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Abstract. We prove an analogue of the 4-dimensional local Viterbo conjec-
ture for the higher Ekeland-Hofer capacities: on the space of 4-dimensional

smooth star-shaped domains of volume one, endowed with the C3 topology,

the local maximizers of the k-th Ekeland-Hofer capacities are those domains
symplectomorphic to suitable rational ellipsoids.
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1. Introduction

1.1. The Viterbo conjecture. Symplectic capacities are fundamental invariants
that govern many rigidity phenomena in symplectic and contact topology. In this
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paper, we consider symplectic capacities c defined on subsets B of the symplectic
vector space (Cn, ω), for n ≥ 2. If B is a domain (i.e. the closure of a non-empty
open subset) of finite volume, its associated capacity ratios are defined as

ĉ(B) =
c(B)

vol(B,ω)1/n
.

Here, the volume is the integral of ωn on B. In his seminal paper [Vit00], Viterbo
conjectured that ĉ(B) ≤ ĉ(B2n) for any convex body B ⊂ Cn and any symplec-
tic capacity c, where B2n denotes any round ball in Cn. This conjecture, which
is currently open, is particularly hard as it combines symplectic invariants with
the non-symplectic notion of convexity. Its validity would have far reaching con-
sequences well beyond symplectic geometry: it would imply the validity of the
long-standing Mahler conjecture from convex geometry, as it was pointed out by
Artstein-Avidan, Karasev, and Ostrover [AAKO14].

By a 2n-dimensional smooth convex body, we mean a compact subset B ⊂ Cn
with non-empty interior and smooth positively-curved boundary ∂B; for the sake
of convenience, we shall always require that B contains the origin in its interior.
We consider the Ck topology on the space of smooth convex bodies: two smooth
convex bodies B0, B1 ⊂ Cn are Ck-close when their boundaries ∂B0, ∂B1 are Ck-
close submanifolds. A theorem of Abbondandolo and Benedetti [AB19], extending
an earlier result of Abbondandolo, Bramham, Hryniewicz, and Salomao [ABHS18]
for the Ekeland-Hofer capacity in dimension 4, asserts the validity of a local version
of the Viterbo conjecture: on a sufficiently C3-small neighborhood of the round ball
B2n, the local maximizers of the function B 7→ ĉ(B) are precisely the smooth convex
bodies symplectomorphic to B2n. In dimension 4, this theorem has been recently
strengthened by Edtmair [Edt22]: on a sufficiently C3-small neighborhood of the
round ball B2n, all symplectic capacities coincide.

1.2. Main result. The goal of this paper is to investigate questions analogous to
the (local and global) Viterbo conjecture for higher symplectic capacities, whose
definition is the following. Each tuple a = (a1, ..., an) ∈ (0,∞]n defines a 2n-
dimensional domain

E(a) =

{
z = (z1, ..., zn) ∈ Cn

∣∣∣∣ n∑
j=1

|zj |2

aj
≤ 1

π

}
.

If all the entries ai are finite, E(a) is an ellipsoid. A symplectic k-capacity on Cn is
a function ck : 2C

n → [0,∞], where 2C
n

is the collection of subsets of Cn, satisfying
the following three properties:

• (Monotonicity) ck(U) ≤ ck(V ) if there exists ψ ∈ Symp(Cn, ω) such that
ψ(U) ⊂ V .

• (Conformality) ck(b U) = b2ck(U) for each b ∈ R and U ⊂ Cn.
• (Normalization) For each a ∈ (0,∞]n with a1 <∞, if we enumerate the
set of positive multiples of the entries aj in increasing order as τ1 < τ2 <
τ3 < ..., the value ck(E(a)) is the k-th element in the sequence

τ1, ..., τ1︸ ︷︷ ︸
×m1

, τ2, ..., τ2︸ ︷︷ ︸
×m2

, τ3, ..., τ3︸ ︷︷ ︸
×m3

, ...

where mh is the number of parameters aj having τh as a positive multiple.
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Ordinary symplectic capacities on Cn, as appearing in the Viterbo conjecture,
are 1-capacities1. While there are many 1-capacities in the literature, to the best of
the authors’ knowledge there are only few constructions of symplectic k-capacities:
the Ekeland-Hofer capacities cEH

k [EH89,EH90] defined via an infinite dimensional
linking argument (see Section 3.1), the Viterbo capacities cVk [Vit89] defined via
finite dimensional reductions, the Gutt-Hutchings capacities cGH

k [GH18] defined via
S1-equivariant symplectic homology, and the very recent Zhang capacities [Zha21]
defined via the microlocal theory of sheaves. At least the three k-capacities cEH

k , cVk ,
and cGH

k are expected to coincide2. Once the existence of a symplectic k-capacity is
established, one infers that the following definitions also give symplectic k-capacities
of subsets U ⊂ Cn:
cink (U) := sup

{
ck(E(a))

∣∣ ψ(E(a)) ⊂ U for some a ∈ (0,∞]n, ψ ∈ Symp(Cn)
}
,

coutk (U) := inf
{
ck(E(b))

∣∣ ψ(U) ⊂ E(b) for some b ∈ (0,∞]n, ψ ∈ Symp(Cn)
}
.

In these expressions ck(E(a)) is the k-capacity of the ellipsoid E(a). These so-
called inner and outer k-capacities are the extremal ones: any other symplectic
k-capacity ck satisfies cink ≤ ck ≤ coutk . The inner 1-capacity cin1 is often called the
Gromov width.

We say that B ⊂ Cn is a 2n-dimensional smooth star-shaped domain when it is
diffeomorphic to a compact 2n-dimensional ball and has a smooth boundary ∂B
that is transverse to all radial lines on Cn. Notice that the smooth convex bodies,
and in particular the ellipsoids, are smooth star-shaped domains. Once again, we
consider the Ck topology on the space of smooth star-shaped domains: B0 and B1

are Ck-close when their boundaries ∂B0, ∂B1 are Ck-close submanifolds.
An ellipsoid E = E(a1, ..., an) is called rational when all the ratios aj/ah are

rational numbers. In this case, we denote by τ(E) the least common multiple of the
parameters a1, ..., an. For each integer m ≥ 1, we define km(E) to be the minimal
integer k ≥ 1 such that ck(E) = mτ(E). Here, ck is any symplectic k-capacity, and
the values km(E) are clearly independent of the choice of such ck’s. Finally, we set
K(E) := {km(E) | m ≥ 1}. Our main result is a confirmation of a version of the
local Viterbo conjecture for the higher Ekeland-Hofer capacities in dimension 4.

Theorem A. On the space of 4-dimensional smooth star-shaped domains endowed
with the C3 topology, the local maximizers of B 7→ ĉEH

k (B) are precisely those
domains symplectomorphic to a 4-dimensional rational ellipsoid E with k ∈ K(E).

In this theorem, the local maximality of star-shaped domains symplectomorphic
to rational ellipsoids requires a proof specific to the Ekeland-Hofer capacities. Nev-
ertheless the other implication, asserting that local maximizers of a capacity ratio
are symplectomorphic to rational ellipsoids, holds for the k-capacities cVk and cGH

k

as well, and even with respect to the C∞ topology on the space of smooth star-
shaped domains; indeed, a slightly different statement also holds for the capacities
coming from embedded contact homology [Hut11], which are not k-capacities in
the sense of the above definition, see Remark 3.10.

1In the literature, and in particular in the statement of the Viterbo conjecture, a stronger form
of monotonicity is sometimes assumed for the symplectic capacities: c(U) ≤ c(V ) if there exists

a symplectic embedding of U into V . Capacities and, more generally, k-capacities satisfying the

weaker monotonicity stated above are sometimes called relative or non-intrinsic [MS17, Sect. 12.1].
2The equality cEH

k (B) = cGH
k (B) for all compact star-shaped domains B ⊂ Cn was recently

announced by Gutt and Ramos [GR23].
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1.3. Outline of the proof of Theorem A. The local Viterbo conjecture was
established as a rather direct consequence of a systolic characterization of Zoll
contact manifolds, which we now briefly recall. Let (N,α) be a closed contact
manifold, X its Reeb vector field defined by α(X) ≡ 1 and dα(X, ·) ≡ 0, and
ϕt : N → N its Reeb flow. The Weinstein conjecture, which is a theorem for
several classes of closed contact manifolds including all 3-dimensional ones, asserts
that the Reeb flow ϕt has at least one closed orbit. If this is the case, we denote by
τ1(N,α) = inf{t > 0 | fix(ϕt) ̸= ∅} the systole, namely the minimum among the
periods of the closed Reeb orbits; if the Weinstein conjecture fails for (N,α), we
instead set τ1(N,α) = 0. We consider the associated systolic ratio

τ̂1(N,α) =
τ1(N,α)

vol(N,α)1/n
, (1.1)

where n = 1
2 (dim(N) + 1), and vol(N,α) is the integral of α ∧ (dα)n−1. On the

space of contact forms on N endowed with the C3-topology, the local maximizers
of the function α 7→ τ̂1(N,α) are precisely the Zoll contact forms: those contact
forms whose associated Reeb orbits are all closed and have the same minimal period
(namely ϕτ1(N,α) = id and fix(ϕt) = ∅ for all t ∈ (0, τ1(N,α))). This remarkable
theorem was established in full generality by Abbondandolo and Benedetti [AB19],
and previously in dimension 3 in a series of papers [APB14,ABHS18,BK21].

A closed contact manifold (N,α), or just the contact form α, is called Besse when
all its Reeb orbits are closed, and in this case they automatically have a common
period according to a theorem of Wadsley [Wad75]. The simplest examples of Besse
closed contact manifolds are the boundaries of the rational ellipsoids. Actually, in
dimension 4, for each smooth star-shaped domain B ⊂ C2 with a Besse boundary
there exists a symplectomorphism ψ ∈ Symp(Cn, ω) such that ψ(B) is a rational
ellipsoid; this is a consequence of the classification of 3-dimensional Besse contact
spheres [MR23, Theorem 1.1], together with a straightforward generalization of
[ABHS18, Prop. 4.3].

Assume now that (N,α) is a closed contact 3-manifold. For each k ≥ 1, we
denote by τk(N,α) the infimum of the values τ > 0 such that there exist at least k
closed Reeb orbits (counting iterates as well) of period less than τ ; in formulas:

τk(N,α) := inf

{
τ > 0

∣∣∣∣ ∑
t∈(0,τ)

#
(
fix(ϕt)/∼

)
≥ k

}
,

where ∼ is the equivalence relation identifying z ∼ ϕt(z) for all z ∈ N and t ∈ R.
Extending the notation (1.1), we write

τ̂k(N,α) :=
τk(N,α)

vol(N,α)1/2
.

If (N,α) is Besse, we denote by k1 := k1(N,α) the minimal positive integer such
that τk1 is a common period of the Reeb orbits, i.e. ϕτk1 = id. This notation
is consistent with the one employed in Section 1.2 with 4-dimensional rational
ellipsoids E: we have k1(E) = k1(∂E, λ). A result of Abbondandolo, Lange, and
Mazzucchelli [ALM22] generalized the above mentioned systolic characterization
of Zoll contact 3-manifolds as follows: on the space of contact forms on a closed
3-manifold N , endowed with the C3 topology, the local maximizers of the function
α 7→ τ̂k(N,α) are precisely the Besse contact forms α with k1(N,α) = k.
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Consider now a 2n-dimensional smooth star-shaped domain B. Stokes theorem
implies that vol(B,ω) = vol(∂B, λ). Moreover, if B is a smooth convex body and c1
denotes any of the above mentioned 1-capacities cEH

1 , cV1 , or c
GH
1 , we have c1(B) =

τ1(∂B, λ), as it was proven by Sikorav [Sik90], Viterbo [Vit89], and Abbondandolo
and Kang [AK22] for the three respective capacities. Therefore ĉ1(B) = τ̂1(∂B, λ),
and the systolic Zoll characterization implies the local Viterbo conjecture.

We stress that, for k > 1, Theorem A is not a direct consequence of the above
mentioned systolic Besse characterization [ALM22]. Our proof requires several
ingredients and new insights, in particular on the Clarke action functional Ψ = ΨB
associated with a smooth convex body B ⊂ Cn. The set of critical values of Ψ is
precisely the action spectrum σ(∂B), that is, the set of periods of the closed Reeb
orbits of ∂B. Ekeland and Hofer introduced spectral invariants sk(B), which are
critical values of Ψ selected by suitable min-max procedures. A result of Ginzburg,
Gürel, and Mazzucchelli [GGM21] asserts that a 2n-dimensional smooth convex
body B0 has Besse boundary if and only if sk(B0) = sk+n−1(B0) for some k ≥ 1.
In this case, let k1 = k1(B0) be the smallest k satisfying this condition. As a
first crucial ingredient for the proof of Theorem A, we show that, for any smooth
convex body B1 sufficiently C2-close to B0, the spectral invariant sk1(B1) is the
minimum among the elements in the action spectrum σ(∂B1) that are close to
sk1(B0) (Lemma 2.2).

Assume now that B0 as above has dimension 2n = 4. We denote by K(B0)
the collection of values k such that sk(B0) = sk+1(B0), and denote by km =
km(B0) the m-th smallest element of K(B0). Once again, this notation agrees
with the one employed in Section 1.2 for the rational ellipsoids. For each m ≥ 1,
Lemma 2.2 together with some Morse theory for the Clarke action functional implies
that skm(B1) ≤ mτk1(B1) for all smooth convex bodies B1 sufficiently C2-close
to B0, and equality holds if B1 = B0 (Lemma 2.3). Therefore, by the above
mentioned result of Abbondandolo, Lange, and Mazzucchelli [ALM22], we conclude
in Theorem 2.4 that any such B0 is a local maximizer, with respect to the C3

topology, of the spectral ratios

ŝkm(B) :=
skm(B)

vol(B)1/2
.

It is well known that s1(B) = τ1(∂B, λ) = cEH
1 (B) for all 2n-dimensional smooth

convex bodies B. Conjecturally, sk(B) = cEH
k (B) for all k ≥ 2 as well. We shall

show that at least an inequality between these invariants hold, and this will suffice
to reach our conclusion.

Theorem B. For each smooth convex body B ⊂ Cn, we have

cEH
k (B) ≤ sk(B), ∀k ≥ 2.

Moreover, the equality cEH
k (B) = sk(B) holds for all k ≥ 2 and for all 4-

dimensional Besse convex bodies B, using the already mentioned fact that every
such B is symplectomorphic to a rational ellipsoid. By employing these facts to-
gether with Theorem 2.4, we infer that any 4-dimensional Besse convex bodies B0

is a local maximizer, with respect to the C3 topology, of the capacity ratios ĉEH
k

for all k ∈ K(B0).
Finally, building on an argument originally due to Alvarez Paiva and Balacheff

[APB14], we show that any local maximizer B of the capacity ratios ĉEH
k over the
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space of 2n-dimensional smooth star-shaped domains must have Besse boundary,
and the Reeb orbits therein must have common period ck(B). In particular every
such B is symplectomorphic to a rational ellipsoid E that is a local maximizer of
ĉEH
k . A sharp result for ellipsoids (Proposition D(i)) implies that k ∈ K(E).

1.4. Global maximizers and open questions on higher capacity ratios.
In the Viterbo conjecture, the convexity assumptions on the domains cannot be
removed: in an unpublished note [Her98], Hermann showed that, for any symplectic
1-capacity c1 on Cn, the associated capacity ratio ĉ1 is unbounded over the space
of star-shaped domains. In contrast, a theorem of Artstein-Avidan, Milman, and
Ostrover [AAMO08] asserts that any 1-capacity ratio is uniformly bounded over
the space of convex bodies by a constant that is independent of the dimension
(previously, Viterbo [Vit00] showed that there is a uniform bound growing linearly
in the dimension). A minor modification in their proof provides the following
uniform bound for all k-capacity ratios.

Theorem 1.1 (Artstein-Avidan, Milman, Ostrover). There exists a constant a > 0
such that, for each integer n ≥ 1, for each symplectic k-capacity ck on Cn, and for
each 2n-dimensional convex body B, we have ĉk(B) ≤ ak.

Proof. By [AAMO08, Theorem 1.6], there exists a constant a > 0 such that, for
any n ≥ 1 and for any convex body B ⊂ Cn, we have

clin(B)

vol(B)1/n
≤ a,

where

clin(B) := inf
{
b > 0

∣∣ ψ(B) ⊂ E(b)× Cn−1︸ ︷︷ ︸
=E(b,∞,...,∞)

for some ψ ∈ Sp(2n)
}
.

The normalization of the symplectic k-capacity implies ck(E(b)×Cn−1) = kb, and
together with the monotonicity property we obtain ck(B) ≤ k clin(B). Therefore

ĉk(B) ≤ k clin(B)

vol(B)1/n
≤ ak. □

In view of Theorem 1.1, it is natural to raise the following question, which for
1-capacities would be answered by the Viterbo conjecture if confirmed.

Question C. For any symplectic k-capacity ck, what are the global maximizers of
the function B 7→ ĉk(B) over the space of convex bodies in Cn?

Simple algebraic computations allow to detect the local and global maximizers
of ĉk over the space of ellipsoids.

Proposition D. Let ck be any symplectic k-capacity on Cn.

(i) The local maximizers of the capacity ratio ĉk on the space of 2n-dimensional
ellipsoids are precisely those rational ellipsoids E such that k ∈ K(E).

(ii) The global maximum of the capacity ratio ĉk on the space of 2n-dimensional
ellipsoids is

max
a

ĉk(E(a)) = (q + 1)
n−r+1

n (q + 2)
r−1
n ,
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where q ≥ 0 and r ∈ {1, ..., n} are integers such that k = qn+ r. The global
maximizers are precisely those rational ellipsoids E(a) of the form

ai
an

=

{
q+1
q+2 , if r > 1 and 1 ≤ i ≤ r − 1,

1 if r ≤ i ≤ n.

One might be tempted to conjecture that each capacity ratio ĉk achieves its
global maximum over the space of ellipsoids. While for k = 1 this is implied by the
Viterbo conjecture, for large k this turns out to be false!

Example 1.2. Proposition D implies that the 4-dimensional ellipsoid maximizing
any k-capacity ratio ĉk is E(

⌈
k
2

⌉
,
⌈
k+1
2

⌉
), and

ĉk
(
E(

⌈
k
2

⌉
,
⌈
k+1
2

⌉
)
)
=

√⌈
k
2

⌉⌈
k+1
2

⌉
,

where ⌈x⌉ = min{y ∈ Z | y ≥ x} denotes the ceiling function. For any k-capacity
ck ∈ {cEH

k , cVk , c
GH
k }, the polydisks P (a, b) = E(a)× E(b) have capacity ratios

ĉk(P (a, b)) = k
min{a, b}√

2ab
,

as it was computed in [EH90,Moa94,GH18], see Example 5.1; in particular P (1, 1)
maximizes all capacity ratios ĉk among 4-dimensional polydisks:

ĉk(P (1, 1)) =
k√
2
.

For k = 2, the maximizer polydisk P (1, 1) and the maximizer ellipsoid E(1, 2) have
the same capacity ratio

ĉ2(P (1, 1)) = ĉ2(E(1, 2)) =
√
2,

whereas for any k ≥ 3 we have

ĉk(P (1, 1)) > ĉk
(
E(

⌈
k
2

⌉
,
⌈
k+1
2

⌉
)
)
, ∀k ≥ 3. □

Example 1.2 suggests that P (1, 1) may have relevant maximality properties for
the higher capacity ratios. This is the case within a suitable class of toric domains
in Cn, which we now introduce. Let S1 ⊂ C be the unit circle in the complex plane,
and consider the action of the torus Tn = S1 × ...× S1 on Cn given by

(eiθ1 , ..., eiθn) · (z1, ..., zn) = (eiθ1z1, ..., e
iθnzn).

A toric domain is a Tn-invariant subset of Cn given by the closure of some non-
empty open set. Any domain Ω ⊂ [0,∞)n is the profile of an associated toric
domain

XΩ :=
{
(z1, ..., zn) ∈ Cn

∣∣ (π|z1|2, ..., π|zn|2) ∈ Ω
}
.

Two classes of toric domains are particularly relevant in symplectic geometry:

• The convex toric domains XΩ, which are those toric domains such that
{(x1, ..., xn) ∈ Rn | (|x1|, ..., |xn|) ∈ Ω} is compact and convex.

• The concave toric domains XΩ, which are those toric domains whose profile
Ω is compact and such that [0,∞)n \ Ω is convex.
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Polydisks P (a) = E(a1) × ... × E(an) are examples of convex toric domains, and
ellipsoids E(a) are the only toric domains that are simultaneously convex and
concave. We stress that “convex” and “concave” here do not refer to the convexity
ofXΩ as a subset of Cn: all convex toric domains are convex subsets of Cn, but some
concave toric domains are convex subsets of Cn as well. In his Ph.D. thesis [Moa94],
Moatty provided combinatorial formulas to compute the Viterbo capacities cVk of
convex or concave toric domains. Analogous formulas were provided by Gutt and
Hutchings [GH18] for their capacities cGH

k .
If B ⊂ Cn is a smooth star-shaped domain, its boundary ∂B admits a canonical

contact form λ|∂B , which is the restriction of the 1-form on Cn given by

λ =
1

2

n∑
j=1

(
xjdyj − yjdxj

)
. (1.2)

Here, x1, y1, ..., xn, yn are the standard Darboux coordinates on Cn. As pointed out
in [GH18], the formulas for convex and concave toric domains hold for all symplectic
k-capacities satisfying the following extra condition:

• (Closed Reeb orbits) For all smooth star-shaped domains B ⊂ Cn such
that (∂B, λ) has non-degenerate closed Reeb orbits, ck(B) is the period of
a closed Reeb orbit with Conley-Zehnder index 2k + n− 1.

Moatty-Gutt-Hutchings’ formulas may be employed to study the global maxi-
mizers of the higher capacity ratios over convex and concave toric domains. The
combinatorics becomes rather involved. We worked out the details in dimension 4.

Proposition E. For any symplectic k-capacity ck on C2 satisfying the extra “closed
Reeb orbits” assumption, the following points hold.

(i) On the space of 4-dimensional concave toric domains, ĉk achieves its global
maximum on the ellipsoid E

(⌈
k
2

⌉
,
⌈
k+1
2

⌉)
.

(ii) On the space of 4-dimensional convex toric domains, ĉk achieves its global
maximum on:
• the round balls E(a, a), a > 0, if k = 1,
• the ellipsoids E(a, 2a) and the polydisks P (a, a), a > 0, if k = 2,
• the polydisks P (a, a), a > 0, if k ≥ 3.

The situation is largely unexplored in higher dimensions. Let P2n := P (1, ..., 1)
be the 2n-dimensional polydisk with parameters all equal to one, and E2n the global
maximizer of ĉk over the space of 2n-dimensional ellipsoids (see Proposition D(ii)).
Simple computations show that there exists a minimal integer κ(n) ≥ 2 such that

ĉk(P2n) > ĉk(E2n), ∀k ≥ κ(n).

Moreover, κ(n)→∞ as n→∞. This raises the following questions.

Question F. For each dimension 2n ≥ 4 and for each k ≥ κ(n), is the polydisk
P2n a global maximizers of the k-capacity ratios ĉk over the space of 2n-dimensional
convex toric domains?

Question G. In some dimension 2n ≥ 4, do there exist arbitrarily large integers
k and 2n-dimensional convex bodies B ⊂ Cn such that ĉk(B) > ĉk(P2n)?
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1.5. Organization of the paper. In Section 2, after recalling the general prop-
erties of the Clarke action functional, we prove that Besse convex bodies are local
maximizers of suitable spectral ratios (Theorem 2.4). In Section 3 we prove that
the Ekeland-Hofer capacities of smooth convex bodies are bounded from above by
the corresponding spectral invariants of the Clarke action functional (Theorem B),
and employ this result and Theorem 2.4 to prove Theorem A. The proof of Theo-
rem B requires some subtle properties of the Fadell-Rabinowitz index that are either
stated under slightly different assumptions or not explicitly stated in the literature,
and we included the details in Appendix A. In Section 4 we prove Proposition D.
Finally, in Section 5, we prove Proposition E.

2. The Clarke action functional

2.1. Smooth convex bodies. Let B ⊂ Cn be a 2n-dimensional smooth convex
body, and as usual we assume that B contains the origin in its interior. We consider
the Hamiltonian h : C2 → [0,∞) that is 2-homogeneous and is identically equal to
1 on the boundary ∂B, i.e.

h(cz) = c2, ∀c ≥ 0, z ∈ ∂B.

Its Hamiltonian vector field is defined as usual by ω(Xh, ·) = dh, where ω = dλ is
the standard symplectic form of Cn, and λ is its primitive (1.2). The Hamiltonian
flow ϕth is 1-homogeneous, i.e. ϕth(cz) = c ϕth(z), and its restriction ϕth|∂B coincides
with the Reeb flow of ∂B (with respect to the canonical contact form λ|∂B). In
particular, there is a one-to-one correspondence between closed Reeb orbits of ∂B
and cylinders of periodic orbits of ϕth. The action spectrum σ(∂B) is the set of
periods of the closed Reeb orbits, i.e.

σ(∂B) =
{
t > 0

∣∣ fix(ϕth) ̸= ∅
}
.

Since the Hamiltonian h has positive definite Hessian everywhere outside the
origin, it admits a Legendre dual h∗ : Cn → [0,∞) given by

h∗(w) = max
z∈Cn

(
⟨w, z⟩ − h(z)

)
, (2.1)

which is also 2-homogeneous. We set S1 = R/Z, and consider the Hilbert space

L2
0(S

1,Cn) =

{
u ∈ L2(S1,Cn)

∣∣∣∣ ∫
S1

u(t) dt = 0

}
.

Its elements are precisely the maps of the form u = γ̇, where γ ∈W 1,2(S1,Cn). We
consider the functionals A : L2

0(S
1,Cn) → R and H : L2

0(S
1,Cn) → [0,∞), given

by

A(γ̇) = 1

2

∫
S1

⟨Jγ(t), γ̇(t)⟩ dt, H(γ̇) =
∫
S1

h∗(−Jγ̇(t)) dt.

Notice that the expression of A involves a primitive of γ̇, but is actually independent
of the choice of such a primitive. The functional A is a non-degenerate quadratic
form, and we consider its positive open cone A−1(0,∞). The circle S1 acts on it
by translation, i.e. t · u = u(t + ·) for all t ∈ S1 and u ∈ A−1(0,∞), and both A
and H are S1-invariant.
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The Clarke action functional Ψ̃ : A−1(0,∞)→ (0,∞) is defined by

Ψ̃(u) =
H(u)
A(u)

.

Let us summarize its properties (and refer the reader to Ekeland-Hofer’s [EH87] for
a proof of the non-trivial ones):

• (C∗-invariance) It is 0-homogeneous and S1-invariant, i.e. Ψ̃(cu) = Ψ̃(u) =

Ψ̃(t ·u) for all c > 0, t ∈ S1, and u ∈ A−1(0,∞). Overall, Ψ̃ is C∗-invariant,
where C∗ = C \ {0} ≡ (0,∞)× S1.

• (Regularity) It has the same regularity as H: it is C1,1 and admits a
Hessian in the sense of Gateaux at every point.

• (Clarke variational principle) There is a one-to-one correspondence

crit(Ψ̃) ∩ Ψ̃−1(τ)
1:1←→ fix(ϕτh)

uz ←→ z

where uz(t) =
d
dtϕ

τt
H (z) and, conversely, z = τ−1∇h∗(−Juz(0)).

• (Morse indices) The Morse index and nullity3 of any critical point uz ∈
crit(Ψ̃) ∩ Ψ̃−1(τ) are finite. Indeed, the Morse index is equal (up to a
conventional additive constant) to the Maslov index of the associated τ -
periodic orbit t 7→ ϕth(z), and the nullity is equal to dimker(dϕτh(z)−I)−2.

• (Palais-Smale condition) Being 0-homogeneous, Ψ̃ cannot satisfy the
Palais-Smale condition. Nevertheless, let V be the rescaled version of the

anti-gradient of Ψ̃ given by

V (u) := −∥u∥L2∇Ψ̃(u),

whose flow gt : A−1(0,∞) → A−1(0,∞) is 1-homogeneous and preserves
the L2 norm, i.e. d

dt∥gt(u)∥L2 = 0. On an L2-sphere of any radius r > 0, the

Clarke action functional Ψ̃ satisfies the Palais-Smale condition with respect
to V : any sequence uk ∈ A−1(0,∞) such that V (uk)→ 0, ∥uk∥L2 = r, and

sup Ψ̃(uk) <∞ admits a converging subsequence.

Due to its 0-homogeneity, in the literature the Clarke action functional Ψ̃ usually
appears restricted to S1-invariant hypersurfaces of A−1(0,∞) transverse to the
radial directions: for instance A−1(1) or H−1(1). In this paper, we equivalently

restrict Ψ̃ to the smooth hypersurface Λ =
{
u ∈ A−1(0,∞)

∣∣ ∥u∥L2 = 1
}
, and

denote the restriction by

Ψ := Ψ̃|Λ.

We still call Ψ the Clarke action functional. Clearly, Ψ is S1-invariant, and we have

S1 ·u ⊂ crit(Ψ)∩Ψ−1(τ) if and only if C∗ ·u ⊂ crit(Ψ̃)∩Ψ̃−1(τ). Overall, Ψ satisfies
the classical properties required by S1-equivariant Morse theory, except for its lack
of C2 regularity, which nevertheless will be easily circumvented later on.

3Here, we keep into account the C∗-invariance of Ψ̃: the nullity of a critical point u of Ψ̃ is

defined as dimker(d2Ψ̃(u))− 2.
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2.2. Spectral invariants. In their seminal work [EH87], Ekeland and Hofer intro-
duced and studied spectral invariants for the Clarke action functional. We briefly
recall the construction.

Consider the subspace Λ+ given by all u ∈ Λ having the form

u(t) =

∞∑
k=1

ei2πktuk,

for some uk ∈ Cn. Notice that Λ+ is the unit sphere of an infinite dimensional
Hilbert subspace of L2

0(S
1,Cn), and is S1-invariant. Since Λ+ is contractible, the

Gysin sequence of the S1-bundle Λ+×ES1 → Λ+×S1 ES1 readily implies that its
S1-equivariant cohomology with rational coefficients is given byH∗

S1(Λ+;Q) = Q[e],
where e is a generator of H2

S1(Λ+;Q) ∼= Q. From now on, all cohomology rings will
be assume to have rational coefficients, and we will suppress Q from the notation.
The inclusion Λ+ ↪→ Λ is an S1-equivariant homotopy equivalence, and therefore
induces a ring isomorphism in S1-equivariant cohomology. Summing up, we have

H∗
S1(Λ) = Q[e],

where e now denotes a generator of H2
S1(Λ) ∼= Q. In particular, ek ̸= 0 in H∗

S1(Λ)
for all k ≥ 0; in terms of the Fadell-Rabinowitz index (see Appendix A), this means
indFR(Λ) =∞.

For each k ≥ 1, the k-th spectral invariant of the smooth convex body B is
defined by

sk(B) := inf
{
c > 0

∣∣ indFR({Ψ < c}) ≥ k
}
,

where {Ψ < τ} denotes the sublevel set Ψ−1(0, τ). We recall some classical prop-
erties of these values:

• (Spectrality) Every sk(B) is a critical value of the Clarke action functional
associated with B, that is, an element of the action spectrum σ(∂B).

• (Systole) s1(B) = minΨ = minσ(∂B).

• (Lusternik-Schnirelmann) For all k ≥ 1 we have sk(B) ≤ sk+1(B). If
sk(B) = sk+j(B) for some j ≥ 1, then indFR(U) > j for any S1-invariant
neighborhood U ⊂ Λ of crit(Ψ) ∩Ψ−1(sk(B)).

• (C0 continuity) For any sequence of smooth convex bodies Bj converging
to a smooth convex body B in the C0 topology, we have sk(Bj)→ sk(B).

2.3. Finite dimensional reduction. The C1,1 regularity of the Clarke action
functional Ψ is not sufficient to apply those results of Morse theory involving the
Hessian, such as the Morse lemma. Nevertheless, Ψ becomes smooth as soon as
one restricts it to the subspace of W 1,2 curves that do not go through the origin
of Cn. With such restriction, however, one looses compactness properties such
as the Palais-Smale condition. In order to both improve the regularity of Ψ and
retain the compactness properties, we will apply the finite dimensional reduction
introduced by Ekeland and Hofer, which we now briefly recall. We refer the reader
to [EH87, Sec. II.2] for the proofs.

Let b > minΨ be a fixed value, and let us focus on the sublevel set {Ψ < b} of
the Clarke action functional. For each integer N ≥ 1, let F = FN ⊂ L2

0(S
1,Cn) be
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the S1-invariant finite dimensional Hilbert subspace given by those u ∈ L2
0(S

1,Cn)
of the form

u(t) =
∑

0<|k|≤N

ei2πktuk,

where uk ∈ Cn. We consider the open subset V = {u ∈ F | Wu ̸= ∅}, where

Wu :=
{
v ∈ F⊥ ∣∣ A(u+ v) > 0, Ψ̃(u+ v) < b

}
.

The function Wu → (0,∞), v 7→ Ψ̃(u + v) has a unique non-degenerate global
minimizer ν(u) ∈ F⊥. We denote by S ⊂ F the unit sphere of the Hilbert space
F , and set U := V ∩ S. The reduced Clarke action functional is defined as

ψ : U → (0, b), ψ(u) = Ψ̃(u+ ν(u)) = Ψ(ι(u)),

where

ι : U ↪→ Λ, ι(u) :=
u+ ν(u)

∥u+ ν(u)∥L2

.

The properties of this finite dimensional setting are the following.

• (S1-invariance) The map ν is C∗-equivariant, and therefore the reduced
Clarke action functional ψ is S1-invariant.

• (Critical points) Both ν and ψ are C1,1, and there is a one-to-one corre-
spondence

crit(ψ)
1:1←→ crit(Ψ) ∩Ψ−1(0, b)

u ←→ ι(u).

Both ν, ψ, and the S1 action are smooth on a sufficiently small neighbor-
hood of the critical set crit(ψ). Moreover, at every u ∈ crit(ψ), the Hessians
d2ψ(u) and d2Ψ(ι(u)) have the same Morse index and the same nullity.

• (Compactness) For each c ∈ (0, b), the closed sublevel set {ψ ≤ c} is
compact.

• (Approximation) For each a ∈ (0, b), the map ι : {ψ < a} ↪→ {Ψ < a} is
an S1-equivariant homotopy equivalence.

2.4. Besse convex bodies. We say that a 2n-dimensional smooth convex body
B is Besse when its boundary ∂B, equipped with the canonical contact form λ|∂B
of Equation (1.2), is a Besse contact manifold: all its Reeb orbits are closed, and
therefore have a common period according to a theorem of Wadsley [Wad75]. A
theorem of Ginzburg, Gürel, and Mazzucchelli [GGM21] implies that the Besse
property is detected by the spectral invariants:

• (Spectral characterization) We have c := sk(B) = sk+n−1(B) for some
k ≥ 1 if and only if B is Besse, and c is a common period for the Reeb
orbits on ∂B (i.e. ϕch = id, where h : Cn → [0,∞) is the 2-homogeneous
Hamiltonian such that h−1(1) = ∂B). In this case, the critical manifold
crit(Ψ) ∩ Ψ−1(c) has Morse index 2k − 2 and nullity 2n − 2. Moreover,
c < sk+n(B) and, when k ≥ 2, c > sk−1(B).
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The Clarke action functional Ψ associated with a Besse convex body B also sat-
isfies the following properties, which were established by Mazzucchelli and Radeschi
[MR23]. Analogous properties in the different setting of geodesic flows were estab-
lished earlier by Radeschi and Wilkings [RW17].

• (Critical manifolds) For each c ∈ σ(∂B), the critical manifold

K := crit(Ψ) ∩Ψ−1(c) ∼= fix(ϕch|∂B)

is a non-degenerate (i.e. ker d2Ψ(u) = TuK for all u ∈ K), connected, odd
dimensional, rational homology sphere.

• (Perfectness) The Clarke action functional Ψ is perfect for the S1-equi-
variant Morse theory with rational coefficients: for each a < b the inclusions
induce short exact sequences

0→ H∗
S1({Ψ < b}, {Ψ < a})→ H∗

S1({Ψ < b})→ H∗
S1({Ψ < a})→ 0.

Remark 2.1. For a rational ellipsoid E (which is a Besse convex body) the per-
fectness of the associated Clarke action functional, together with the Lusternik-
Schnirelmann property, readily implies that sk(E) = cEH

k (E) for all k ≥ 1. Since
a 7→ sk(E(a)) and a 7→ cEH

k (E(a)) are continuous, the latter identity holds for
irrational ellipsoids as well. □

In order to prove our main Theorem A, we shall prove analogous statements
for the spectral invariants sk(B): Theorems 2.4 and, ultimately, 3.11. A crucial
ingredient for these statements is the following perturbation result for the spectral
invariants. We recall that two 2n-dimensional smooth convex bodies B0 and B1

are Ck-close if their boundaries are Ck-close embedded hypersurfaces of Cn.

Lemma 2.2. Let B0 be a 2n-dimensional Besse convex body, k ≥ 1 an integer such
that sk(B0) = sk+n−1(B0), and [a, b] a compact neighborhood of sk(B0) such that
[a, b] ∩ σ(∂B0) = sk(B0). Then, for any smooth convex body B1 that is sufficiently
C2-close to B0, we have

sk(B1) = min
(
σ(∂B1) ∩ [a, b]

)
.

Proof of Lemma 2.2. The statement is straightforward when k = 1. Indeed, B 7→
sk(B) is a continuous function with respect to the C0 topology on the space of
smooth convex bodies, and s1(B) = minσ(∂B) for each smooth convex body B.
From here on, we shall assume k ≥ 2.

Let h0 : Cn → [0,∞) be the 2-homogeneous Hamiltonian such that h−1
0 (1) =

∂B0, and Ψ0 : Λ → (0,∞) the corresponding Clarke action functional. Consider
the critical value c := sk(B0) = sk+n−1(B0). The spectral Besse characterization
implies that the critical manifold K := crit(Ψ0) ∩ Ψ−1

0 (c) is diffeomorphic to ∂B0,
non-degenerate, and with Morse index d := 2k − 2.

Let [a, b] be a compact neighborhood of c such that [a, b] ∩ σ(∂B0) = c, and
consider the reduced Clarke action functional ψ0 = Ψ0 ◦ ι0 : U0 → (0,∞), where
the reduction is chosen so that ψ0 approximates Ψ0 up to a level larger than b (see
Section 2.3). We denote by K := ι−1

0 (K) = crit(ψ0) ∩ ψ−1
0 (c) the corresponding

critical manifold of ψ0, and recall that K and K have the same Morse index d. The
normal bundle N ⊂ TU0|K of K admits an S1-invariant splitting N = N+ ⊕ N−

such that ±d2ψ0(u) is positive definite on N±
u for each u ∈ K. The rank of N−

is the Morse index d. For each u ∈ K and r > 0, we denote by D±
u (r) ⊂ N±

u
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the closed ball of radius r centered at the origin, measured with the Riemannian
metric of U0. The union D±(r) := ∪u∈KD±

u (r) is the closed neighborhood of
radius r of the zero-section. By the Morse-Bott lemma, there exists a closed S1-
invariant neighborhood D ⊂ U0 of K small enough so that ψ0|D is smooth, and
an S1-equivariant diffeomorphism identifying D ≡ D+(r+) ⊕ D−(r−), for some
r− > r+ > 0, so that K is identified with the zero-section and

ψ0|D(u;x, y) = c+ ∥x∥2 − ∥y∥2, ∀u ∈ K, x ∈ D+
u (r+), y ∈ D−

u (r−).

In these local coordinates, we have ∂2yyψ0|D ≡ −I. We require the radius r+ to be
small enough so that

max
D

ψ0 = c+ r2+ < b.

From now on, in order to simplify the notation, we simply write D± = D±(r±).
Since B is Besse, Ψ0 is perfect for the S1-equivariant Morse theory with rational

coefficients, and so is ψ0 thanks to its approximation property (see Section 2.3).
Therefore, the embedding ι0 : U0 → Λ induces an isomomorphism

ι∗0 : Hd
S1(Λ, {Ψ0 < c})

∼=−−→Hd
S1(D−, ∂D−).

Since K is simply connected, the negative normal bundle N− → K is orientable,
and therefore the inclusion and Thom isomorphism give

Hd
S1(D−, ∂D−)

∼=−−→Hd
S1(D−|S1·u, ∂D

−|S1·u) ∼= H0
S1(S1 · u) ∼= Q,

∀u ∈ K.

We consider the product S1 ×D−
u equipped with the S1-action inherited from the

first factor. For each u ∈ K and x ∈ D+
u , we consider the S1-equivariant map

jx : S1 ×D−
u → D, jx(t, y) = t · (u;x, y),

which depends continuously on x. For x = 0, the map j0 is an m-fold covering map
onto D−|S1·u, where m ≥ 1 is the order of iteration of u, i.e. the largest integer m
such that 1

m · u = u. Moreover, ψ0 ◦ jx|S1◦∂D−
u
≤ c + r2+ − r2− < c. Therefore, the

compositions ι0,x := ι0 ◦ jx induce the isomomorphisms

ι∗0,x = ι∗0,0 : Hd
S1(Λ, {Ψ0 < c})

∼=−−→Hd
S1(S1 ×D−

u , S
1 × ∂D−

u ). (2.2)

We fix ϵ > 0 small enough so that

(i) [(1− ϵ)3c, (1− ϵ)−2c] ⊂ [a, b].

(ii) c+ r2+ − r2− < (1− ϵ)2c.
We consider a 2-homogeneous Hamiltonian h1 : Cn → [0,∞) such that

δ := ∥h1 − h0∥C2(B0\{0})

is sufficiently small. Namely, B1 := h−1
1 [0, 1] is a convex body C2-close to B0. For

each s ∈ [0, 1], the convex combinations hs := sh1 + (1 − s)h0 define the convex
bodies Bs := h−1

s [0, 1] interpolating between B0 and B1. We require δ ≤ ϵ, so that

(1− ϵ)hs ≤ h0 ≤ (1− ϵ)−1hs, ∀s ∈ [0, 1], (2.3)

We denote by Ψs : Λ→ (0,∞) the Clarke action functional associated with hs, and
ψs = Ψs ◦ ιs : Us → (0,∞) its finite dimensional reduction. Up to choosing δ small
enough, we can insure that all the domains Us are open subsets of the same finite
dimensional vector subspace of L2

0(S
1;Cn) and contain the compact set D. The
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dual Hamiltonians h∗s satisfy inequalities analogous to (2.3), and so do the Clarke
action functionals Ψs, i.e.

(1− ϵ)Ψs ≤ Ψ0 ≤ (1− ϵ)−1Ψs, ∀s ∈ [0, 1]. (2.4)

We require δ to be small enough so that, for each s ∈ [0, 1], we have:

(iii) σ(∂Bs) ∩ [a, b] = σ(∂Bs) ∩ [(1− ϵ)c, (1− ϵ)−1c];

(iv) ψs|D is smooth and C2-close to ψ0, and in particular ψs|D ≤ (1−ϵ)−1ψ0|D,
and ∂2yyψs is negative definite at all points of D.

(v) crit(ψs) ∩ ψ−1
s [a, b] ⊂ D.

The inequalities (2.4) imply that we have the inclusions of sublevel sets{
Ψs < (1− ϵ)3c

}
↪→

{
Ψ0 < (1− ϵ)2c

}
↪→

{
Ψs < (1− ϵ)c

}
↪→

{
Ψ0 < c

}
. (2.5)

Notice that
[
(1−ϵ)3c, (1−ϵ)c

)
is an interval of regular values of Ψs, and

[
(1−ϵ)2c, c

)
is an interval of regular values of Ψ0, according to properties (i) and (iii). Therefore,
the composition of any two subsequent inclusions in (2.5) is an S1-equivariant
homotopy equivalence. This implies that each of the inclusions in (2.5) induces an
isomorphism in S1-equivariant cohomology, in particular the last one:

H∗
S1({Ψ0 < c})

∼=−−→H∗
S1({Ψs < (1− ϵ)c}). (2.6)

The inequalities (2.4) and property (i) further imply that we have inclusions

{Ψ0 ≤ c} ↪→ {Ψs ≤ (1− ϵ)−1c} ↪→ {Ψ0 ≤ b},

and since their composition is an S1-equivariant homotopy equivalence, the second
inclusion induces an injective homomorphism

H∗
S1({Ψ0 ≤ b}) ↪→ H∗

S1({Ψs ≤ (1− ϵ)−1c}). (2.7)

Equations (2.6) and (2.7) imply that

sk(∂B1) ∈
[
(1− ϵ)c, (1− ϵ)−1c

)
.

In particular,
[
(1−ϵ)c, (1−ϵ)−1c

)
contains some critical values of the Clarke action

functional Ψ1, and we denote the smallest one by

c1 := min
(
σ(∂B1) ∩ [a, b]

)
∈ [(1− ϵ)c, (1− ϵ)−1c].

For each s ∈ [0, 1] and x ∈ D+
u , properties (ii) and (iv) imply

ψs ◦ jx|S1×∂D−
u
≤ (1− ϵ)−1ψ0 ◦ jx|S1×∂D−

u

≤ (1− ϵ)−1(c+ r2+ − r2−)
< (1− ϵ)c.

Therefore, if we denote ιs,x := ιs ◦ jx, we have

ιs,x(S
1 × ∂D−

u ) ⊂ {Ψs < (1− ϵ)c} ⊂ {Ψ0 < c}.
Since ιs,x depends continuously on s and x, it induces the same isomorphism as in
(2.2) in relative cohomology, i.e.

ι∗s,x = ι∗0,0 : Hd
S1(Λ, {Ψ0 < c})

∼=−−→Hd
S1(S1 ×D−

u , S
1 × ∂D−

u ). (2.8)

We consider a critical circle S1 · p ∈ crit(ψ1)∩ψ−1
1 (c1). Property (v) guarantees

that S1 · p ⊂ D, and therefore we can write p as

p = (u;x, y) ∈ D+ ⊕D− ≡ D.
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Property (iv) implies that the restriction ψ1|{x}⊕D−
u

is a strictly concave function

with a unique maximizer at y. Therefore

ι1,x(S
1 ×D−

u ) ⊂ {Ψ1 ≤ c1}.

Therefore, the isomomorphism (2.8) factors as

Hd
S1(Λ, {Ψ0 < c}) Hd

S1(S1 ×D−
u , S

1 × ∂D−
u )

Hd
S1({Ψ1 ≤ c1}, {Ψ1 ≤ (1− ϵ)c})

ι∗s,x
∼=

i∗
ι∗s,x

where i∗ is induced by the inclusion. The diagram implies that i∗ is injective.
Finally, consider the following commutative diagram, whose rows are parts of long
exact sequences of inclusions, and whose vertical homomorphisms are induced by
inclusions:

Hd−1
S1 ({Ψ0 < c}) Hd

S1(Λ, {Ψ0 < c}) Hd
S1(Λ)

Hd−1
S1 ({Ψ1 < (1− ϵ)c}) Hd

S1({Ψ1 ≤ c1}, {Ψ1 < (1− ϵ)c}) Hd
S1({Ψ1 ≤ c1})

∂∗=0

∼=

l∗

i∗ j∗

∂∗ m∗

The cohomology class ek−1 ∈ Hd
S1(Λ) belongs to the image of l∗, since c = sk(∂B0).

Let f ∈ Hd
S1(Λ, {Ψ0 < c}) be the non-zero cohomology class such that l∗f = ek−1.

The diagram readily implies that the connecting homomorphism ∂∗ on the bottom
line is the zero homomorphism, namely that m∗ is injective. Therefore,

j∗ek−1 = m∗i∗f ̸= 0,

which implies sk(∂B1) ≤ c1. Since sk(∂B1) ∈
[
(1 − ϵ)c, (1 − ϵ)−1c

)
, and since

c1 is the smaller critical value of Ψ1 in
[
(1 − ϵ)c, (1 − ϵ)−1c

)
, we conclude that

sk(∂B1) = c1. □

2.5. Local maximizers of the spectral ratio. From now on, we will focus on
dimension 4. Let B be a 4-dimensional smooth convex body, h : C2 → [0,∞)
the 2-homogeneous Hamiltonian such that h−1(1) = ∂B, and Ψ : Λ → (0,∞) the
associated Clarke action functional. We denote by τk(B) the infimum of the values
τ > 0 such that crit(Ψ) ∩Ψ−1(0, τ) contains at least k critical circles. In terms of
the Hamiltonian flow ϕth, this can be expressed as

τk(B) := inf

{
τ > 0

∣∣∣∣ ∑
t∈(0,τ ]

#
(

fix(ϕt
h)\{0}
∼

)
≥ k

}
,

where ∼ is the equivalence relation identifying z ∼ c ϕth(z) for all t ∈ R and c > 0.
Assume that B is Besse. We denote by τ(B) the minimal common period of the

closed Reeb orbit on ∂B, namely the minimal t > 0 such that ϕth = id. The critical
set crit(Ψ)∩Ψ−1(0, τ(B)) consists of a finite union of non-degenerate critical circles
(indeed, since B is symplectomorphic to an ellipsoid according to the forthcoming
Proposition 3.6, at most two critical circles). More generally, for each integerm ≥ 1,
crit(Ψ) ∩ Ψ−1(mτ(B), (m + 1)τ(B)) consists of a finite union of non-degenerate
critical circles: the suitable iterates of the critical circles in crit(Ψ)∩Ψ−1(0, τ(B)).
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Since the Clarke action functional Ψ is perfect, every critical value of Ψ is equal to
some spectral invariant sk(B), i.e.

σ(∂B) =
{
sk(B)

∣∣ k ≥ 1
}
.

For all integers m ≥ 1, we define

km = km(B) := min
{
k ≥ 1

∣∣ sk(B) = mτ(B)
}
.

If k1 ≥ 2, for each k ∈ {1, ..., k1 − 1} the critical set crit(Ψ) ∩ Ψ−1(sk(B)) is a
single non-degenerate critical circle. Therefore, the perfectness and the Lusternik-
Schinerlmann property of Ψ imply that

sk(B) = τk(B), ∀k ∈ {1, ..., k1}. (2.9)

Moreover, the spectral characterization of Besse convex bodies (see Section 2.4)
implies that skm(B) = skm+1(B) < skm+2(B) and, if km > 1, skm−1(B) < skm(B).
We define

K(B) :=
{
km(B)

∣∣ m ≥ 1
}
.

Lemma 2.3. Let B0 be a 4-dimensional Besse convex body, and m ≥ 1 an integer.
For each smooth convex body B1 that is sufficiently C2-close to B0, we have

skm(B0)(B1) ≤ mτk1(B0)(B1).

Proof. Fix an integer m ≥ 1, and consider k1 = k1(B0) and km = km(B0). Let
[a, b] ⊂ (0,∞) be a compact neighborhood of skm(B0) that is small enough so that

σ(∂B0) ∩ [a, b] = {skm(B0)}.

Let ϵ > 0 be small enough so that m(sk1(B0)− ϵ) ≥ a. Let Ψ be the Clarke action
functional associated with B0. Since crit(Ψ) ∩ Ψ−1(τk(B0)) is a non-degenerate
critical circle for each k ∈ {1, ..., k1 − 1}, any smooth convex body B1 that is
sufficiently C2-close to B0 satisfies

|τk(B1)− τk(B0)| < ϵ, ∀k ∈ {1, ..., k1}.

This, together with (2.9), implies τk1(B1) > sk1(B0)− ϵ, and therefore

mτk1(B1) ≥ a.

By Lemma 2.2, we have

skm(B1) = min
(
σ(∂B1) ∩ [a, b]

)
.

Since mτk1(B1) ∈ σ(∂B1), we conclude skm(B1) ≤ mτk1(B1). □

We can finally prove the main result of this section. For each k ≥ 1 and for each
4-dimensional smooth convex body B ⊂ Cn, we set

τ̂k(B) =
τk(B)

vol(B)1/2
, ŝk(B) =

sk(B)

vol(B)1/2
,

where the volume vol(B) = vol(B,ω) is obtained by integrating ω ∧ ω.

Theorem 2.4. Let B0 be a 4-dimensional Besse convex body. For each integer
k ∈ K(B0), any smooth convex body B1 that is sufficiently C3-close to B0 satisfies
ŝk(B1) ≤ ŝk(B0).
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Proof. Consider the integers km = km(B0) associated with B0. The spectral in-
variants skm(B0) are given by

skm(B0) = mτk1(B0).

A theorem of Abbondandolo, Lange, and Mazzucchelli [ALM22], extending an ear-
lier theorem due to Abbondandolo, Bramham, Hryniewicz, and Salomao [ABHS18]
for the special case k1 = 1, implies that any smooth convex body B1 that is suffi-
ciently C3-close to B0 satisfies

τ̂k1(B1) ≤ τ̂k1(B0).

Fix an integer m ≥ 1. By Lemma 2.3, if B1 is sufficiently C2-close to B0, we have

skm(B1) ≤ mτk1(B1).

Overall, we proved that ŝkm(B1) ≤ ŝkm(B0) for each smooth convex body B1 that
is sufficiently C3-close to B0. □

In Theorem 3.11 at the end of Section 3.3, we will strengthen this theorem and
fully characterize the local maximizers of the spectral ratios ŝk.

3. The Ekeland-Hofer capacities

3.1. Definition of the capacities. We begin by briefly recalling Ekeland and
Hofer’s construction [EH89, EH90] of their symplectic capacities. The functional
setting involves the Sobolev space E := W 1/2,2(S1,Cn), which is the space of all
periodic curves γ : S1 → Cn of the form

γ(t) =
∑
k∈Z

ei2πktγk,

where γk ∈ Cn, such that

∥γ∥2E :=
∑
k∈Z

|k| · ∥γk∥2 <∞.

The circle S1 acts on E by translations, i.e. t ·γ = γ(t+ ·) for all t ∈ S1 and γ ∈ E.
The Sobolev space E admits an orthogonal direct sum decomposition

E = E− ⊕ E0 ⊕ E+, (3.1)

where E± consists of the γ such that γk = 0 for all ∓k ≥ 0, and E0 consists of the
constants γ ≡ γ0. We consider the quadratic form a : E → R given by

a(γ) = π
∑
k∈Z

k ∥γk∥2.

On the dense subspace W 1,2(S1,Cn) ⊂ E, this quadratic form is related to the
quadratic form A : L2

0(S
1,Cn)→ R employed in the previous section by

a(γ) = A(γ̇).

The Hamiltonians involved in Ekeland-Hofer’s setting are non-negative smooth
functions of the form H : Cn → [0,∞) that vanish on some non-empty open subset
of Cn and have the form H(z) = r∥z∥2 outside a compact set, for some r > π that
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is not a multiple of π; we briefly refer to such H as to admissible Hamiltonians.
The associated Hamiltonian action functional ΦH : E → R, given by

ΦH(γ) = a(γ)−
∫ 1

0

H(γ(t)) dt,

is C∞, S1-invariant, satisfies the Palais-Smale condition, and its critical circles
S1 · γ are precisely the circles of curves of the form γ(t) = ϕtH(γ(0)), where ϕtH is
the Hamiltonian flow of H. However, unlike for the Clarke action functional, the
critical circles of ΦH have infinite Morse index.

A preliminary step to construct the Ekeland-Hofer capacities consists in defining
suitable spectral invariants for ΦH . Since all Morse indices are infinite, the recipe is
not an ordinary min-max, but a more sophisticated linking argument. We write each
element of E as γ = γ−+ γ0+ γ+ according to the orthogonal decomposition (3.1).
Let D be the group of those S1-equivariant homeomorphisms Θ : E → E of the
form

Θ(γ) = eθ−(γ)γ− + γ0 + eθ+(γ)γ+ +K(γ), (3.2)

where θ± : E → R and K : E → E are continuous S1-invariant maps that send
bounded sets to precompact sets, vanish on the sublevel set {a ≤ 0}, and vanish
as well outside a ball of sufficiently large radius in E. Let S+ be the unit-sphere of
the Hilbert subspace E+ ⊂ E. The Ekeland-Hofer index of an S1-invariant subset
V ⊂ E is defined as

indEH(V) = inf
Θ∈D

inf
U

indFR(U),

where the inner infimum ranges over all S1-invariant open subsets U ⊂ E containing
V ∩Θ(S+). For each integer k ≥ 1, we define the k-th spectral invariant associated
with the Ekeland-Hofer index as

cEH
k (H) := inf

{
c ∈ R

∣∣ indEH({ΦH < c}) ≥ k
}
.

These values satisfy the following properties:

• (Finiteness) We have cEH
1 (H) ≤ cEH

2 (H) ≤ ... ≤ cEH
nk (H) < ∞ for all

Hamiltonians H ∈ F(B) such that H(z) > kπ∥z∥2 outside a compact set.
From now on, whenever we write cEH

k (H) we implicitly assume that H
satisfies this latter condition.

• (Positivity) cEH
1 (H) > 0.

• (Spectrality) Every cEH
k (H) is a critical value of the Hamiltonian action

functional ΦH .

• (Monotonicity) If H1 ≤ H2 pointwise, then cEH
k (H1) ≥ cEH

k (H2).

For a bounded subset B ⊂ Cn, we denote by F(B) the family of admissible
Hamiltonians H : Cn → [0,∞) vanishing on some neighborhood of the closure B.
The k-th Ekeland-Hofer capacity of B is defined as

cEH
k (B) = inf

H∈F(B)
cEH
k (H).

For an unbounded subset U ⊂ Cn, the k-th Ekeland-Hofer capacity cEH
k (U) is

defined as the supremum of cEH
k (B) over all bounded subsets B ⊂ U . The cEH

k ’s
satisfy the monotonicity, conformality, and normalization properties of symplectic
k-capacities (see Section 1.2).
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Throughout this section, in order to simplify the notation, we shall denote the
Ekeland-Hofer spectral invariants and capacities cEH

k simply by ck.

3.2. Capacities vs spectral invariants. We say that a closed hypersurface N ⊂
Cn is of restricted contact type when there exists a primitive ν of the standard
symplectic form ω of Cn such that ν|N is a contact form. Notice that the action
spectrum σ(N), which is the collection of the periods of the closed Reeb orbits of
(N, ν), is independent of the specific choice of the primitive ν. Ekeland and Hofer
[EH90, Prop. 2] established the following remarkable facts.

• (Hausdorff continuity) The functions B 7→ ck(B) are continuous over
the space of connected compact domains B ⊂ Cn with smooth restricted
contact type boundary, endowed with the topology induced by the Haus-
dorff distance.

• (Spectrality) For each connected compact subset B ⊂ Cn with smooth
restricted contact type boundary, we have ck(B) ∈ σ(∂B).

Notice in particular that, if B ⊂ Cn is a smooth convex body, both the Ekeland-
Hofer capacities ck(B) and the spectral invariants sk(B) (see Section 2.2) are ele-
ments of the action spectrum σ(∂B). A result of Sikorav [Sik90, Section 6.5] shows
that these invariants coincide for k = 1, i.e.

c1(B) = s1(B) = minσ(∂B). (3.3)

It is not known whether ck(B) = sk(B) for k ≥ 2 as well. In this section, we prove
that at least the inequalities ck(B) ≤ sk(B) hold for all k ≥ 2, which was stated
as Theorem B in Section 1.3. The proof is technical, and will take the rest of this
subsection. A reader mainly interested in the applications may skip it and proceed
directly to the next Section 3.3.

Let B ⊂ Cn be a smooth convex body, h : Cn → [0,∞) be the 2-homogeneous

Hamiltonian such that h−1(1) = ∂B, Ψ̃ = H/A : A−1(0,∞) → (0,∞) the asso-

ciated (unrestricted) Clarke action functional, and Ψ = Ψ̃|Λ its restriction. The
following lemma is extracted from the arguments in [Sik90, Sec. 6.5].

Lemma 3.1. For each γ ∈ W 1,2(S1,Cn) ∩ a−1(0,∞) and ζ ∈ E− ⊕ E0 ⊕Rγ, we
have

a(ζ) ≤ Ψ̃(γ̇)

∫
S1

h(ζ(t)) dt.

Proof. Since a(γ) > 0 and a|E−⊕E0
≤ 0, the polynomial

c 7→ a(ζ + cγ) = a(ζ) + c ⟨Jζ, γ̇⟩L2 + c2a(γ)

has at least one root. Therefore its discriminant is non-negative, i.e.

a(γ)a(ζ) ≤
⟨Jζ, γ̇⟩2L2

4
(3.4)

The dual Hamiltonian h∗, defined by (2.1), satisfies the Fenchel inequality

h(z) + h∗(w) ≥ ⟨w, z⟩.

Therefore, for each c > 0, we have

c2H(γ̇) = H(cγ̇) =
∫
S1

h∗(−Jcγ̇) dt ≥ c ⟨Jζ, γ̇⟩L2 −
∫
S1

h(ζ) dt,
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that is,

c ⟨Jζ, γ̇⟩L2 − c2H(γ̇) ≤
∫
S1

h(ζ) dt.

The left-hand side is maximal for c = 1
2 ⟨Jζ, γ̇⟩L2H(γ̇)−1, and we obtain the estimate

⟨Jζ, γ̇⟩2L2

4
≤ H(γ̇)

∫
S1

h(ζ) dt.

This, together with (3.4), implies the lemma. □

The Hilbert spaces L2
0(S

1,C) and E admit the S1 action by time-translations,
and the R+ = (0,∞) action by scalar multiplication. Overall, they thus admit an
action of C∗ ≡ R+×S1. We introduce the C∗-equivariant injective continuous map

i : L2
0(S

1,Cn)→ E− ⊕ E+, i(γ̇) = γ −
∫
S1

γ(t) dt.

For each c > minσ(∂B) we consider the c-sublevel sets of the unrestricted and
restricted Clarke action functionals, which are related by

{Ψ̃ ≤ c} = R+{Ψ ≤ c}.

The inclusion {Ψ ≤ c} ↪→ {Ψ̃ ≤ c} is an S1-equivariant homotopy equivalence, and
therefore

indFR({Ψ̃ ≤ c}) = indFR({Ψ ≤ c}).
We set

Uc := i
(
{Ψ̃ ≤ c}

)
⊂ (E− ⊕ E+) \ E−.

Lemma 3.2. For all ϵ > 0 there exists an admissible Hamiltonian H ∈ F(B) such
that

sup
E−⊕E0⊕Uc

ΦH ≤ c+ ϵ.

Proof. Since B = h−1[0, 1], we can choose an admissible Hamiltonian H ∈ F(B)
such that H ≥ c h− c− ϵ. For each ζ ∈ E− ⊕ E0 ⊕ Uc, Lemma 3.1 implies

ΦH(ζ) = a(ζ)−
∫
S1

H(ζ) dt < c

∫
S1

h(ζ) dt−
∫
S1

H(ζ) dt ≤ c+ ϵ. □

For any integer N ≥ 0, we introduce the finite dimensional Hilbert subspace
FN ⊂ E of all periodic curves γ ∈ E of the form

γ(t) =
∑

|k|≤N

ei2πktγk. (3.5)

We denote by ΠN : E → FN the orthogonal projection.

Lemma 3.3. For each c > minσ(∂B) there exists Nc ≥ 1 such that

ΠN (Uc) ∩ E− = ∅, ∀N ≥ Nc.

Proof. Consider an arbitrary γ ∈ W 1,2(S1,Cn) such that γ0 = 0, a(γ) > 0 and
ΠNγ ∈ E−. This latter condition implies

a(γ) = a(ΠNγ)︸ ︷︷ ︸
≤0

+a((id−ΠN )γ) ≤ a((id−ΠN )γ) ≤ π
∑
k>N

k∥γk∥2. (3.6)
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Consider the constant

r := inf
w∈Cn\{0}

h∗(w)

∥w∥2
> 0,

which we employ to bound

H(γ̇) ≥ r∥γ̇∥2L2 ≥ r
∑
k>N

4π2k2∥γk∥2 ≥ 4π2rN
∑
k>N

k∥γk∥2. (3.7)

The estimates (3.6) and (3.7) imply

Ψ̃(γ̇) =
H(γ̇)
a(γ)

≥ 4πrN,

and the desired quantity of the lemma can be set to Nc := c/(4πr). □

For technical reasons, it will be useful to consider a compact S1-invariant subset
of Uc.

Lemma 3.4. There exists an S1-invariant compact subset Vc ⊂ Uc such that

indFR(R+Vc) ≥ indFR(Vc) ≥ indFR({Ψ ≤ c}).

Proof. Consider the reduced Clarke action functional ψ : U → (0, c+1) introduced
in Section 2.3. We recall that U is an open subset of the unit-sphere S ⊂ F ,
where F = FN is the finite dimensional Hilbert space introduced above, and N is
sufficiently large. The function ψ has the form

ψ(u) = Ψ̃(u+ ν(u)),

where ν : U → L2
0(S

1,Cn) is an S1-equivariant C1,1 map. The sublevel set

Kc :=
{
u+ ν(u)

∣∣ ψ(u) ≤ c}
is compact in L2

0(S
1,Cn), and the inclusion Kc ↪→ {Ψ̃ ≤ c} is an S1-equivariant

homotopy equivalence. In particular

indFR(Kc) = indFR({Ψ̃ ≤ c}) = indFR({Ψ ≤ c}).

The image Vc = i(Kc) is an S1-invariant compact subset of Uc, and by the mono-
tonicity property of the Fadell-Rabinowitz index (see Appendix A) we conclude

indFR(R+Vc) ≥ indFR(Vc) ≥ indFR(Kc). □

In [EH90, Prop. 1], Ekeland and Hofer proved that

indEH(E− ⊕ E0 ⊕ V ) = dimC(V ) = indFR(V \ {0})
for every finite dimensional S1-invariant vector subspace V ⊂ E+. Building on
Ekeland and Hofer arguments, we need to prove the following analogous statement
for the C∗-invariant set Wc := R+Vc. We shall employ the same notation as in
Appendix A: if W is a subset of a vector space, we set W∗ :=W \ {0}.

Lemma 3.5. For each c > minσ(∂B), we have indEH(E−⊕E0⊕Wc) ≥ indFR(Wc).

Proof. Fix an arbitrary Θ ∈ D, and an arbitrary S1-equivariant open neighborhood
U ⊂ E of Θ(E− ⊕ E0 ⊕Wc) ∩ S+. We need to prove

indFR(U) ≥ indFR(Wc).

We consider the finite dimensional Hilbert subspace F = FN ⊂ E introduced above,
for a sufficiently large N that we will fix later. This Hilbert subspace splits as a
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direct sum F = F− ⊕ F0 ⊕ F+, where F0 = E0 and F± = FN,± := E± ∩ F . We
denote by Π± = ΠN,± : E → F± and Π = ΠN : E → F the orthogonal projections.
We require N ≥ Nc, so that Lemma 3.3 implies that Π+(Wc) does not contain the
origin. We set

W := Π+(Wc) ∪ {0}, W∗ := Π+(Wc) =W \ {0},
so that

Π(E− ⊕ E0 ⊕Wc) = F− ⊕ F0 ⊕W∗.

The monotonicity property of the Fadell-Rabinowitz index (see Appendix A) implies
that

indFR(W∗) ≥ indFR(Wc).

The vector space F− has complex dimension nN , and the circle S1 acts on it by
rotations without fixed points. We set Y = YN := F− ⊕ W . Lemma A.2 and
Wc ̸= ∅ implies

indFR(Y∗) = indFR(W∗) + nN ≥ indFR(Wc) + nN > nN.

We claim that, if we fix N ≥ Nc large enough, we have(
Π ◦Θ(Y ⊕ F0)

)
∩ S+ ⊂ U . (3.8)

Indeed, assume by contradiction that there exists a sequence γN ∈ YN ⊕ F0 such
that ΠN ◦Θ(γN ) ∈ S+ \ U for arbitrarily large N ≥ Nc. We write

γN = γN,− + γN,0 + γN,+,

where γN,± = ΠN,±(γN ). Since (ΠN,− + ΠN,0) ◦ Θ(γN ) = 0 and Θ is of the form
(3.2), we have

γN,− + γN,0 +
(
e−θ−(γN )ΠN,− +Π0

)
K(γN ) = 0. (3.9)

Since θ− and Kmaps bounded sets to precompact sets and vanish outside a bounded
subset of E, Equation (3.9) implies that the sequence γN,− + γN,0 is precompact.
Since Θ is the identity outside a bounded set of E, the sequence γN,+ is also
bounded; otherwise, after extracting a subsequence we would have ∥γN,+∥E → ∞
as N → ∞, and for N large enough we would have γN = Θ(γN ) and obtain the
contradiction

1 = ∥ΠN ◦Θ(γN )∥E = ∥γN∥E ≥ ∥γN,+∥E −→
N→∞

∞.

Notice that γN,+ is contained in ΠN,+(YN ) = ΠN,+(Wc) = R+ΠN,+(Vc), and we
recall that ΠN,+(Vc) is compact (Lemma 3.4). Since the sequence γN,+ is uniformly
bounded, it is precompact in ΠN,+(Wc)∪{0}. Overall, we showed that the sequence
γN is precompact, and after extracting a subsequence we have a convergence

lim
N→∞

γN = γ ∈
(
E− ⊕ E0 ⊕Wc ∪ {0}

)
\ U .

But Θ(γ) ∈ S+, and since Θ(0) = 0 we must have γ ̸= 0, and therefore γ ∈
E− ⊕ E0 ⊕ Wc. This gives a contradiction, since U is an open neighborhood of
Θ(E− ⊕ E0 ⊕Wc) ∩ S+, and completes the proof of (3.8).

We introduce the S1-equivariant continuous map ϕ := Π ◦ Θ|F : F → F , which
satisfies

ϕ(Y ⊕ F0) ∩ S+ ⊂ U
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according to (3.8). We denote by B′ ⊂ F the closed unit ball, which is S1-invariant.
Since the homeomorphism Θ is the identity on E− ⊕E0 and outside a ball of E of
sufficiently large radius, the map ϕ is the identity on F−⊕F0 and outside a compact
set. Therefore B := ϕ−1(B′) ⊂ F is an S1-invariant compact neighborhood of the
origin. We define another S1-equivariant continuous map

ψ := (id−Π+) ◦ ϕ|Y⊕F0 : Y ⊕ F0 → F− ⊕ F0,

which satisfies ψ(0, x) = (0, x) for all x ∈ F0. The S
1-invariant subset

Z := ψ−1(0) ∩ ∂B,
satisfies

ϕ(Z) ⊂ ϕ(Y ⊕ F0) ∩ S+ ⊂ U .
Let U ⊂ Y ⊕ F0 be an S1-invariant open subset containing Z that is sufficiently
small so that ϕ(U) ⊂ U . Proposition A.4 applied to the map ψ implies that
indFR(U) ≥ indFR(Y∗)− nN . Summing up, we obtained the desired lower bound

indFR(U) ≥ indFR(U) ≥ indFR(Y∗)− nN ≥ indFR(Wc). □

Proof of Theorem B. Assume that sk(B) < c, so that

indFR(Wc) ≥ indFR({Ψ ≤ c}) ≥ k.
By Lemma 3.2, for each ϵ > 0 there exists an admissible Hamiltonian H ∈ F(B)
such that

sup
E−⊕E0⊕Wc

ΦH ≤ c+ ϵ.

Lemma 3.5 implies

indEH(E− ⊕ E0 ⊕Wc) ≥ indFR(Wc) ≥ k.
Therefore ck(B) ≤ ck(H) ≤ c + ϵ. Since ϵ > 0 can be chosen arbitrarily small, we
infer that ck(B) ≤ c. Finally, since this latter inequality holds for all c > sk(B),
we conclude ck(B) ≤ sk(B). □

3.3. Local maximizers of the capacity ratio. Let us extend the notion of Besse
convex body to the class of smooth star-shaped domains. A 2n-dimensional smooth
star-shaped domain B ⊂ Cn is called Besse when its boundary ∂B, equipped with
the canonical contact form λ|∂B of Equation (1.2), is a Besse contact manifold: all
its Reeb orbits are closed, and therefore have a common period according toWadsley
theorem [Wad75]. Besse convex bodies, and in particular rational ellipsoids, are a
subclass of Besse star-shaped domains. Actually, in dimension 4, these classes are
the same up to symplectomorphisms.

Proposition 3.6. Let B be a 4-dimensional smooth star-shaped domain. The
following conditions are equivalent:

(i) B is Besse.

(ii) ∂B is strictly contactomorphic to the boundary of a rational ellipsoid E,
i.e. there exists a diffeomorphism ψ : ∂B → ∂E such that ψ∗λ|∂E = λ|∂B.

(iii) There exists a diffeomorphism ψ : C2 → C2 such that ψ(B) = E, ψ∗ω = ω,
and ψ|∗∂Bλ = λ|∂B.

(iv) B is symplectomorphic to a rational ellipsoid E, i.e. there exists a diffeo-
morphism ψ : B → E such that ψ∗ω = ω.
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Proof. Assume that B is a 4-dimensional Besse star-shaped domain. As it was
pointed out in [MR23, Theorem 1.1], the contact classification of Seifert fibrations
[GL18,CGM20] implies that the boundary of B is strictly contactomorphic to the
boundary of a rational ellipsoid E: there exists a diffeomorphism ψ : ∂B → ∂E such
that ψ∗λ|∂E = λ|∂B . A straightforward generalization of [ABHS18, Prop. 4.3] im-
plies that ψ can be extended to a symplectomorphism ψ ∈ Symp(C2, ω). Therefore
conditions (i) and (ii) are equivalent, and imply condition (iii).

Condition (iii) immediately implies condition (iv). Assume now that a 4-dimen-
sional smooth star-shaped domain B is symplectomorphic to a rational ellipsoid E
via a symplectomorphism ψ : B → E. The Reeb orbits on ∂B and ∂E are leaves of
the characteristic foliations ker(ω|∂B) and ker(ω|∂E) respectively. Since ψ∗ω = ω,
the restriction ψ|∂B maps Reeb orbits of ∂B to time-reparametrized Reeb orbits of
∂E. Since all Reeb orbits of ∂E are closed, all Reeb orbits of ∂B are closed as well.
Therefore condition (iv) implies condition (i). □

Let B be a 4-dimensional Besse star-shaped domain, and ψ ∈ Symp(C2, ω)
a symplectomorphism mapping B to a rational ellipsoid E := ψ(B), and whose
restriction ψ|∂B : ∂B → ∂E is a strict contactomorphism. Since ψ|∂B conjugates
the Reeb flows on ∂B and ∂E, in particular σ(∂B) = σ(∂E). The monotonicity
property of the Ekeland-Hofer capacities implies that ck(E) = ck(B). In particular,
the capacities ck(B) cover the whole spectrum σ(∂B), i.e.

σ(∂B) =
{
ck(B)

∣∣ k ≥ 1
}
,

since the same holds for the ellipsoid E. We denote by τ(B) the minimal common
period of the closed Reeb orbit on ∂B. For all integers m ≥ 1, we define

km(B) := min
{
k ≥ 1

∣∣ ck(B) = mτ(B)
}
,

K(B) :=
{
km(B)

∣∣ m ≥ 1
}
.

Clearly, τ(E) = τ(B) and K(E) = K(B). These definitions of km(B) and K(B)
agree with the ones in Section 1.2 in the special case of rational ellipsoids. They
also agree with the one given in Section 2.5 for Besse convex domains, thanks to
the following lemma.

Lemma 3.7. For each 4-dimensional Besse convex body B, we have ck(B) = sk(B)
for all k ≥ 1.

Proof. Let ψ ∈ Symp(C2, ω) be a symplectomorphism mapping B to a rational
ellipsoid E := ψ(B), so that τ = τ(B) = τ(E). We already know that both the
spectral invariants sk(B) and the Ekeland-Hofer capacities ck(B) = ck(E) cover
the whole action spectrum σ = σ(∂B) = σ(∂E), i.e.

σ = {sk(B) | k ≥ 1} = {ck(E) | k ≥ 1}.
Moreover s1(B) = c1(E) = minσ, sk(B) ≤ sk+1(B), and ck(E) ≤ ck+1(E). The
spectral Besse characterization for the Clarke action functional (Section 2.4) implies
that s1(B) = τ if and only if s1(B) = s2(B); moreover, for any k ≥ 2, it implies
that sk(B) is a multiple of τ if and only if either sk−1(B) = sk(B) or sk(B) =
sk+1(B). These properties fully determine sk(B) for the Besse convex body B.
The normalization property of the symplectic k-th capacities implies that ck(E)
satisfy analogous properties: c1(E) = τ if and only if c1(E) = c2(E); for any k ≥ 2,
ck(E) is a multiple of τ if and only if either ck−1(E) = ck(E) or ck(E) = ck+1(E).
We conclude that sk(B) = ck(E). □
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We infer the first half of Theorem A from Theorem 2.4.

Lemma 3.8. Let B0 be a 4-dimensional Besse star-shaped domain. For each inte-
ger k ∈ K(B0), any smooth star-shaped domain B1 that is sufficiently C3-close to
B0 satisfies ĉk(B1) ≤ ĉk(B0).

Proof. Fix k ∈ K(B0), and a symplectomorphism ψ ∈ Symp(C2, ω) mapping B0

to a rational ellipsoid. If a smooth star-shaped domain B1 is C3-close to B0, then
ψ(B1) is C3-close to ψ(B0). In particular, ψ(B1) is a smooth convex body, and
Theorem 2.4 implies ŝk(ψ(B1)) ≤ ŝk(ψ(B0)). Theorem B implies ck(ψ(B1)) ≤
sk(ψ(B1)), and Lemma 3.7 implies ck(ψ(B0)) = sk(ψ(B0)). Therefore we conclude

ĉk(B1) = ĉk(ψ(B1)) ≤ ŝk(ψ(B1)) ≤ ŝk(ψ(B0)) = ĉk(ψ(B0)) = ĉk(B0). □

Next, we address the opposite implication in Theorem A. The following lemma
holds in arbitrary dimension.

Lemma 3.9. Let f : W → (0,∞) be a continuous function defined on an open
subset W of the space of 2n-dimensional smooth star-shaped domains endowed with
the C∞ topology, such that f(B) ∈ σ(∂B) for all B ∈ W. Consider the associated
ratio

f̂(B) :=
f(B)

vol(B)1/n
.

Every local maximizer B0 of f̂ : W → (0,∞) is a Besse star-shaped domain, and
f(B0) is a common period for the Reeb orbits on ∂B0.

Proof. The proof builds on an argument originally due to Alvarez Paiva and Bal-
acheff [APB14]. Let B0 be a 2n-dimensional smooth star-shaped domain in U , and
h0 : Cn → [0,∞) the 2-homogeneous Hamiltonian such that h−1

0 (1) = ∂B0. The
restriction of its Hamiltonian flow ϕth0

|∂B0
is the Reeb flow of ∂B0. Assume by con-

tradiction that f(B0) is not a common period for the Reeb orbits on the boundary
∂B0. Namely, there exists δ > 0 and a non-empty open subset U ⊂ ∂B0 such that

ϕth(z) ̸= z, ∀z ∈ U, t ∈ [f(B0)− δ, f(B0) + δ].

Let χ : ∂B0 → [0,∞) be a smooth function supported in U and not identically
zero. For ϵ > 0, let hϵ : C

n → [0,∞) be the 2-homogeneous Hamiltonian such that
hϵ|∂B0

= h0|∂B0
+ ϵχ. For all ϵ > 0 small enough, the sublevel set Bϵ := h−1

ϵ [0, 1]
is a smooth star-shaped domain strictly contained in B0, and in particular

vol(Bϵ) < vol(B0).

By our choice of χ, for all ϵ > 0 small enough we have

fix(ϕthϵ
) = fix(ϕth0

), ∀t ∈ [f(B0)− δ, f(B0) + δ].

Therefore the continuous function ϵ 7→ f(Bϵ) takes values into the intersection
σ(∂B0)∩[f(B0)−δ, f(B0)+δ] for all ϵ ≥ 0 small enough. Since the action spectrum
σ(∂B0) is nowhere dense (see, e.g., [Sik90, Prop. 7.4]), we conclude that f(Bϵ) =

f(B0), and therefore f̂(Bϵ) > f̂(B0), for all ϵ > 0 small enough. □

Proof of Theorem A. We consider the capacity ratio ĉk over the space of 4-dimen-
sional smooth star-shaped domains, endowed with the C3 topology. Let B be a
4-dimensional smooth star-shaped domain symplectomorphic to a rational ellipsoid
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E. Proposition 3.6 implies that B is Besse, and Lemma 3.8 asserts that B is a local
maximizer of ĉk for all k ∈ K(B) = K(E).

Conversely, assume that a 4-dimensional smooth star-shaped domains B0 is a
local maximizer of ĉk. Lemma 3.9 implies that B0 is Besse, and therefore Propo-
sition 3.6 implies that there exists ψ ∈ Symp(C2, ω) mapping B0 to a rational
ellipsoid E(a). For each b sufficiently close to a, the preimage B1 := ψ−1(E(b)) is
a smooth star-shaped domain C3-close to B0, and therefore

ĉk(E(b)) = ĉk(B1) ≤ ĉk(B0) = ĉ(E(a)).

Namely, E(a) is a local maximizer of ĉk over the space of 4-dimensional ellipsoids,
and Proposition D(i) implies that k ∈ K(E(a)) = K(B0). □

Remark 3.10. The Viterbo capacities cVk and the Gutt-Hutchings capacities cGH
k

also satisfy the assumptions of Lemma 3.9. Therefore at least one implication
in Theorem A holds for any ck ∈ {cEH

k , cVk , c
GH
k }: On the space of 4-dimensional

smooth star-shaped domains endowed with the C∞ topology, any local maximizer of
B 7→ ĉk(B) is symplectomorphic to a rational ellipsoid E with k ∈ K(E).

Actually, the same proof provides an analogous statement for the capacities cECH
k

coming from embedded contact homology [Hut11]. These capacities are defined
for general 4-dimensional Liouville domains, and in particular for 4-dimensional
smooth starshaped domains B. However, the cECH

k ’s are not k-capacities when
k ≥ 2, and cECH

k (B) is not an element of the action spectrum σ(∂B), but rather
a linear combination with non-negative integer coefficients of elements of σ(∂B).
The statement reads as follows: On the space of 4-dimensional smooth star-shaped
domains endowed with the C∞ topology, any local maximizer of B 7→ ĉECH

k (B) is
symplectomorphic to a rational ellipsoid E(a1, a2), and the least common multiple
of a1, a2 (that is, the least common period of the closed Reeb orbits in ∂B) is less
than or equal to cECH

k (B).

We can also complete Theorem 2.4, fully characterizing the local maximizers of
the spectral ratios ŝk over the space of 4-dimentional smooth convex domains.

Theorem 3.11. On the space of 4-dimensional smooth convex domains endowed
with the C3 topology, the local maximizers of B 7→ ŝk(B) are precisely those domains
symplectomorphic to a 2n-dimensional rational ellipsoid E with k ∈ K(E).

Proof. Theorem 2.4, together with Proposition 3.6, provides one implication: the
smooth convex bodies B symplectomorphic to a 4-dimensional rational ellipsoid E
are local maximizers of ŝk for all k ∈ K(B) = K(E).

Conversely, let B0 be a smooth convex domain that is a local maximizer of ŝk.
Lemma 3.9 implies that B0 is Besse, and Proposition 3.6 provides a symplecto-
morphism ψ ∈ Symp(C2, ω) mapping B0 to a rational ellipsoid E(a). For each b
sufficiently close to a, the preimage B1 := ψ−1(E(b)) is a smooth convex body C3-
close to B0, and therefore ŝk(B1) ≤ ŝk(B0). Theorem B implies ck(B1) ≤ sk(B1),
and Lemma 3.7 implies sk(B0) = ck(B0). Overall, we obtained

ĉk(E(b)) = ĉk(B1) ≤ ŝk(B1) ≤ ŝk(B0) = ĉk(B0) = ĉk(E(a)).

Namely, E(a) is a local maximizer of ĉk over the space of 4-dimensional ellipsoids.
Proposition D(i) implies that k ∈ K(E(a)) = K(B0). □
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4. Maximizers of the capacity ratios among ellipsoids

We recall that, throughout this paper, we compute the volumes of domains in
Cn by integrating the volume form ωn; namely, for a 2n-dimensional domain K, the
volume vol(K) = vol(K,ω) is n! times the usual 2n-dimensional Euclidean volume.
For a 2n-dimensional ellipsoid E(a), with a = (a1, ..., an), we have

vol(E(a)) = a1...an

All symplectic k-capacities coincide over the space of ellipsoids, according to their
normalization property (see Section 1.2). Throughout this section, we denote by ck
any symplectic k-capacity.

Proof of Proposition D (i). Let a = (a1, ..., an) be a local maximizer of the function
a 7→ ĉk(E(a)), and assume without loss of generality that 0 < a1 ≤ ... ≤ an < ∞.
We first prove that every ai divides ck(E(a)). Indeed, if we had rai < ck(E(a)) <
(r+1)ai for some integer r ≥ 0 and some minimal i ∈ {1, ..., n}, then for any t < 1
sufficiently close to 1 the configuration b(t) = (b1(t), ..., bn(t)) given by

bj(t) =

{
t ai, if j = i,

aj , if j ̸= i

would satisfy ck(E(b(t))) = ck(E(a)) and vol(E(b(t))) < vol(E(a)), contradicting
the maximality of a.

Therefore, ck(E(a)) = r1a1 = ... = rnan for some integers r1 ≥ r2 ≥ ... ≥ rn ≥ 1.
We now prove that

ck(a) = ck+n−1(a),

which readily implies r1+...+rn = k+n−1 and therefore k ∈ K(E(a)). Assume by
contradiction that ck(a) < ck+n−1(a). This implies that ck(E(a)) = ck−1(E(a)).
For any t < 1 sufficiently close to 1, the configuration b(t) = (ta1, a2, ..., an))
has capacity ck(E(b(t))) = ck(E(a)), but lower volume vol(E(b(t))) < vol(E(a)),
contradicting the maximality of a.

We are left to prove the converse implication. Let E(a) be a rational ellipsoid.
As usual, assume without loss of generality that a1 ≤ ... ≤ an. Fix any integer
k ∈ K(E(a)). There exist integers ri ≥ 1 such that r1a1 = ... = rnan and
k = r1 + ...+ rn − n+ 1. For all b sufficiently close to a, we have ĉk(E(b)) = f(b),
where f is the 0-homogeneous function

f(b) =
min{r1b1, ..., rnbn}

(b1...bn)1/n
.

As usual, assume without loss of generality that b1 ≤ ... ≤ bn. We set

t :=
r1a1

min{r1b1, ..., rnbn}
.

Notice that t bi ≥ ai. Therefore, for all b sufficiently close to a, we have

ĉk(E(b)) = f(b) = f(t b) =
r1a1

(t b1...t bn)1/n
≤ r1a1

(a1...an)1/n
= f(a) = ĉk(E(a)). □

Proof of Proposition D (ii). For configurations a = (a1, ..., an) with

0 < a1 ≤ ... ≤ an <∞, (4.1)
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we have

ĉk(E(a)) ≤ ka1
(a1...an)1/n

−−→
an→∞

0.

Therefore, the function a 7→ ĉk(E(a)) achieves its maximum at some a, which we
assume to satisfy (4.1) without loss of generality. By Proposition D(i), we have
k ∈ K(E(a)). Namely

ck(E(a)) = ck+n−1(E(a)) = s1a1 = ... = snan

for some integers s1 ≥ s2 ≥ ... ≥ sn ≥ 1.
We claim that

si − sj ≤ 1, ∀1 ≤ i < j ≤ n.

Otherwise, we can find i < j such that si− sj ≥ 2, si− si+1 ≥ 1, and sj−1− sj ≥ 1
(the case i = j − 1 is allowed). The configuration b = (b1, ..., bn) given by

bl =


si
si−1ai, if l = i,

sj
sj+1aj , if l = j,

al, if l ̸= i, j

has the same value ck(E(b)) = ck(E(a)), but

vol(E(b)) =
sisj

(si − 1)(sj + 1)
vol(E(a)) =

sisj
sisj + si − sj − 1︸ ︷︷ ︸

≥1

vol(E(a)) < vol(E(a)),

contradicting the maximality of a.
Summing up, we proved that

ck(E(a)) = ck+n−1(E(a)) = (s+ 2)a1 = (s+ 2)a2 = ... = (s+ 2)ai−1

= (s+ 1)ai = (s+ 1)ai+1 = ... = (s+ 1)an

for some integers s ≥ 0 and i ∈ {1, ..., n}. Since ck(E(a)) = ck+n−1(E(a)), we have

k + n− 1 = (s+ 2)(i− 1) + (s+ 1)(n− i+ 1),

that is, k = sn+ i, which implies that q = s and r = i. □

5. Maximizers of the capacity ratios among toric domains

Throughout this section, we denote by ck any symplectic k-capacity satisfying
the extra “closed Reeb orbits” assumption (see Section 1.2). We shall consider
4-dimensional toric domains XΩ whose profile Ω is the subgraph of monotone non-
increasing functions f : [0, x0] → [0,∞) such that f |[0,x0) > 0 and f(x0) = 0,
i.e.

Ω = Ωf :=
{
(x, y) ∈ R2

∣∣ x ∈ [0, x0], y ∈ [0, f(x)]
}
.
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5.1. Concave toric domains. Let XΩ be a 4-dimensional concave toric domain.
Its profile Ω = Ωf ⊂ [0,∞)2 must be the subgraph of a (monotone decreasing)
convex function f : [0, x0]→ [0,∞) such that f |[0,x0) > 0 and f(x0) = 0. As usual,
we denote by vol(XΩ) = vol(XΩ, ω) the volume of XΩ computed by integrating the
volume form ω2. This volume vol(XΩ) is twice the Euclidean area of Ω.

Gutt and Hutchings [GH18, Theorem 1.14] provided a formula for the higher
capacities of 2n-dimensional concave toric domains. For our 4-dimensional XΩ the
formula reads:

ck(XΩ) = max
{
[v]Ω

∣∣∣ v = (v1, v2) ∈ {1, ..., k}2, v1 + v2 = k + 1
}
, (5.1)

where

[v]Ω = min
{
⟨v, w⟩

∣∣ w ∈ graph(f)
}
.

Proposition E(i) is a direct consequence of this formula and of the properties of
symplectic k-capacities.

Proof of Proposition E(i). Let v ∈ {1, ..., k}2 be a vector such that ck(XΩ) = [v]Ω,
and w = (w1, w2) ∈ graph(f) be a vector such that [v]Ω = ⟨v, w⟩. We denote by
g : R → R an affine function such that g(w1) = w2 and g ≤ f . We set a2 := g(0)
and a1 := a2/g

′(0), so that g(a1) = 0. The ellipsoid E(a1, a2) = XΥ is a concave
toric domain whose associated profile Υ = Ωg satisfies Υ ⊆ Ω, and therefore

vol(E(a1, a2)) = 2 area(Υ) ≤ 2 area(Ω) = vol(XΩ).

Moreover, by the formula (5.1) applied to E(a1, a2), we have

ck(E(a1, a2)) ≥ [v]Υ = [v]Ω = ck(XΩ).

Overall, we obtained ĉk(E(a1, a2)) ≥ ĉk(XΩ). Finally, by Proposition D, the func-
tion (a1, a2) 7→ ĉk(E(a1, a2)) achieves its maximum at

(a1, a2) = (
⌈
k
2

⌉
,
⌈
k+1
2

⌉)
. □

5.2. Convex toric domains. Let XΩ be a 4-dimensional convex toric domain.
Its profile Ω = Ωf ⊂ [0,∞)2 must be the subgraph of a concave and non-increasing
function f : [0, x0] → [0, y0] such that f(0) = y0 > 0 and f(x0) = 0. We consider
the convex body

Ω̂ :=
{
(x1, x2) ∈ R2

∣∣ (|x1|, |x2|) ∈ Ω
}
.

We denote by ∥ · ∥Ω the norm on R2 whose unit ball is the polar of Ω̂, i.e.

∥v∥Ω := max
w∈Ω

⟨v, w⟩, ∀v ∈ [0,∞)2.

We set Vk :=
{
v0, ..., vk

}
, where vj = (j, k−j) ∈ [0, k]2. Gutt and Hutchings [GH18,

Theorem 1.16] provided a formula for the higher capacities of 2n-dimensional convex
toric domains, which in the special case of our 4-dimensional XΩ reads:

ck(Ω) = min
v∈Vk

∥v∥Ω.

Example 5.1. For each a, b > 0, the polydisk P (a, b) := E(a) × E(b) = XΩ

is a convex toric domain with profile Ω = [0, a] × [0, b]. Therefore ck(P (a, b)) =
kmin{a, b}, vol(P (a, b)) = 2ab, and

ĉk(P (a, b)) = k
min{a, b}√

2ab
.
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The polydisk that maximizes ĉk is (up to rescaling) P (1, 1), for which ĉk(P (1, 1)) =

k/
√
2. □

The proof of Proposition E(ii) requires several lemmas.

Lemma 5.2. Over the space of 4-dimensional convex toric domains, the capacity
ratios ĉk admit a global maximizer.

Proof. Consider a profile Ω = Ωf that is the subgraph of a concave and non-
increasing function f : [0, x0] → [0, y0] such that f(0) = y0 and f(x0) = 0. Since
the capacity ratios are scale invariant, we can always assume that y0 = 1. Assume
in addition that x0 ≤ 1. The volume of the associated convex toric domain XΩ is
bounded from below as

vol(XΩ) = 2 area(Ω) ≥ x0.

The k-th capacity of XΩ is bounded from above as

ck(XΩ) = min
j∈{0,...,k}

max
w∈Ω

⟨vj , w⟩ ≤ min
j∈{0,...,k}

(
jx0 + (k − j)

)
≤ kx0.

Therefore ĉk(XΩ) ≤ k
√
x0 < ĉk(P (1, 1)) if x0 < 1/2. Analogously, ĉk(XΩ) ≤ k/

√
2

if x0 > 2.
Let T be the space of 4-dimensional convex toric domains, and T ′ ⊂ T the

subspace of those XΩf
such that f : [0, x0]→ [0, 1] is concave, non-increasing, and

satisfies f(0) = 1 and x0 ∈ [1/2, 2]. The conclusion of the previous paragraph
implies

sup
T

ĉk = sup
T ′

ĉk.

The space T ′ is compact for the Hausdorff topology, and since ĉk|T is continuous,
its restriction to T ′ achieves its maximum. □

We set

∆± :=
{
(x, y) ∈ (0,∞)2

∣∣ ± x < ±y}, ∆ :=
{
(x, x) ∈ R2

∣∣ x > 0
}
,

and

∂±Ω := ∆± ∩ ∂Ω, ∂0Ω := ∆ ∩ ∂Ω, ∂∗Ω := ∂+Ω ∪ ∂0Ω ∪ ∂−Ω.

Notice that ∂0Ω is a singleton, and Ω is the convex set enclosed by ∂∗Ω together
with two segments on the x and y axes.

Lemma 5.3. Assume that XΩ maximizes ĉk over the space of convex toric domains.
Then ∂∗Ω is piecewise linear with at most k − 1 corners.

Proof. For each v ∈ Vk there exists wv ∈ ∂∗Ω such that ∥v∥Ω = ⟨v, wv⟩. The point
wv is not necessarily unique, but for v = (0, k) we choose wv = (0, y0), and for
v = (k, 0) we choose wv = (x0, 0). We denote by Ω′ ⊂ Ω the convex hull of the
finite set {

(0, 0)
}
∪
{
wv

∣∣ v ∈ Vk} ⊂ ∂Ω.
Notice that XΩ′ is a convex toric domain with ck(Ω

′) = ck(Ω). Therefore, ĉk(Ω
′) ≥

ĉk(Ω), with equality if and only if Ω = Ω′. This shows that ∂∗Ω is piecewise linear
with at most k − 1 corners. □
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Lemma 5.3, together with Proposition D, implies the claim of Proposition E(ii)
in the case k = 1. Hence, from now on we consider k ≥ 2. Moreover, in view
of Lemma 5.3, from now on we only need to consider convex domains XΩ whose
profile Ω has piecewise linear boundary.

Lemma 5.4. Assume that XΩ maximizes ĉk over the space of convex toric domains.
For each corner w of ∂∗Ω, there exists v ∈ Vk such that ck(XΩ) = ∥v∥Ω = ⟨v, w⟩.

Proof. If such a v does not exist, by chamfering Ω near w we would produce Ω′ ⊊ Ω
still defining a convex toric domain XΩ′ with the same capacity ck(XΩ′) = ck(XΩ)
but smaller volume vol(XΩ′) < vol(XΩ), in contradiction to the fact that XΩ

maximizes ĉk. □

Lemma 5.5. Assume that XΩ maximizes ĉk over the space of convex toric domains.
Then ∂∗Ω is piecewise linear with at most two corners. Moreover:

(i) If ∂∗Ω has no corners, then XΩ is an ellipsoid.
(ii) If w = (x, x) ∈ ∂0Ω is a corner of ∂∗Ω, then it is its only corner and

XΩ = P (x, x).
(iii) ∂+Ω contains at most one corner w = (x, y) of ∂∗Ω, and if such a corner

exists then y = y0.
(iv) ∂−Ω contains at most one corner w = (x, y) of ∂∗Ω, and if such a corner

exists then x = x0.

The possible situations allowed by the last two points are described by the following
pictures:

w

x0

y0

0

Ω

x1

y2

w1

w2

x0

y0

0

Ω

x x0

y0

0

y
w

Ω

Proof. Assume that w = (x, x) ∈ ∂0Ω is a corner of ∂∗Ω. Then, by Lemma 5.4,
there exists v ∈ Vk such that ck(XΩ) = ∥v∥Ω = ⟨v, w⟩. The square Ω′ := [0, x]2 is
contained in Ω, and satisfies ck(XΩ′) = ∥v∥Ω = ck(XΩ). Since XΩ maximizes ĉk,
we infer XΩ = XΩ′ = P (x, x).

Assume instead that ∂+Ω contains a corner w = (x, y). We claim that y = y0
(and, in particular, that there are no other corners w′ = (x′, y′) ∈ ∂+Ω with
x′ < x). Indeed, once again by Lemma 5.4, there exists vj = (j, k − j) ∈ Vk such
that ck(XΩ) = ∥vj∥Ω = ⟨vj , w⟩. Since x < y, we have

⟨vh, w⟩ > ck(XΩ), if 0 ≤ h < j,

⟨vh, w⟩ < ck(XΩ), if j < h ≤ k.

This implies that the convex domain Ω′ := (R × [0, y]) ∩ Ω, which is contained in
Ω, has the same capacity ck(XΩ′) = ck(XΩ). Therefore, since XΩ is a maximizer
of ĉk, we infer Ω′ = Ω, and so y = y0.

An analogous argument shows that, if ∂−Ω contains a corner w = (x, y), then
x = x0 (and then, in particular, there are no other corners w′ = (x′, y′) ∈ ∂+Ω with
x′ > x). □
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By Lemma 5.5 it suffices to consider regions of the form

Ω = Ω(α, s, t) := {0 ≤ y ≤ 1 + s} ∩ {0 ≤ x ≤ 1 + t} ∩ {1− α(x− 1) ≤ y}

for α ∈ [0,∞], s ∈ [0, α] and t ∈ [0, 1/α]. The corners of ∂∗Ω are

v+ := (1− s
α , 1 + s), v− := (1 + t, 1− αt).

It will be convenient to parametrize α as

α = α(i, r) =
i+ r

k − (i+ r)

where (i, r) ∈ {0, 1, . . . , k − 1} × [0, 1) ∪ {(k, 0)}. As above we set vj = (j, k − j),
j = 1, . . . , k.

Lemma 5.6. We have

∥vj∥Ω = ⟨vj , v+⟩, ∀j ≤ i,
∥vj∥Ω = ⟨vj , v−⟩, ∀j ≥ i+ 1.

Proof. The maximum ∥vj∥Ω = maxw∈Ω is attained at v+ or v−. Whether it is
attained at v+ or v− if v+ ̸= v− depends on which side of the line l through the
origin perpendicular to the line through v+ and v− the point vj lies. Since the
slope of l is 1/α, the claim follows. □

Lemma 5.7. We have

∥vj∥Ω ≥ ∥vi∥Ω = k

(
1 +

sr

i+ r

)
, ∀j ≤ i,

∥vj∥Ω ≥ ∥vi+1∥Ω = k

(
1 +

t(1− r)
k − (i+ r)

)
, ∀j ≥ i+ 1.

Proof. The inequalities follow from the facts that the coordinates of vj sum up to k
and that the x-coordinate of v+ (v−) is not larger (smaller) than its y-coordinate.
For the equalities we compute using Lemma 5.6

∥vi∥Ω =
〈
vi, v

+
〉
= i− s

α
i+ k − i+ ks− is = k

(
1 + s

(
1− iα+ 1

kα

))
= k

(
1 + s

(
1− i 1

i+ r

))
= k

(
1 +

sr

i+ r

)

and

∥vi+1∥Ω =
〈
vi+1, v

+
〉
= i+ it+ 1 + t+ k − i− 1− αtk + αit+ αt

= k + t (1 + i− α(k − i− 1))

= k + t
(1 + i) (k − (i+ r))− (k − (i+ 1)) (i+ r)

k − (i+ r)

= k

(
1 +

t(1− r)
k − (i+ r)

)
. □

Using elementary geometry we compute the Euclidean area of Ω to be

area(Ω) = 1 + t+ s− s2

2α
− t2α

2
.
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Hence, with vol(XΩ) = 2 area(Ω) and Lemma 5.7 we obtain

2 ĉk(XΩ)
2 =

ck(XΩ)
2

area(Ω)
=
k2

(
1 + min

{
sr
i+r ,

t(1−r)
k−(i+r)

})2

1 + t+ s− s2

2α −
t2α
2

(5.2)

We claim that 2 ĉk(XΩ)
2 ≤ k2 with equality if and only if s = t = 0 (in which

case Ω is independent of α), or k = 2 and XΩ = E(2, 1). Showing this claim will
complete the proof of Proposition E(ii). The claim is equivalent to(

1 + min

{
sr

i+ r
,
t(1− r)
k − (i+ r)

})2

≤ 1 + t+ s− s2

2α
− t2α

2
(5.3)

with equality if and only if s = t = 0, or k = 2 and XΩ = E(2, 1).
Since we have already treated the case of rectangles in Example 5.1, we assume

that 0 < i+ r < k, i.e. α ∈ (0,∞). In particular, we have r < 1. Moreover, we can

assume that sr
i+r = t(1−r)

k−(i+r) , i.e.

t =
r

1− r
s

α
; (5.4)

indeed, otherwise we could decrease the volume vol(XΩ) by decreasing t or s without
changing ck(XΩ). It suffices to show that we have a strict inequality in (5.3) in the
case s ̸= 0 unless k = 2 and XΩ = E(2, 1). For s ̸= 0 a strict inequality in (5.3) is
(using (5.4)) equivalent to

2s
r

i+ r
+ s2

r2

(i+ r)2
< s

(
1 +

r

(1− r)α

)
− s2

2α

(
1 +

r2

(1− r)2

)
⇔ s

α

(
r2α

(i+ r)2
+

(1− r)2 + r2

2(1− r)2

)
< 1 +

r

(1− r)α
− 2r

i+ r
. (5.5)

Note that s
α ≤ min

{
1, 1−rrα

}
. Therefore, the sharp inequality (5.5) is implied both

by
r2α

(i+ r)2
+

(1− r)2 + r2

2(1− r)2
< 1 +

r

(1− r)α
− 2r

i+ r
(5.6)

and by
(1− r)r
(i+ r)2

+
(1− r)2 + r2

2(1− r)rα
< 1 +

r

(1− r)α
− 2r

i+ r
. (5.7)

Let us first look at inequality (5.6).

Lemma 5.8. For 0 < i+ r < k inequality (5.6) is equivalent to

0 < ((k − i)(k − i− 2) + r) r + (i+ r)(k − i− r) 1− 2r

2(1− r)
. (5.8)

Proof. Indeed, we have

(5.6)⇔ r2

(i+ r)(k − i− r)
+

2r

i+ r
<

r(k − i− r)
(1− r)(i+ r)

+ 1− (1− r)2 + r2

2(1− r)2

⇔
(
r2 + 2r(k − i− r)

)
(1− r) < r(k − i− r)2 + (i+ r)(k − i− k) 1− 2r

2(r − 1)2

⇔ 0 < r(k2 + i2 − 2ik − 2k + 2i+ r) + (i+ r)(k − i− r) 1− 2r

2(r − 1)

⇔ (5.8). □
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Let us provide sufficient conditions for inequality (5.8), and hence for (5.5), to
hold.

Lemma 5.9. For 0 < i+ r < k inequality (5.8) holds if

(i) i ≤ k − 2 and r ∈ [0, 12 ],

(ii) i = k − 1 and r ∈ [0, uk−1 := k−1
2k−1 ),

(iii) i = 0 and r ∈ [0, u0 := 2k2−3k
2k2−2k−1 ).

Proof. Statement (i) is immediate from Lemma 5.8. For i = k− 1, inequality (5.8)
is equivalent to

0 < (−1 + r) r + (k − 1 + r)(1− r) 1− 2r

2(1− r)
⇔ 0 < 2r2 − 2r + k − 1 + r − 2rk + 2r − 2r2

⇔ r < uk−1 =
k − 1

2k − 1
,

which shows (ii). For i = 0 we have r > 0 and inequality (5.8) is equivalent to

0 < (k(k − 2) + r) r + r(k − r) 1− 2r

2(1− r)
⇔ (2r − 1)(k − r) < 2(1− r)(k(k − 2) + r)

⇔ 2rk − 2r2 − k + r < 2k2 − 4k + 2r − 2rk2 + 4rk − 2r2

⇔ r < u0 =
2k2 − 3k

2k2 − 2k − 1
,

which shows (iii) and completes the proof of the lemma. □

Let us now look at inequality (5.7).

Lemma 5.10. For 0 < i+ r < k inequality (5.7) is equivalent to

r < i2 +
(i+ r)2(2r − 1)

2(1− r)rα
. (5.9)

Proof. Indeed, we have

(5.7)⇔ r

(i+ r)2
((1− r) + 2(i+ r)) < 1 +

1

2(1− r)rα
(
2r2 − (1− r)2 − r2

)
⇔ r − r2 + 2ir + 2r2 < i2 + 2ir + r2 +

(i+ r)2(2r − 1)

2(1− r)rα
⇔ (5.9). □

Now we provide sufficient conditions for inequality (5.8) and hence further con-
ditions for (5.5) to hold.

Lemma 5.11. For 0 < i+ r < k, inequality (5.9) holds if

(i) i > 0 and r ∈ [ 12 , 1),

(ii) i = 0 and r ∈ (l0 := k
2k−1 , 1),

(iii) i = k − 1 and r ∈ (lk−1 := k−1
2k2−2k−1 , 1).
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Proof. Statement (i) is immediate from Lemma 5.10. For i = 0 we have r > 0 and
inequality (5.8) is equivalent to

r <
r2(2r − 1)(k − r)

2(1− r)r2
=

(2r − 1)(k − r)
2(1− r)

.

⇔ 2r − 2r2 < 2kr − k − 2r2 + r

⇔ l0 =
k

2k − 1
< r,

which shows (ii). For i = k − 1 inequality (5.8) is equivalent to

r < (k − 1)2 +
(k − 1 + r)2(1− r)(2r − 1)

2(1− r)r(k − 1 + r)

⇔ r < (k − 1)2 +
(k − 1 + r)(2r − 1)

2r

⇔ 2r2 < 2rk2 − 4rk + 2r + 2rk − 2r + 2r2 − k + 1− r

⇔ lk−1 =
k − 1

2k2 − 2k − 1
< r,

which shows (iii) and completes the proof of the lemma. □

It remains to show that the conditions in Lemma 5.9 and Lemma 5.11 imply a
strict inequality in (5.3) unless k = 2, and to study the equality case for k = 2. By
part (i) of Lemma 5.9 and Lemma 5.11 it suffices to look at the cases i = k− 1 and
i = 0. This will be done in the subsequent two lemmas.

Lemma 5.12. We have lk−1 ≤ uk−1, and lk−1 < uk−1 unless k = 2. In the case
k = 2 we get an equality in (5.3) if and only if α = α(i, r) = 2, s = α = 2 and
t = 1

2 , in which case XΩ = E(2, 1).

Proof. A quick computation using the expressions for lk−1 and uk−1 from Lemma
5.9 and Lemma 5.11 (still assuming k ≥ 2) confirms that lk−1 ≤ uk−1 with equality
if and only if k = 2. Hence, for the equality discussion it suffices to consider the
case k = 2, i = 1 and r = l1 = u1 = 1

3 . Then α = α(i, r) = 2. Plugging this into
(5.5) with an equality instead of an inequality implies that s = 2 and by (5.4) thus
t = 1

2 . □

Lemma 5.13. We have l0 ≤ u0, and l0 < u0 unless k = 2. In the case k = 2,
r = l1 = u1 = 2

3 and i = 0 we get an equality in (5.3) if and only if α = α(i, r) = 1
2 ,

s = α = 1
2 and t = 2, in which case XΩ = E(2, 1).

Proof. A quick computation using the expressions for l0 and u0 from Lemma 5.9 and
Lemma 5.11 (still assuming k ≥ 2) shows that l0 ≤ u0 is equivalent to 3k ≤ k2+2. It
follows that equality holds if and only if k = 2. Hence, for the equality discussion it
suffices to consider the case k = 2, i = 0 and r = l1 = u1 = 2

3 . Then α = α(i, r) = 1
2 .

Plugging this into (5.5) with an equality instead of an inequality implies that s = 1
2

and by (5.4) thus t = 2. □

This completes the proof of Proposition E(ii).
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Appendix A. The Fadell-Rabinowitz index

Consider the universal bundle ES1 → BS1. The classifying space BS1 has
cohomology ring H∗(BS1;Q) = Q[e], where e is a generator of H2(BS1;Q). From
now on, all cohomology rings will be assume to have rational coefficients, and we will
suppress Q from the notation. For each non-empty topological space X equipped
with an S1 action, we consider the S1-equivariant cohomology

H∗
S1(X) := H∗(X ×S1 ES1).

Here, X×S1ES1 := (X×ES1)/S1 and the circle S1 acts diagonally on the product.
If Y ⊂ X is an S1-invariant subspace, the S1-equivariant relative cohomology is
defined by

H∗
S1(X,Y ) := H∗(X ×S1 ES1, Y ×S1 ES1).

Let π : X ×S1 ES1 → BS1, π([x, y]) = [y] be the quotient-projection. With an
abuse of notation, we will still denote by e the cohomology class π∗e ∈ H2

S1(X).

The Fadell-Rabinowitz index of X, first introduced in [FR78], is defined as4

indFR(X) = inf
{
k ≥ 0

∣∣ ek = 0 in H∗
S1(X)

}
,

with the usual convention inf ∅ =∞. Its elementary properties are the following:

• (Non-triviality) indFR(X) = 0 if and only if X = ∅.

• (Monotonicity) indFR(X) ≤ indFR(Y ) if there exists an S1-equivariant
continuous map f : X → Y .

• (Subadditivity) indFR(X) ≤ indFR(Y )+indFR(Z) if X = int(Y )∪int(Z),
where the interior is taken with respect to the subspace topology.

Remark A.1. In the literature, the cohomology employed in the definition of the
Fadell-Rabinowitz index is often the Alexander-Spanier one [Spa95, Section 6.4],
which has a suitable continuity property [HZ94, Appendix A.8]: if a topological
space is metrizable, the cohomology of any subspace is isomorphic to the direct
limit of the cohomology of its open neighborhoods. We shall equivalently em-
ploy the more common singular cohomology, which does not satisfy such a strong
continuity property, and circumvent the issue by taking open neighborhoods in
statements such as the Lusternik-Schnirelmann property of spectral invariants (Sec-
tion 2.2), Proposition A.4 below, and in the definition of the Ekeland-Hofer index
(Section 3.1).

In the proof of Theorem B, we need some properties of the Fadell-Rabinowitz
index that are essentially established in the original source [FR78] and in Fadell-
Husseini-Rabinowitz [FHR82], but stated under slightly different assumptions or
contained within the proofs of some statements. We provide a self-contained ac-
count here for the reader’s convenience. For any subset B of a vector space, we
denote

B∗ := B \ {0}.
Throughout this appendix, we denote by S1 the unit circle in C. We shall consider
vector spaces Cm ⊕Rn, with m ≥ 1 and n ≥ 2, equipped with the S1 action

eit · (z1, ..., zm, x1, ..., xn) = (eik1tz1, ..., e
ikmtzm, x1, ..., xn),

4In the literature the Fadell-Rabinowitz index is occasionally defined as indFR(X)− 1.
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for some positive integers k1, ..., km. The fixed point set of this action is the vector
subspace Rn ≡ {0}⊕Rn. On Cm⊕Rn, we also have the action of the multiplicative
group (0,∞) given by the scalar multiplication, i.e.

c · (z1, ..., zm, x1, ..., xn) = (cz1, ..., czm, cx1, ..., cxn).

Overall, the S1 and (0,∞) actions give a C∗ ≡ S1 × (0,∞) action. Direct sum of
vector spaces as above will be implicitly equipped with the product C∗ action. We
say that a subset of Cm ⊕ Rn is C-invariant when it is C∗-invariant and contains
the origin. The first lemma is a special case of [FR78, Prop. 4.3].

Lemma A.2. For each C-invariant subset Y ⊂ Cm, we have

indFR((Y ⊕ C)∗) = indFR(Y∗) + 1.

Proof. We set X := Y ⊕ C. Since X∗ = (Y∗ ⊕ C) ∪ (Y ⊕ C∗), by the subadditivity
of the Fadell-Rabinowitz index we have

indFR(X∗) ≤ indFR(Y∗ ⊕ C) + indFR(Y ⊕ C∗)

= indFR(Y∗) + indFR(C∗) = indFR(Y∗) + 1.

Since Y∗ ⊂ X∗, we have indFR(Y∗) ≤ indFR(X∗). Assume by contradiction that
k := indFR(Y∗) = indFR(X∗). We consider the commutative diagram

... H2k−1(X∗) H2k−2
S1 (X∗) H2k

S1(X∗) ...

... H2k−1(Y∗) H2k−2
S1 (Y∗) H2k

S1(Y∗) ...

π∗

i∗=0

⌣e

π′
∗ ⌣e

where the vertical homomorphisms are induced by the inclusions, and both rows
are Gysin exact sequences. Notice that i∗ = 0, since the inclusion i : Y∗ ↪→ X∗ is
homotopic to a constant. Since k = indFR(X∗), we have ek−1 = π∗(µ) for some

µ ∈ H2k−1(X∗), and therefore ek−1 = π′
∗i

∗(µ) = 0 in H2k−2
S1 (Y∗), contradicting the

fact that indFR(Y∗) = k. □

Since S1 acts trivially on Rn, we have the Künneth isomorphism

H∗
S1(Rn∗ ) = H∗(BS1 ×Rn∗ ) ∼= H∗(BS1)⊗H∗(Rn∗ ).

In particular, H∗(Rn∗ ) ≡ H0(BS1)⊗H∗(Rn∗ ) is naturally a subgroup of H∗
S1(Rn∗ ).

Lemma A.3. Let Y ⊂ Cm be a C-invariant subset, µ a generator of Hn−1(Rn∗ ),
and δ : H∗

S1(Rn∗ )→ H∗+1
S1 ((Y ⊕Rn)∗,Rn∗ ) the connecting homomorphism. Then

indFR(Y∗) = inf
{
k ≥ 0

∣∣ ek ⌣ δ(µ) = 0 in H∗
S1((Y ⊕Rn)∗,Rn∗ )

}
.

Proof. We set X := Y ⊕Rn, decompose X∗ as the union X∗ = (Y∗⊕Rn)∪(Y ⊕Rn∗ ),
and consider the associated Mayer-Vietoris sequence in S1-equivariant cohomology

...−→H∗
S1(X∗)

a∗−→H∗
S1(Y∗ ⊕Rn)⊕H∗

S1(Y ⊕Rn∗ )
b∗−→H∗

S1(Y∗ ⊕Rn∗ )−→ ...

Since Y and Rn are S1-equivariantly contractible spaces, we have H∗
S1(Y∗⊕Rn) ∼=

H∗
S1(Y∗) and H

∗
S1(Y ⊕Rn∗ ) ∼= H∗

S1(Rn∗ ). Moreover, since S1 acts trivially on Rn, we
have H∗

S1(Y∗ ⊕Rn∗ ) ∼= H∗
S1(Y∗)⊗H∗(Rn∗ ). Therefore, the Mayer-Vietoris sequence

can be rewritten as

...−→H∗
S1(X∗)

a∗−→H∗
S1(Y∗)⊕H∗

S1(Rn∗ )
b∗−→H∗

S1(Y∗)⊗H∗(Rn∗ )−→ ...
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Let us now consider the long exact sequence of the pair Rn∗ ⊂ X∗, which reads

...−→H∗
S1(X∗)

j∗−→H∗
S1(Rn∗ )

δ−→H∗+1
S1 (X∗,R

n
∗ )−→ ...

Let µ be a generator of Hn−1(Rn∗ ), and k := indFR(Y∗). We have a non-zero
cohomology class

ek−1 ⊗ µ ∈ H∗(BS1)⊗H∗(Rn∗ ) = H∗
S1(Rn∗ )

Let us assume by contradiction that δ(ek−1 ⊗ µ) = 0, so that there exists a
cohomology class ν ∈ H∗

S1(X∗) such that j∗ν = ek−1 ⊗ µ. In the above Mayer-

Vietoris sequence, we have a∗(ν) = (ν|Y∗ , e
k−1 ⊗ µ), and therefore

0 = b∗(ν|Y∗ , e
k−1 ⊗ µ) = ν|Y∗ ⊗ 1− ek−1|Y∗ ⊗ µ,

which gives a contradiction, since ek−1|Y∗ ⊗ µ ̸= 0. This shows that

ek−1 ⌣ δ(1⊗ µ) = δ(ek−1 ⌣ µ) ̸= 0.

On the other hand, since indFR(Y∗) = k, we have

b∗(0, ek ⊗ µ) = −ek|Y∗ ⊗ µ = 0.

Therefore, there exists η ∈ H∗
S1(X∗) such that a∗(η) = (0, ek ⊗ µ). This implies

j∗(η) = ek ⊗ µ, and we conclude

ek ⌣ δ(1⊗ µ) = δ(ek ⌣ µ) = δj∗(η) = 0. □

The last statement is a slight generalization of [FHR82, Prop. 2.2].

Proposition A.4. Let Y ⊂ Cp be a C-invariant subset, B ⊂ Cp ⊕ Rn an S1-
invariant compact neighborhood of the origin, and ψ : Y ⊕ Rn → Cq ⊕ Rn an
S1-equivariant continuous map such that ψ(0, x) = (0, x) for all x ∈ Rn. If
indFR(Y∗) > q, then any S1-invariant open subset U ⊂ Y ⊕ Rn containing the
intersection ψ−1(0) ∩ ∂B has Fadell-Rabinowitz index indFR(U) ≥ indFR(Y∗)− q.

Proof. We set k := indFR(Y∗) and X := Y ⊕ Rn. Assume by contradiction that
there exists an S1-invariant open subset U ⊂ X∗ containing Z := ψ−1(0)∩∂B such
that indFR(U) < k − q. In particular, since indFR(U) is finite, U ∩ Rn = ∅. Let
V ⊂ X∗ \ Z be an S1-invariant open subset containing X ∩ ∂B \ U and that is
sufficiently small so that X ∩ψ−1(0) = ∅. Finally, we set W := U ∪V , which is an
S1-invariant open subset of X∗ containing X ∩ ∂B.

We defined the S1-invariant subsetsX ′ := (X∗∩B)∪W andX ′′ := (X∗\X ′)∪W ,
which are both open subsets of X∗, have union X ′ ∪ X ′′ = X∗ and intersection
X ′ ∩ X ′′ = W . Notice that, for each x ∈ X∗ there exists ϵ > 0 small enough so
that ϵx ∈ X ′ and ϵ−1x ∈ X ′′. This readily implies that both inclusions

(X ′, X ′ ∩Rn∗ ) ↪→ (X∗,R
n
∗ ), (X ′′, X ′′ ∩Rn∗ ) ↪→ (X∗,R

n
∗ )

admit an S1-equivariant homotopic right inverse, and therefore induce monomor-
phisms

H∗
S1(X∗,R

n
∗ ) ↪→ H∗

S1(X ′, X ′ ∩Rn∗ ),
H∗
S1(X∗,R

n
∗ ) ↪→ H∗

S1(X ′′, X ′′ ∩Rn∗ ).
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This, together with the Mayer-Vietoris exact sequence

...→ H∗
S1(X∗,R

n
∗ )→

H∗
S1(X ′, X ′ ∩Rn∗ )

⊕
H∗
S1(X ′′, X ′′ ∩Rn∗ )

→ H∗
S1(W,W ∩Rn∗ )→ ...

readily implies that the inclusion induces a monomorphism

H∗
S1(X∗,R

n
∗ ) ↪→ H∗

S1(W,W ∩Rn∗ ). (A.1)

Analogously, since both inclusions X ′ ∩ Rn∗ ↪→ Rn∗ and X ′′ ∩ Rn∗ ↪→ Rn∗ admit
a homotopic right inverse, they induce monomorphisms in cohomology, and the
Mayer-Vietoris sequence

...→ H∗(Rn∗ )→ H∗(X ′ ∩Rn∗ )⊕H∗(X ′′ ∩Rn∗ )→ H∗(W ∩Rn∗ )→ ...

readily implies that the inclusion induces a monomorphism

H∗(Rn∗ ) ↪→ H∗(W ∩Rn∗ ). (A.2)

Consider the commutative diagram

H∗
S1(Rn∗ ) H∗+1

S1 (X∗,R
n
∗ )

H∗
S1(W ∩Rn∗ ) H∗+1

S1 (W,W ∩Rn∗ )

H∗
S1(V ∩Rn∗ ) H∗+1

S1 (V, V ∩Rn∗ )

H∗
S1(Rn∗ ) H∗+1

S1 ((Cq ⊕Rn)∗,Rn∗ )

δ

δ

∼=

δ

δ

ψ∗

Here, the horizontal arrows are connecting homomorphisms, and the unspecified
vertical arrows are homomorphisms induced by the inclusions. Let µ be a generator
of Hn−1(Rn∗ ) ⊂ Hn−1

S1 (Rn∗ ). By the injectivity of the homomorphism (A.2), in the
above diagram µ is mapped to a non-zero element of H∗

S1(V ∩Rn∗ ) = H∗
S1(W ∩Rn∗ ),

which we still denote by µ. Since indFR(Y∗) = k, Lemma A.3 implies that

ek−1 ⌣ δ(µ) ̸= 0 in H∗
S1(X∗,R

n
∗ ),

and therefore, by the injectivity of the homomorphism (A.1),

ek−1 ⌣ δ(µ) ̸= 0 in H∗
S1(W,W ∩Rn∗ ). (A.3)

Lemma A.2 implies indFR(C
q
∗) = q. Therefore, another application of Lemma A.3

implies that

eq ⌣ δ(µ) = 0 in H∗
S1((Cq ⊕Rn)∗,Rn∗ ).

By applying ψ∗, we obtain eq ⌣ δ(µ) = 0 in H∗
S1(V, V ∩Rn∗ ), and therefore

eq ⌣ δ(µ) ∈ H∗
S1(W,V ).

Since indFR(U) ≤ k − q − 1, we have

ek−q−1 ∈ H∗
S1(W,U).
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Finally

ek−1 ⌣ δ(µ) = ek−q−1 ⌣ (eq ⌣ δ(µ)) ∈ H∗
S1(W,U ∪ V ) = H∗

S1(W,W ) = 0,

which contradicts (A.3). □
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807–851. MR4436034

[APB14] J. C. Alvarez Paiva and F. Balacheff, Contact geometry and isosystolic inequalities,

Geom. Funct. Anal. 24 (2014), no. 2, 648–669. MR3192037
[BK21] Gabriele Benedetti and Jungsoo Kang, A local contact systolic inequality in dimension

three, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 3, 721–764. MR4210723

[CGM20] Daniel Cristofaro-Gardiner and Marco Mazzucchelli, The action spectrum character-
izes closed contact 3-manifolds all of whose Reeb orbits are closed, Comment. Math.

Helv. 95 (2020), no. 3, 461–481. MR4152621

[Edt22] Oliver Edtmair, Disk-like surfaces of section and symplectic capacities, 2022.
arXiv:2206.07847.

[EH87] I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their periodic

trajectories, Comm. Math. Phys. 113 (1987), no. 3, 419–469. MR925924
[EH89] I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z.

200 (1989), no. 3, 355–378. MR978597
[EH90] Ivar Ekeland and Helmut Hofer, Symplectic topology and Hamiltonian dynamics. II,

Math. Z. 203 (1990), no. 4, 553–567. MR1044064
[FHR82] E. R. Fadell, S. Y. Husseini, and P. H. Rabinowitz, Borsuk-Ulam theorems for arbi-

trary S1 actions and applications, Trans. Amer. Math. Soc. 274 (1982), no. 1, 345–
360. MR670937

[FR78] Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories
for Lie group actions with an application to bifurcation questions for Hamiltonian

systems, Invent. Math. 45 (1978), no. 2, 139–174. MR478189
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[Moa94] Laurent Moatty, Capacités et équivalence symplectique des domaines de Reinhardt,

1994. Ph.D. Thesis, Université Toulouse III - Paul Sabatier.
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