CRITICAL POINT THEORY FOR LAGRANGIAN SYSTEMS

ERRATA CORRIGE

MARCO MAZZUCCHELLI

• The last part of the proof of Lemma 2.1.2 (page 33) contains a silly mistake: the set $E_{\mathscr{K}}^{\leq -c_{P}}$ is clearly not a direct sum of eigenspaces of \mathscr{K} , it is rather a cone. The paragraph

"Notice that $E_{\mathscr{K}}^{\leq -c_P}$ is the direct sum [...] is finite dimensional."

should be replaced with the following:

"Assume by contradiction that there exists a linearly independent infinite sequence $\{\boldsymbol{v}_n \mid n \in \mathbb{N}\}$ contained in $\boldsymbol{E}_{\mathscr{B}}^- \cap \boldsymbol{E}_{\mathscr{P}}^+$. Let \boldsymbol{E}_0 [resp. \boldsymbol{E}_1] be the direct sum of the eigenspaces of K corresponding to the eigenvalues less than or equal to $-c_P$ [resp. greater than $-c_P$], and let $\pi : \boldsymbol{E} \to \boldsymbol{E}_0$ be the orthogonal projection. Since K is compact, \boldsymbol{E}_0 is finite dimensional. Therefore, we can find $n_1, ..., n_k \in \mathbb{N}$ and $\lambda_1, ..., \lambda_k \in \mathbb{R}$ such that

$$\pi(\boldsymbol{v}_{n_k+1}) = \lambda_1 \pi(\boldsymbol{v}_{n_1}) + \dots + \lambda_k \pi(\boldsymbol{v}_{n_k}).$$

Notice that

 $\boldsymbol{v}_{n_k+1} \neq \lambda_1 \boldsymbol{v}_{n_1} + \ldots + \lambda_k \boldsymbol{v}_{n_k},$

since the sequence $\{\boldsymbol{v}_n \mid n \in \mathbb{N}\}$ is linearly independent. Thus, the vector

 $\boldsymbol{v} := \boldsymbol{v}_{n_k+1} - \lambda_1 \boldsymbol{v}_{n_1} - \ldots - \lambda_k \boldsymbol{v}_{n_k}$

is nonzero and contained in $E^-_{\mathscr{B}} \cap E^+_{\mathscr{P}} \cap E_1$. This is a contradiction, since $E^{\leq -c_P}_{\mathscr{H}} \cap E_1 = \{\mathbf{0}\}$."

Date: May 25, 2012.

If you find further inaccuracies, please send me an e-mail to $\verb+marco.mazzucchelli@ens-lyon.fr.$