECH index implies that, if J is chosen generically, thenM2,z(J,γ, ζ) is a finite set.
The endomorphism

Uz : ECC(Y, λ)→ ECC(Y, λ), Uz(γ) =
∑

ζ∈ECC(Y,λ)

(#M2,z(J,γ, ζ) mod 2) ζ

turns out to be a chain map that induces the endomorphism U in embedded contact
homology. Notice that Uz depends on the chosen point z, on the contact form λ,
and on the almost complex structure J , whereas U is a topological invariant of Y .

2.3. Spectral invariants. Given a supporting contact form λ on a closed contact
3-manifold (Y, ξ), we denote by Σ(Y, λ) ⊂ (0,∞) the set of real numbers that are
finite sums of elements in the action spectrum σ(Y, λ), i.e.

Σ(Y, λ) =
{
τ1 + ...+ τk

∣∣ k ≥ 1, τi ∈ σ(Y, λ) ∀i = 1, ..., k
}
.

The chain complex (ECC(Y, λ), ∂Y,λ,J) can be filtered by means of the action as
follows. For each τ > 0, let ECCτ (Y, λ) be the vector subspace of ECC(Y, λ)
generated by those γ = {(mi, γi) | i = 1, ..., k} such that

Aλ(γ) :=

k∑
i=1

miAλ(γi) ≤ τ.

Since the boundary map ∂Y,λ,J does not increase the action,
(
ECCτ (Y, λ), ∂Y,λ,J

)
is a subcomplex of

(
ECC(Y, λ), ∂Y,λ,J

)
, whose homology is denoted by ECHτ (Y, λ).

As the notation suggests, this latter group turns out to be independent of the almost
complex structure J . There is an inclusion induced map

ιτ : ECHτ (Y, λ)→ ECH(Y ).

Each non-zero σ ∈ ECH(Y ) defines a spectral invariant cσ(Y, λ) ∈ Σ(Y, λ) as fol-
lows. If λ is bumpy, then cσ(Y, λ) is the minimal τ > 0 such that σ admits a
representative in ECCτ (Y, λ), in other words such that σ is in the image of the map
ιτ . If λ is not bumpy, we can choose a sequence of smooth functions bn : Y → R,
C0-converging to zero and such that each contact form ebnλ is bumpy (see Proposi-
tion A.1); in this case, the sequence cσ(Y, ebnλ) converges and the spectral invariant
cσ(Y, λ) is defined as its limit, i.e.

cσ(Y, λ) = lim
n→∞

cσ(Y, ebnλ). (2.1)

The following statement due to the first author and Hutchings provides the only
property of spectral invariants needed in this paper. It is an application of the
Volume Property for the ECH spectrum proved in [CGHR15].

Lemma 2.1 (Cor. 2.2 in [CGH16]). There exists a sequence {σk | k ∈ N} of non-zero
elements in ECH(Y ) such that Uσk+1 = σk and cσk

(Y, λ)/k → 0 as k → ∞ for
each supporting contact form λ of (Y, ξ). �

3. ECH-spectral characterization of Besse contact forms

The following statement, which improves [CGH16, Lemma 3.1(b)] while following
a similar logic, is the main ingredient for proving Theorem 1.1.
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Lemma 3.1. Let (Y, λ) be a closed connected contact 3-manifold equipped with a
contact form. If cσ(Y, λ) = cUσ(Y, λ) for some σ ∈ ECH(Y ) with Uσ 6= 0, then
(Y, λ) is Besse.

Proof. Assume that (Y, λ) is not Besse, so that there exists z ∈ Y such that φtλ(z) 6=
z for all t 6= 0. We set c := cσ(Y, λ), and fix an arbitrary real number τ > c. Let
Σ ⊂ Y be an embedded compact ball of codimension 1 containing z in its interior
and such that TzΣ = ξz, where ξ = ker(λ) is the contact distribution. Up to
shrinking Σ around z, the map

ψ : [−τ/2, τ/2]× Σ→ Y, ψ(t, w) = φtλ(w)

is a diffeomorphism onto its image K := ψ([−τ/2, τ/2] × Σ). Namely, K is a flow
box for the Reeb flow φtλ containing orbits of length τ .

We fix an almost complex structure J on the symplectization (R × Y, d(esλ))
such that JRλ = ∂

∂s , Jξ = ξ, and dλ(v, Jv) > 0 for all non-zero v ∈ ξ. By
Proposition A.1, there exists a sequence bn ∈ C∞(Y ) such that bn|K ≡ 0, bn → 0
in C0 and λn := ebnλ is a bumpy contact form. Since λn ≡ λ on K, this latter set is
also a flow box for the Reeb flows φtλn

. In particular, none of the closed orbits of φtλn

with minimal period at most τ intersects K. Therefore, we can choose an almost
complex structure Jn on the symplectization (R × Y, d(esλn)) such that Jn ≡ J
on R × K, and Jn is sufficiently generic to define the differential of the complex(
ECCτ (Y, λn), ∂Y,λn,Jn

)
and the endomorphism Uz : ECCτ (Y, λn)→ ECCτ (Y, λn).

We consider an arbitrary cycle γn ∈ ECCτ (Y, λn) such that σ = ιτ ([γn]) and
cσ(Y, λn) = Aλn

(γn). Equation (2.1) implies that Aλn
(γn) → cσ(Y, λ) as n → ∞.

In order to conclude the proof, we need to show that there exists δ > 0 such that

Aλn
(γn)−Aλn

(Uzγn) ≥ δ, ∀n ∈ N.

Indeed, this implies that

cUσ(Y, λ) = lim
n→∞

cUσ(Y, λn) ≤ lim
n→∞

Aλn
(Uzγn) ≤ lim

n→∞
Aλn

(γn)− δ = cσ(Y, λ)− δ.

Assume by contradiction that

lim inf
n→∞

(
Aλn(γn)−Aλn(Uzγn)

)
= 0.

Up to extracting a subsequence, we can actually assume that

lim
n→∞

(
Aλn(γn)−Aλn(Uzγn)

)
= 0. (3.1)

We choose, for each n ∈ N, a Jn-holomorphic curve un : Σn → R×Y in the moduli
space M2,z(Jn,γn, Uzγn). We set Cn := un(Σn), and from now on we will not
distinguish between the map un and its image Cn. Notice that∫

Cn

dλn = Aλn(γn)−Aλn(Uzγn), (3.2)

and in particular this quantity is uniformly bounded in n. Since Jn ≡ J on R×K,
the intersections Cn ∩ ([−1, 1] ×K) are J-holomorphic curves. Since dλn = dλ is
non-negative on Cn ∩ ([−1, 1]×K), Equations (3.1) and (3.2) imply that

lim
n→∞

∫
Cn∩([−1,1]×K)

dλ = 0, (3.3)
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and that this integral is uniformly bounded in n. Let s0 ∈ [−2,−1] and s1 ∈ [1, 2]
be such that un is transverse to {s0, s1} × Y . Since both d(esλn) and dλn are
non-negative on Cn by the conditions on Jn, we have the uniform bound∫

Cn∩([−1,1]×K)

d(esλ) ≤
∫
Cn∩([s0,s1]×Y )

d(esλn)

= es1
∫
Cn∩({s1}×Y )

λn − es0
∫
Cn∩({s0}×Y )

λn

≤ e2

(∫
Cn∩({s1}×Y )

λn +

∫
Cn∩([s1,∞)×Y )

dλn

)
= e2Aλn

(γn) ≤ e2cσ(Y, λ) + 1

for all n ∈ N large enough. We can thus employ a compactness result due to
Taubes [Tau98, Prop. 3.3], in its version [CGH16, Prop. 3.2], and infer that, up to
extracting a subsequence, the sequence Cn ∩ ([−1, 1] × K) converges in the sense
of currents to a compact J-holomorphic curve C ⊂ [−1, 1] ×K with boundary in
∂([−1, 1]×K), and (0, z) ∈ C. Equation (3.3) thus implies∫

C

dλ = 0,

and therefore C must have a component of the form [−1, 1] × φ[−τ/2,τ/2]
λ (z). In

particular ∫
C∩({s}×K)

λ ≥ τ, ∀s ∈ [−1, 1].

We fix an arbitrary τ ′ ∈ (cσ(Y, λ), τ). For each n ∈ N, we choose a point sn ∈
[−1, 1] such that un is transverse to {sn} × Y , and we orient the intersection using
the “R-direction first” convention. By the conditions on Jn, the contact form λn
is non-negative along the oriented 1-manifold Cn ∩ ({sn} × Y ). Therefore, since
Cn ∩ ([−1, 1]×K)→ C in the sense of currents, up to removing sufficiently many
elements from the sequence {Cn | n ∈ N} we have∫

Cn∩({sn}×Y )

λn ≥
∫
Cn∩({sn}×K)

λn ≥ τ ′, ∀n ∈ N.

However, if we choose n large enough so that Aλn(γn) < τ ′, we have∫
Cn∩({sn}×Y )

λn ≤
∫
Cn∩({sn}×Y )

λn +

∫
Cn∩([sn,∞)×Y )

dλn = Aλn
(γn) < τ ′,

which gives a contradiction. �

Proof of Theorem 1.1. We already know that (i) implies (ii) by Wadsley’s theorem
[Wad75]. Assume now that our closed connected contact 3-manifold (Y, ξ = ker(λ))
satifies (ii). We denote by τ > 0 a common period for the closed Reeb orbits. Every
closed orbit γ of the Reeb flow φtλ has minimal period τ/kγ for some kγ ∈ N =
{1, 2, 3, ...}. Since Y is compact and the Reeb vector field of (Y, λ) is nowhere
vanishing, there is a uniform lower bound for the minimal periods of the closed
orbits of φtλ. In particular, the set

K :=
{
kγ
∣∣ γ closed orbit of φtλ

}
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is finite. If we denote by k ∈ N a common multiple of the natural numbers in K,
we readily see that the period of each closed orbit of the Reeb flow φtλ must be a
multiple of τ/k. This implies (iii).

Finally, let us assume that (Y, λ) satisfies (iii). By Lemma 2.1, there exists a
sequence {σk | k ∈ N} of non-zero elements in ECH(Y, ξ,Γ) such that Uσk+1 = σk
and cσk

(Y, λ)/k → 0 as k → ∞. If cσk+1
(Y, λ) 6= cσk

(Y, λ) for all k ∈ N, then
cσk+1

(Y, λ) ≥ cσk
(Y, λ) + T , where T > 0 is such that σ(Y, λ) ⊂ {nT | n ∈ N}.

However, this would imply that

lim inf
k→∞

cσk
(Y, λ)/k ≥ T > 0,

which is a contradiction. Therefore we must have cσk+1
(Y, λ) = cσk

(Y, λ) for some
(and indeed for infinitely many) k ∈ N. By Lemma 3.1, we conclude that (Y, λ) is
Besse. �

Recent results of the second author and Suhr, [MS18a, Theorem 3.1] and [MS18b,
Theorem 1.2], provide a min-max characterization of certain Zoll Riemannian man-
ifolds by employing Morse-theoretic spectral invariants for the length and energy
functionals on the loop space. In the same spirit, the proof of Theorem 1.1 also
provides the following ECH-spectral characterization of Besse contact forms.

Theorem 3.2. A closed connected contact 3-manifold (Y, λ) is Besse if and only if,
for some σ ∈ ECH(Y ) with Uσ 6= 0, we have cσ(Y, λ) = cUσ(Y, λ). �

4. Besse contact forms and Seifert fibrations

4.1. The Morse-Bott property. Let us recall that a closed connected Besse contact
manifold (Y, λ) of any dimension 2n+ 1 ≥ 3 has Morse-Bott closed orbits. By the
already mentioned Wadsley’s Theorem [Wad75], there exists a minimal τ > 0 such
that the Reeb flow satisfies φτλ = id. Therefore, each point z ∈ Y lies on a closed
Reeb orbit of minimal period τz = τ/αz, for some αz ∈ N. For each α ∈ N, we
define a compact subset

Kα := fix(φ
τ/α
λ ) ⊂ Y.

Since the Reeb vector field Rλ is nowhere vanishing, there exists a finite subset
F ⊂ N such that Kα 6= ∅ if and only if α ∈ F. Let g0 be a Riemannian metric on
Y such that g0(Rλ, ·) = λ. Its average

g :=
1

τ

∫ τ

0

(φtλ)∗g0 dt

is a Riemannian metric that still satisfies g(Rλ, ·) = λ and is invariant under the

Reeb flow, i.e. (φtλ)∗g = g. Since φ
τ/α
λ is a g-isometry, its fixed-point set Kα is a

closed submanifold of Y with tangent spaces

TzKα = ker(dφ
τ/α
λ (z)− id),

see [Kob95, Theorem 5.1]. The linearized map dφ
τ/α
λ (z)|ξz is a symplectic endo-

morphism of the symplectic vector space (ξz,dλz|ξz ), where ξ := ker(λ). Therefore,

the eigenvalue 1 ∈ σ(dφ
τ/α
λ (z)|ξz ) has even algebraic multiplicity. Since dφ

τ/α
λ (z)|ξz

is an α-th root of the identity, this algebraic multiplicity is equal to the geometric
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multiplicity dim ker(dφ
τ/α
λ (z)|ξz − id). This, together with the fact that

dφ
τ/α
λ (z)Rλ(z) = Rλ(z),

proves that dim(TzKα) is odd, and thus that Kα is an odd-dimensional closed
manifold.

4.2. Seifert fibrations. We now assume that our Besse closed connected contact
manifold (Y, λ) has dimension 3. Therefore, the subsets Kα with α ∈ F \ {1} are
finite disjoint unions of embedded circles. If F \ {1} 6= ∅, the complement Y \K,
where K := ∪α∈F\{1}Kα, is an open Zoll contact manifold. The Reeb flow on
Y defines a locally free R/τZ-action on Y , whose quotient Σg can be given the
structure of a closed orientable surface of some genus g ≥ 0. The quotient map
π : Y → Σg is not a genuine circle bundle if (Y, λ) is not Zoll, but it is still a Seifert
fibration. Namely, if {x1, ..., xr} := π(K), for each xj there are associated parame-
ters αj , βj , α

′
j , β
′
j ∈ Z with the following properties. The parameter αj ≥ 1 is such

that π−1(xj) ⊂ Kαj
. Therefore, π−1(xj) is a closed Reeb orbit of minimal period

τ/αj . Both pairs (αj , βj), (α′j , β
′
j) are coprime, and form an integer matrix with

determinant αjβ
′
j−α′jβj = 1. The point xj possesses a compact disk neighborhood

Dj ⊂ Σg that we identify with the unit ball in the complex plane, and there is a
diffeomorphism ψj : Dj × S1 → π−1(Dj) such that

π ◦ ψj(ρz1, z2) = ρz
αj

1 z
α′

j

2 , ∀ρ ∈ [0, 1], z1, z2 ∈ S1.

Here and in the following, S1 denotes the unit circle in the complex plane C. The
Reeb flow induced on Dj × S1 has the form

ψ−1
j ◦ φ

t
λ ◦ ψj(ρz1, z2) = (ρz1e

−i2πα′
jt/τ , z2e

i2παjt/τ ).

The restriction π : Y \K → Σg \ {x1, ..., xr} is a trivial S1-bundle, that is, there is
a diffeomorphism ψ : Σg \ {x1, ..., xr} × S1 → Y \K such that π ◦ ψ(z1, z2) = z1.
The Reeb flow induced on Σg \ {x1, ..., xr} × S1 is simply

ψ−1 ◦ φtλ ◦ ψ(z1, z2) = (z1, z2e
i2πt/τ ).

We orient Σg by means of a 2-form ω on Σg \ {x1, ..., xr} such that π∗ω = dλ|Y \K ,
and we orient the fibers of π by means of the Reeb vector field Rλ, so that the
diffeomorphisms ψ|{x}×S1 : {x} × S1 → π−1(x) are orientation preserving. We

introduce the oriented circles in the torus Tj := π−1(∂Dj)

Mj := ψj(∂Dj × {1}), Lj := ψj({1} × S1),

M ′j := ψ(∂Dj × {1}), L′j := ψ({x} × S1),

where x is any point in ∂Dj . In the homology group H1(Tj ;Z), we have

[Mj ] = αj [M
′
j ] + βj [L

′
j ], [Lj ] = α′j [M

′
j ] + β′j [L

′
j ].

The integers in the tuple (g;α1, β1, ..., αr, βr) are the so-called Seifert invariants of
the Seifert fibration π : Y → Σg, and every (αj , βj) is called a Seifert pair. We
stress that the concept of Seifert fibration is more general than the one presented
here (for instance it allows for non-orientable total spaces and non-orientable base
surfaces), but will not be needed in its full generality for the application to Besse
contact forms. In this paper, all Seifert fibrations are implicitly assumed to be of
the above type, and in particular with total space and base surface both closed and
orientable.
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A Seifert fibration can be described by different Seifert invariants tuples, but
nevertheless these invariants determine the Seifert fibration completely. More pre-
cisely, given two Seifert fibrations πi : Yi → Σgi , i = 1, 2, there exist an orientation
preserving diffeomorphism F : Y1 → Y2 and a diffeomorphism f : Σg1 → Σg2 such
that π2 ◦ F = f ◦ π1 if and only if the two Seifert fibrations can be described by
the same Seifert invariants tuple. A theorem due to Raymond [Ray68] (see also
[JN83, Theorem 2.1]) implies that the isomorphism classes of Seifert fibrations are
the same as the isomorphism classes of effective S1-actions on 3-manifolds. This
readily implies the following statement in our setting.

Theorem 4.1. For i = 1, 2, let (Yi, λi) be a Besse closed connected contact 3-
manifold oriented via the volume form λi∧dλi and whose Reeb orbits have minimal
common period τi. Then, there exists an orientation preserving diffeomorphism
ψ : Y1 → Y2 such that ψ ◦ φτ1tλ1

◦ ψ−1 = φτ2tλ2
for all t ∈ R if and only if (Y1, λ1) and

(Y2, λ2) have the same Seifert invariants in normal form (up to permutation of the
pairs). �

A particular case of a result due to Lisca-Matić [LM04] provides a constraint on
the Seifert invariants of a Seifert fibration associated to a Besse contact form.

Theorem 4.2 (Prop. 3.1 in [LM04]). The Seifert invariants (g;α1, β1, ..., αr, βr) of

any Besse closed connected contact 3-manifold satisfy β1

α1
+ ...+ βr

αr
> 0. �

The Seifert fibrations are classified. In particular, a result due to Orlik-Vogt-
Zieschang [OVZ67] (see also [GL18a, Section 1]) implies that a given closed con-
nected orientable 3-manifold Y admits at most one Seifert fibration structure (up to
Seifert fibration isomorphism possibly reversing the orientation of the total space),
unless Y is a prism manifold, a single Euclidean manifold, or a lens space. Ev-
ery manifold that is of prism or single Euclidean type admits two non-isomorphic
Seifert fibration structures, one of which projects onto a non-orientable surface.
By applying this together with Lisca-Matić’s Theorem 4.2, we obtain the following
uniqueness result for Besse contact forms.

Lemma 4.3. Let Y be a closed connected 3-manifold not homeomorphic to a lens
space, and λ1, λ2 two Besse contact forms on Y whose Reeb orbits have minimal
common periods τ1, τ2 respectively. Then, there exists a diffeomorphism ψ : Y → Y
such that ψ ◦ φτ1tλ1

◦ ψ−1 = φτ2tλ2
for all t ∈ R, and the volume forms ψ∗(λ2 ∧ dλ2)

and λ1 ∧ dλ1 induce the same orientation on Y .

Proof. Let πi : Y → Σgi be the Seifert fibration defined by the Besse contact form
λi. Since Σgi is orientable and the total space Y is not homeomorphic to a lens
space, the above mentioned result of Orlik-Vogt-Zieschang [OVZ67] implies that
there exist diffeomorphisms F : Y → Y and f : Σg1 → Σg2 such that π2 ◦ F =
f ◦ π1. The lemma now follows from Theorem 4.1 once we prove that λ1 ∧ dλ1 and
F ∗(λ2 ∧ dλ2) define the same orientation on Y .

Let us assume by contradiction that λ1 ∧ dλ1 and F ∗(λ2 ∧ dλ2) define opposite
orientations on Y . If (g1;α1, β1, ..., αr, βr) are Seifert invariants for π1 : Y → Σg1 ,
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Lisca-Matić’s Theorem 4.2 implies that

β1

α1
+ ...+ βr

αr
> 0. (4.1)

Since λ1 ∧ dλ1 and F ∗(λ2 ∧ dλ2) define opposite orientations, the Seifert fibration
π2 : Y → Σg2 has Seifert invariants (g1;α1,−β1, ..., αr,−βr), and Lisca-Matić’s
Theorem 4.2 would imply

− β1

α1
− ...− βr

αr
> 0,

contradicting (4.1). �

The classification of Seifert fibrations on lens spaces has been recently carried out
by Geiges-Lange [GL18a]. We summarize their results that we will need as follows.
We recall that, for p and q coprime integers and p > 0, the lens space L(p, q) is
the quotient of the unit 3-sphere S3 ⊂ C2 under the Z/pZ-action generated by
(z1, z2) 7→ (ei2π/pz1, e

i2πq/pz2). When p is not positive, the lens spaces are defined
by L(p, q) := L(−p,−q) and L(0, 1) := S2 × S1. If π : L(p, q) → Σg is a Seifert
fibration, then the base surface Σg is either S2 or RP 2. Since Σg is orientable
whenever the Seifert fibration is defined by a Besse contact form, in this section we
will only consider Seifert fibrations of lens spaces over S2.

Theorem 4.4 (Prop. 4.6–4.8 and Th. 4.10 in [GL18a]).

(i) Any Seifert fibration π : L(0, 1)→ S2 has Seifert invariants (0;α, β, α,−β),
where α and β are coprime integers such that α > 0 and β ≥ 0.

(ii) If p > 0, any Seifert fibration π : L(p, q) → S2 with at most one singular
fiber has Seifert invariants (0;α, β), where β = p, α 6= 0, and α ≡ q or
αq ≡ 1 mod p.

(iii) There exist functions b1 : Z4 → Z and b2 : Z4 → Z such that any Seifert fi-
bration π : L(p, q)→ S2 with p > 0 has Seifert invariants (0;α1, β1, α2, β2)
satisfying β1 = b1(p, q, α1, α2), β2 = b2(p, q, α1, α2), and the greatest com-
mon divisor gcd(α1, α2) divides p. �

4.3. Classification of Besse contact 3-manifolds. The following is the last ingredient
needed for proving Theorem 1.5.

Lemma 4.5. For i = 0, 1, let (Yi, λi) be a closed contact 3-manifold equipped with
a contact form and oriented by means of the volume form λi ∧ dλi. If there exists
an orientation preserving diffeomorphism ψ0 : Y0 → Y1 such that dψ0(z)Rλ0(z) =
Rλ1(ψ(z)) for all z ∈ Y0, then ψ0 can be isotoped to a diffeomorphism ψ1 : Y0 → Y1

such that ψ∗1λ1 = λ0.

Proof. By pulling back the contact form λ1 by means of ψ0, we can assume without
loss of generality that Y0 = Y1 =: Y , ψ0 = id, Rλ0 = Rλ1 , and both volume forms
λ0 ∧ dλ0 and λ1 ∧ dλ1 define the same orientation on Y . For each t ∈ [0, 1], the
convex combination λt := tλ1 + (1 − t)λ0 is a contact form. Indeed, consider any
oriented basis of a tangent space of Y of the form Rλ0

(z), v, w. Since Rλ0
= Rλ1

,
notice that

λi ∧ dλj(Rλ0(z), v, w) = dλj(v, w) = λj ∧ dλj(Rλj (z), v, w) > 0, ∀i, j ∈ {0, 1}.
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This readily implies that the 3-form

λt ∧ dλt = t2λ1 ∧ dλ1 + (1− t)2λ0 ∧ dλ0 + t(1− t)(λ0 ∧ dλ1 + λ1 ∧ dλ0)

is a positive volume form on Y , and in particular each λt is a contact form. We
can now complete the proof by applying a Moser trick as follows. We consider the
time-dependent vector field Xt on Y defined by λt(Xt) ≡ 0 and Xty dλt = λ0−λ1.
Its flow ψt : Y → Y , with ψ0 = id, satisfies

d
dtψ
∗
t λt = ψ∗t

(
d(λt(Xt)) +Xty dλt + λ1 − λ0

)
= 0,

which gives the desired condition ψ∗1λ1 = λ0. �

Proof of Theorem 1.5. Let λ1, λ2 be two Besse contact forms on a closed 3-manifold
Y . If there exists a diffeomorphism ψ : Y → Y such that ψ∗λ2 = λ1, clearly
σp(Y, λ1) = σp(Y, λ2). Conversely, assume that the two Besse closed connected con-
tact manifolds have the same prime action spectrum σp := σp(Y, λ1) = σp(Y, λ2).
If one of the two contact forms is Zoll, then σp is a singleton, and the other contact
form must be Zoll as well. In this case, [BK18, Lemma 2.3] implies that there exists
a diffeomorphism ψ : Y → Y such that ψ∗λ2 = λ1. Assume now that λ1 and λ2

are not Zoll. By Wadsley’s Theorem [Wad75], their prime action spectrum must
have the form

σp = {τ, τ/a1, ..., τ/as},
for some integers s > 0 and ai > 1, i = 1, ..., s. Here, τ > 0 is the minimal
common period of the Reeb orbits of both (Y, λ1) and (Y, λ2). We denote by Σi the
quotient of Y under the locally free R/τZ-action defined by the Reeb flow φtλi

. As
we already discussed, Σ1 and Σ2 are orientable closed surfaces, and the quotient
projections π1 : Y → Σ1 and π2 : Y → Σ2 are Seifert fibrations.

If Y is not homeomorphic to a lens space, since the two Reeb flows have the
same minimal common period τ , Lemmas 4.3 and 4.5 imply that there exists a
diffeomorphism ψ : Y → Y such that ψ∗λ2 = λ1.

It remains to consider the case in which Y is a lens space. Since Y admits
the Besse contact forms λ1 and λ2, it cannot be the lens space L(0, 1); indeed,
if Y = L(0, 1), Theorem 4.4(i) would imply that the Seifert fibrations πi : Y →
Σi have Seifert invariants of the form (0;α, β, α,−β), contradicting Lisca-Matić’s
Theorem 4.2. Therefore, we can assume that Y = L(p, q) for some p > 0.

We claim that the two Seifert fibrations π1 : Y → Σ1 and π2 : Y → Σ2 have the
same number of singular fibers (which is at most two according to Theorem 4.4).
Indeed, assume that one of the two fibrations, say π1 : Y → Σ1, has two singular
fibers. Let (0;α1, β1, α2, β2) be its Seifert invariants, and notice that α1 > 1 and
α2 > 1. If the other Seifert fibration has only one singular fiber, then we must have
α1 = α2 =: α and σp = {τ, τ/α}. By Theorem 4.4(iii), the quotient n1 := p/α ∈
(0, p) is a positive integer, and we must have p > 1 and thus q 6= 0. This, together
with Theorem 4.4(ii), implies that π2 : Y → Σ2 has Seifert invariants (0;α, p), and
α ≡ q or αq ≡ 1 mod p. Therefore (1 + n1n2)α = q or (q + n1n2)α = 1 for some
n2 ∈ Z. None of these equalities is possible: the first one since α > 1 divides p
and the non-zero integers p, q are coprime; the latter once since α > 1. This gives
a contradiction.

The Seifert fibrations π1 : Y → Σ1 and π2 : Y → Σ2 have the same Seifert
invariants. Indeed, if they have only one singular fiber, then σp = {τ, τ/α} for
some integer α > 1, and Theorem 4.4(ii) implies that their Seifert invariants are
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(0;α, p). If they have two singular fibers, then σp = {τ, τ/α1, τ/α2} for some
integers α1, α2 > 1, and Theorem 4.4(ii) implies that their Seifert invariants are
(0;α1, b1(p, q, α1, α2), α2, b2(p, q, α1, α2)). This, together with the fact that both
Besse contact forms have the same minimal common period τ for their Reeb orbits,
allows to apply Lemmas 4.3 and 4.5, which imply that there exists a diffeomorphism
ψ : Y → Y such that ψ∗λ2 = λ1. �

Appendix A. Genericity of bumpy contact forms

Let (Y, ξ = ker(λ)) be a closed contact manifold. We recall that the contact form
λ is called bumpy when, for each τ > 0 and z ∈ fix(φτλ), 1 is not an eigenvalue of the
linearized Poicaré map dφτλ(z)|ξ. We wish to stress, here, that τ is not necessarily
the minimal period of z. Namely, a contact form is bumpy when the simple closed
orbits of its Reeb flow and all their iterates are transversally non-degenerate. It
is well known that generic contact forms supporting a given contact distribution
are bumpy, see [HWZ98, Prop. 6.1]. In the proof of Lemma 3.1 we need a slightly
stronger statement asserting that such genericity also holds when the contact form
is prescribed on an embedded flow box.

Let us recall the notion of flow box in our setting. Let Σ ⊂ Y be an embedded
compact ball of codimension 1 that is transverse to the Reeb vector field Rλ and
such that, for some s > 0, the map

[0, s]× Σ→ Y, (t, z) 7→ φtλ(z)

is a diffeomorphism onto its image. A flow box is a compact subset of Y that is the
image of one such map.

For each compact subset K of a closed manifold Y , we denote by CrK(Y ) the
space of Cr functions f : Y → R such that f |K ≡ 0; in the following, CrK(Y ) will
be endowed with the Cr topology.

Proposition A.1. Let (Y, ξ = ker(λ)) be a closed contact manifold, K ( Y a flow
box for the Reeb flow φtλ, and 2 ≤ r ≤ ∞. Then, there is a Gδ-dense subset
B ⊂ CrK(Y ) such that, for each b ∈ B, the contact form ebλ is bumpy.

The proof of this proposition is analogous to the one provided by Anosov [Ano82]
in the case of geodesic flows, and we will carry it over after some preliminaries. For
each 2 ≤ r ≤ ∞ and T1 ≥ T0 > 0, we denote by Br(T0, T1) the subset of those
b ∈ CrK(Y ) such that

1 6∈ σ(dφkτebλ(z)|ξ), ∀τ ∈ (0, T0], k ∈ N ∩ (0, T1/τ ], z ∈ fix(φτebλ).

Here, as usual, σ(·) denotes the spectrum of a linear endomorphism.

Lemma A.2. The subset Br(T0, T1) is open in CrK(Y ).

Proof. Assume that a function b ∈ CrK(Y ) does not belong to the interior of
Br(T0, T1), so that there exists a sequence bn ∈ CrK(Y )\Br(T0, T1) converging to b.
Therefore, there exist sequences τn ∈ (0, T0], kn ∈ N∩(0, T1/τn], and zn ∈ fix(φτn

ebnλ
)

such that 1 ∈ σ(dφknτn
ebnλ

(zn)|ξ). Up to passing to appropriate subsequences, we can
assume that τn → τ ∈ (0, T0], kn ≡ k ∈ (0, T1/τ ], and zn → z. However, this
implies that φτebλ(z) = z and 1 ∈ σ(dφkτebλ(z)|ξ), and thus b 6∈ Br(T0, T1). �
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We set Br(T ) := Br(T, T ). Namely, Br(T ) is the set of those b ∈ CrK(Y ) such
that all the (possibly iterated) closed orbits of the Reeb flow φtλ with period at
most T are transversely non-degenerate. We introduce the Cr−1 map

Φ : CrK(Y )× Y × (0,∞)→ Y × Y, Φ(b, z, t) = (z, φtebλ(z)),

and we denote by Φb := Φ(b, ·, ·) : Y × (0,∞) → Y × Y its restrictions. Notice
that, if τ > 0 and z ∈ fix(φτebλ), then 1 6∈ σ(dφτebλ(z)|ξ) if and only if the image of
dΦb(z, τ) is transverse to T(z,z)∆, where ∆ ⊂ Y × Y is the diagonal submanifold.
Even when this transversality condition is not satisfied, we still have the following
one. From now on, we assume that

3 ≤ r <∞,

so that the map Φ is at least C2.

Lemma A.3. If τ > 0 is the minimal period of a closed Reeb orbit φtebλ(z), then
the image of dΦ(b, z, τ) is transverse to T(z,z)∆. In particular, for each T > 0, the
map Φ|Br(T,2T )×Y×(0,2T ) is transverse to the diagonal ∆ ⊂ Y × Y .

Proof. For each H ∈ C∞(Y ), we denote by ψtH : Y → Y the contact isotopy
generated by the contact Hamiltonian vector field XH , which is defined by

ebλ(XH) = H, XHyd(ebλ) = −dH + dH(Rebλ)ebλ.

Notice that φtebλ = ψt1. Assume that τ > 0 is the minimal period of a closed Reeb
orbit t 7→ ψt1(z). Since K is a flow box for the Reeb flow ψt1(z), this closed orbit must
intersect its complement Y \K. Let t0 ∈ [0, τ) be such that z0 := ψt01 (z) ∈ Y \K.
For each v ∈ TzY and for each open neighborhood U ⊂ Y \K of z0, we can find
a family of smooth functions Hs : Y → R smoothly depending on s ∈ (−ε, ε)
such that H0 ≡ 1, Hs|Y \U ≡ 1 for each s ∈ (−ε, ε), and d

ds

∣∣
s=0

ψτHs
(z) = v. We

set bs := − log(Hs), and notice that b0 ≡ 0 and bs|Y \U ≡ 0 for all s ∈ (−ε, ε).
In particular each bs belongs to CrK(Y ). The contact Hamiltonian vector field
XHs is the Reeb vector field associated to the contact form eb+bsλ = 1

Hs
ebλ, i.e.,

ψtHs
= φteb+bsλ. Therefore, if we set b′ := ∂sbs|s=0, we have

dΦ(b, z, τ)(b′, 0, 0) = d
ds

∣∣
s=0

Φ(b+ bs, z, τ) = d
ds

∣∣
s=0

(z, ψτHs
(z)) = (0, v).

This readily implies that dΦ(b, z, τ) is transverse to T(z,z)∆. �

Lemma A.4. For each T > 0 and S ∈ (T, 2T ), the intersection Br(S) ∩ Br(T, 2T )
is dense in Br(T, 2T ).

Proof. By Lemma A.3, the C2 map Φ|Br(T,2T )×Y×(0,2T ) is transverse to the diagonal
∆ ⊂ Y × Y . Therefore, by Abraham’s infinite dimensional transversality theorem
[AR67], there exists a dense subset B ⊂ Br(T, 2T ) such that, for each b ∈ B, the
map Φb|Y×(0,2T ) is transverse to the diagonal ∆ ⊂ Y × Y . This implies that B is
contained in Br(S) for each S ∈ (T, 2T ), and the lemma follows. �

Lemma A.5. For each T > 0, Br(T, 2T ) is dense in Br(T ).
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Proof. Consider an arbitrary b0 ∈ Br(T ). Notice that the subset

F :=
⋃

τ∈(0,T ]

fix(φτeb0λ)

is the union of finitely many closed orbits γ1, ..., γk of the Reeb flow φt
eb0λ

. Since
b0 ≡ 0 on the flow box K, each γi intersects the open set Y \K. Since all the closed
orbits of φt

eb0λ
with period at most T are transversally non-degenerate, there exists

ε > 0 such that no closed orbit of φt
eb0λ

has minimal period in the interval (T, T+ε].
For each i = 1, ..., k, we choose a point zi(b0) on the intersection of the closed orbit
γi with Y \K, and we denote by τi(b0) ∈ (0, T ] the minimal period of γi. Since all
the γi’s are non-degenerate τi(b0)-periodic orbits, there exist an open neighborhood
U ⊂ CrK(Y ) of b0, open neighborhoods Ui ⊂ Y \ K of zi(b0), and continuous
(indeed, even more regular) maps z : U → U1× ...×Uk, z(b) = (z1(b), ..., zk(b)) and
τ : U → (0, T + ε/2]× ...× (0, T + ε/2], τ (b) = (τ1(b), ..., τk(b)) with the following
properties: for each b ∈ U , the only closed orbits of the Reeb flow of ebλ with
minimal period at most T + ε/2 and intersecting U1 ∪ ...∪Uk are the φtebλ(zi(b))’s;

the minimal period of φtebλ(zi(b)) is τi(b), and 1 6∈ σ(dφ
τi(b)

ebλ
(zi(b))). We can choose

a smaller open neighborhood W ⊂ U of b0 so that, for each b ∈ W, the Reeb flow
of ebλ does not have closed orbits with period at most T + ε/2 not intersecting
U1 ∪ ... ∪ Uk. For every such open neighborhood W, it is well known that we can
choose b ∈ W such that, for each i = 1, ..., k and h ∈ N ∩ (0, 2T/τi(b)), we have

1 6∈ σ(dφ
hτi(b)

ebλ
(zi(b))). Therefore such b belongs to Br(T, 2T ). �

Proof of Proposition A.1. We define the Gδ-set

Br :=
⋂
S∈N
Br(S).

We first assume that 3 ≤ r <∞. Lemmas A.4 and A.5 imply that the open subset
Br( 3

2T ) is dense in Br(T ). Therefore, Br(S) is dense in Br(T ) for all S ≥ T , and by
the Baire category theorem we conclude that Br is dense in Br(T ) for each T > 0.
Notice that, for each b ∈ CrK(Y ), there exists T > 0 such that no closed orbit of
the Reeb vector field φtebλ has period less than or equal to T . In particular, every
b ∈ CrK(Y ) is contained in Br(T ) for some T > 0. This, together with the above
density argument, implies that Br is dense in CrK(Y ). Since CrK(Y ) ↪→ C2

K(Y ) is a
dense inclusion, we readily infer that the set B2 is dense in C2

K(Y ).
The set B∞(S) = Br(S) ∩ C∞K (Y ) is open in C∞K (Y ). For 2 ≤ r < ∞, since

Br(S) is open in CrK(Y ), and both Br(S) and C∞K (Y ) are dense in CrK(Y ), we infer
that B∞(S) is dense in CrK(Y ). We recall that the topology of C∞K (Y ) is generated
by open sets of the form W ∩ C∞K (Y ), where W is an open subset of some CrK(Y )
with 2 ≤ r <∞. If W ⊆ CrK(Y ) is one such non-empty open subset, we have

B∞(S) ∩ (W ∩ C∞K (Y )) = B∞(S) ∩W 6= ∅.

This shows that B∞(S) is open and dense in C∞K (Y ). By the Baire category theo-
rem, B∞ is dense in C∞K (Y ). �
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