ON POTENTIALS WHOSE LEVEL SETS ARE ORBITS

PHILIPPE BOLLE, MARCO MAZZUCCHELLI, AND ANDREA VENTURELLI

Abstract

A level orbit of a mechanical Hamiltonian system is a solution of Newton equation that is contained in a level set of the potential energy. In 2003, Mark Levi asked for a characterization of the smooth potential energy functions on the plane with the property that any point on the plane lies on a level orbit; we call such functions Levi potentials. The basic examples are the radial monotone increasing smooth functions. In this paper we show that any Levi potential that is analytic or has totally path-disconnected critical set must be radial. Nevertheless, we show that every compact convex subset of the plane is the critical set of a Levi potential. A crucial observation for these theorems is that, outside the critical set, the family of level sets of a Levi potential forms a solution of the inverse curvature flow.

Contents

1. Introduction 1
1.1. Organization of the paper 3
1.2. Acknowledgments 3
2. The inverse curvature flow 3
2.1. The PDE 3
2.2. Rescaled solutions 4
2.3. Proof of the propositions 5
2.4. Evolution of the support functions 9
3. Levi potentials 11
3.1. Level orbits 11
3.2. Relations with the inverse curvature flow 12
3.3. Level sets of a Levi potential 13
3.4. Analytic Levi potential 16
3.5. Levi potentials with prescribed critical set 18
References 20

1. Introduction

Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth (meaning C^{∞}) function, which will play the role of a potential energy, and consider a solution $q: I \rightarrow \mathbb{R}$ of the Newton equation $\ddot{q}=-\nabla U(q)$ defined on a maximal time interval $I \subset \mathbb{R}$. Such a solution is called a level orbit when the function $s \mapsto U(q(s))$ is constant on I. In 2003, Mark Levi [Lev03] asked for a characterization of the smooth potentials $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with the property that any point of \mathbb{R}^{2} lies on a level orbit. We refer to the functions U satisfying this property as to Levi potentials. The basic examples are

[^0]the radial functions $U: \mathbb{R}^{2} \rightarrow \mathbb{R}, U(q)=u\left(\left\|q-q_{0}\right\|^{2}\right)$, where $u:[0,+\infty) \rightarrow \mathbb{R}$ is a monotone increasing smooth function. Indeed, any point $q_{1} \in \mathbb{R}^{2}$ lies on the level orbit $q(t)=e^{\omega t J}\left(q_{1}-q_{0}\right)+q_{0}$, where $\omega^{2}=2 \dot{u}\left(\left\|q-q_{0}\right\|^{2}\right)$ and $J: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, $J(x, y)=(-y, x)$ is the complex structure of \mathbb{R}^{2}.

Clearly, one can easily construct a non-radial Levi potential V by patching together radial ones: given a constant $c \in \mathbb{R}$, a finite family of pairwise disjoint open balls $B_{i}=B^{2}\left(q_{i}, r_{i}\right) \subset \mathbb{R}^{2}$, and monotone increasing smooth functions $u_{i}:[0,+\infty) \rightarrow \mathbb{R}$ such that $\left.u_{i}\right|_{\left[r_{i},+\infty\right)} \equiv c$, a Levi potential is given by

$$
V(q)= \begin{cases}u_{i}\left(\left\|q-q_{i}\right\|^{2}\right), & q \in B_{i}, \\ c, & q \notin \bigcup_{i} B_{i} .\end{cases}
$$

Notice that the critical set of V contains the boundaries of all the balls B_{i}, and in particular is not totally path-disconnected. Our first theorem asserts that this is indeed necessary for an exotic (meaning non-radial) Levi potential.

Theorem A. Any Levi potential $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ whose critical set $\operatorname{crit}(U)$ is totally path-disconnected has a unique critical point and is radial.

In the real analytic category, the situation is completely rigid, as asserted by our second theorem.

Theorem B. Any analytic Levi potential is radial.
Nevertheless, more exotic (non-analytic) Levi potentials, not obtained by just patching radial ones together, do exist.

Theorem C. For any non-empty compact convex subset $C \subset \mathbb{R}^{2}$ there exist a Levi potential $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with critical set $\operatorname{crit}(U)=C$.

The crucial observation behind the proofs of these theorems is the link between Levi potentials and the solutions of the inverse curvature flow in the Euclidean plane, which is the geometric evolution $\operatorname{PDE} \partial_{t} \gamma_{t}(s)=K_{\gamma_{t}}(s)^{-1} N_{\gamma_{t}}(s)$. Here γ_{t} is a family of smooth curves on the plane with negative normal vector field $N_{\gamma_{t}}$ and signed geodesic curvature $K_{\gamma_{t}}$. As it turns out, outside the critical set of a Levi potential U, the family of level curves $U^{-1}(c), c \in \mathbb{R}$, can be parametrized into a solution of the inverse curvature flow (Proposition 3.3).

There is a large literature on geometric flows for families of curves evolving according to a function f of the curvature, such as the curve shortening flow [Gag83, Gag84, Gra89] for $f=\mathrm{id}$, and flows allowing general monotone decreasing f [CT96]. Generalization of the inverse curvature flow in higher dimension has also been widely studied in the literature since the work of Gerhardt [Ger90], Urbas [Urb91], and Huisken-Ilmanen [HI01, HI08]. For the proofs of Theorems A and B, we will need a recent result of Risa and Sinestrari [RS20], which in low dimension asserts that the unique curves admitting solutions of the inverse curvature flow for all negative times are the round circles (Proposition 2.3). We will also need a new result on the non-existence of solutions of the inverse curvature flow starting on properly embedded open curves (Proposition 2.4).

While the present work focuses on mechanical Hamiltonian systems on the plane, one could generalize the notion of Levi potential to higher dimensions in several possible ways. Such generalizations, and rigidity/flexibility results in the spirit of Theorems A, B, and C, are the subject of ongoing investigation.
1.1. Organization of the paper. In Section 2, we recall some known features of the inverse curvature flow, and establish a few new ones. In particular, we provide a short proof of the low dimensional version of Risa and Sinestrari's theorem (Proposition 2.3), the proof of the non-existence of solutions of the inverse curvature flow starting on properly embedded open curves (Proposition 2.4), and the proof of the existence of solutions starting on curves that are the boundary of a given convex compact set (Lemmas 2.8 and 2.9). In Section 3, we establish several properties of Levi potentials, in particular drawing the connection with the inverse curvature flow, and prove Theorems A, B, and C.
1.2. Acknowledgments. We thank Mark Levi for raising the original question that motivated the present work.

2. The inverse curvature flow

2.1. The PDE. Let $J: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, J(x, y)=(-y, x)$ be the complex structure of \mathbb{R}^{2}. For a smooth immersed curve $\gamma: \mathbb{R} \leftrightarrow \mathbb{R}^{2}$, we denote by $T_{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ its positive unit tangent vector field, by $N_{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ its negative normal vector field, and by $K_{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ its signed geodesic curvature, i.e.

$$
T_{\gamma}(s)=\frac{\dot{\gamma}(s)}{\|\dot{\gamma}(s)\|}, \quad N_{\gamma}(s)=-J T_{\gamma}(s), \quad K_{\gamma}(s)=-\frac{\left\langle\dot{T}_{\gamma}(s), N_{\gamma}(s)\right\rangle}{\|\dot{\gamma}(s)\|}
$$

We consider the PDE

$$
\begin{equation*}
\partial_{t} \gamma_{t}=\frac{N_{\gamma_{t}}}{K_{\gamma_{t}}} \tag{2.1}
\end{equation*}
$$

where each γ_{t} is a smooth immersed curve as above with nowhere-vanishing geodesic curvature. If (2.1) admits a family of solutions γ_{t} for $t \in\left(t_{0}, t_{1}\right)$, we say that such family evolves according to the inverse curvature flow.

Example 2.1. The simplest example of solution of the inverse curvature flow is the circular one, given by

$$
\gamma_{t}(s):=q_{0}+e^{t} e^{v s J} q_{1}, \quad \forall t, s \in \mathbb{R},
$$

where $q_{0} \in \mathbb{R}^{2}, q_{1} \in \mathbb{R}^{2} \backslash\{0\}$, and $v \in \mathbb{R} \backslash\{0\}$. Every γ_{t} is a $2 \pi|v|^{-1}$-periodic parametrization of a circle of radius $e^{t}\left\|q_{1}\right\|$ centered at q_{0}.

Notice that the $\operatorname{PDE}(2.1)$ is geometric: if $\gamma_{t}(s)$ is a solution defined for all $t \in\left(t_{0}, t_{1}\right)$ and $s \in\left(s_{0}, s_{1}\right)$, the composition of the family of curves γ_{t} with a diffeomorphism of the form $\left(s_{0}^{\prime}, s_{1}^{\prime}\right) \rightarrow\left(s_{0}, s_{1}\right)$ is still a solution. The following lemma describes the evolution of the speed of the solutions.

Lemma 2.2. Let γ_{t} be a solution of (2.1). Then $\left\|\dot{\gamma}_{t_{1}}(s)\right\|=e^{t_{1}-t_{0}}\left\|\dot{\gamma}_{t_{0}}(s)\right\|$ for all s, t_{0}, t_{1} for which both sides are defined.
Proof. Since $\dot{N}_{\gamma_{t}}=K_{\gamma_{t}} \dot{\gamma}_{t}$, we have

$$
\begin{aligned}
\partial_{t}\left(\left\|\dot{\gamma}_{t}(s)\right\|^{2}\right) & =2\left\langle\dot{\gamma}_{t}(s), \partial_{t} \dot{\gamma}_{t}(s)\right\rangle=2\left\langle\dot{\gamma}_{t}(s), \partial_{s}\left(\frac{N_{\gamma_{t}}(s)}{K_{\gamma_{t}}(s)}\right)\right\rangle \\
& =2\left\langle\dot{\gamma}_{t}(s), \frac{\dot{N}_{\gamma_{t}}(s)}{K_{\gamma_{t}}(s)}\right\rangle=2\left\|\dot{\gamma}_{t}(s)\right\|^{2} .
\end{aligned}
$$

Therefore, for any fixed s, the function $t \mapsto\left\|\dot{\gamma}_{t}(s)\right\|^{2}$ is a solution of the ODE $\partial_{t}\left(\left\|\dot{\gamma}_{t}(s)\right\|^{2}\right)=2\left\|\dot{\gamma}_{t}(s)\right\|^{2}$, and our claim follows.

Lemma 2.2 implies that each curve γ_{t} in a family evolving under the inverse curvature flow is parametrized with constant speed provided the same is true for one value of t. Therefore, from now on, we will always assume that $\partial_{s}\left\|\dot{\gamma}_{t}(s)\right\| \equiv 0$. Notice that, if γ_{0} is a periodic curve, all the γ_{t} are periodic curves of the same period; up to a time-reparametrization independent of t, all such curves γ_{t} can be defined on the circle $\mathbb{S}^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$.

The following statement, due to Risa-Sinestrari [RS20], is one of the ingredients for Theorem A and B. Actually, their result holds in arbitrary dimension for certain hypersurfaces evolving with the inverse mean-curvature flow. For the reader convenience, we shall provide a simple proof of the stated low dimensional result in Section 2.3.

Proposition 2.3. The only periodic solutions $\gamma_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ of the inverse curvature flow defined for all $t \leq 0$ are the circular ones (Example 2.1).

We will also need the following non-existence result, proved in Section 2.3.
Proposition 2.4. There is no solution of the inverse curvature flow γ_{t}, defined for $t \in[0, \epsilon]$ with $\epsilon>0$, such that $\gamma_{0}: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ is a proper embedding.

Proposition 2.4 does not hold in higher dimension: Daskalopoulos-Huisken [DH22] proved a global existence result for the inverse mean curvature flow in \mathbb{R}^{n+1}, with $n \geq 2$, starting from a strictly mean convex starshaped entire graph with superlinear growth at infinity.
2.2. Rescaled solutions. Let γ_{t} be a solution of the inverse curvature flow defined for all t in some interval containing 0 . We assume without loss of generality that each γ_{t} is parametrized with constant speed. Clearly, the image of γ_{t} under a homothety is still a solution of the inverse curvature flow. Therefore, up to rescaling γ_{0} by scalar multiplication with $\left\|\dot{\gamma}_{0}\right\|^{-1}$, we can assume without loss of generality that $\left\|\dot{\gamma}_{0}\right\| \equiv 1$, and Lemma 2.2 implies $\left\|\dot{\gamma}_{t}\right\| \equiv e^{t}$. We define the rescaled curves $\sigma_{t}:=e^{-t} \gamma_{t}$, which are parametrized with unit speed $\left\|\dot{\sigma}_{t}\right\| \equiv 1$.

Lemma 2.5. The curves σ_{t} satisfy the $P D E$

$$
\partial_{t} \sigma_{t}=-\sigma_{t}+\frac{N_{\sigma_{t}}}{K_{\sigma_{t}}}
$$

The associated functions $a_{t}(s):=K_{\sigma_{t}}(s)^{-1}$ satisfy the PDE

$$
\partial_{t} a_{t}=a_{t}^{2} \ddot{a}_{t} .
$$

Proof. Notice that $\dot{\sigma}_{t}=T_{\gamma_{t}}, N_{\sigma_{t}}=N_{\gamma_{t}}$, and $K_{\sigma_{t}}=e^{t} K_{\gamma_{t}}$. This, together with the usual relations $\ddot{\sigma}_{t}=-K_{\sigma_{t}} N_{\sigma_{t}}$ and $\dot{N}_{\sigma_{t}}=K_{\sigma_{t}} \dot{\sigma}_{t}$, implies

$$
\partial_{t} \sigma_{t}=-e^{-t} \gamma_{t}+\frac{N_{\gamma_{t}}}{e^{t} K_{\gamma_{t}}}=-\sigma_{t}+\frac{N_{\sigma_{t}}}{K_{\sigma_{t}}} .
$$

We compute

$$
\begin{aligned}
\partial_{s}^{2} \partial_{t} \sigma_{t} & =\partial_{s}^{2}\left(-\sigma_{t}+\frac{N_{\sigma_{t}}}{K_{\sigma_{t}}}\right)=\partial_{s}(\underbrace{-\dot{\sigma}_{t}+\frac{\dot{N}_{\sigma_{t}}}{K_{\sigma_{t}}}}_{=0}+\dot{a}_{t} N_{\sigma_{t}}) \\
& =\ddot{a}_{t} N_{\sigma_{t}}+\dot{a}_{t} \dot{N}_{\sigma_{t}}=\ddot{a}_{t} N_{\sigma_{t}}+\frac{\dot{a}_{t}}{a_{t}} \dot{\sigma}_{t} .
\end{aligned}
$$

Switching the order of the derivatives on the left-hand side, we obtain

$$
\begin{aligned}
\partial_{t} \ddot{\sigma}_{t} & =-\partial_{t}\left(K_{\sigma_{t}} N_{\sigma_{t}}\right)=-\left(\partial_{t} K_{\sigma_{t}}\right) N_{\sigma_{t}}-K_{\sigma_{t}}\left(\partial_{t} N_{\sigma_{t}}\right) \\
& =\frac{\partial_{t} a_{t}}{a_{t}^{2}} N_{\sigma_{t}}-K_{\sigma_{t}}\left(\partial_{t} N_{\sigma_{t}}\right)
\end{aligned}
$$

Notice that $\left\langle\partial_{t} N_{\sigma_{t}}, N_{\sigma_{t}}\right\rangle=\frac{1}{2} \partial_{t}\left\|N_{\sigma_{t}}\right\|^{2}=0$. Therefore,

$$
\ddot{a}_{t}=\left\langle\partial_{s}^{2} \partial_{t} \sigma_{t}, N_{\sigma_{t}}\right\rangle=\left\langle\partial_{t} \ddot{\sigma}_{t}, N_{\sigma_{t}}\right\rangle=\frac{\partial_{t} a_{t}}{a_{t}^{2}} .
$$

Lemma 2.6. If γ_{t} is periodic, then it is a circular solution of the inverse curvature flow (Example 2.1) if and only if $\dot{a}_{t} \equiv 0$ for all values of t.

Proof. If γ_{t} is a circular solution of the inverse curvature flow, for each value of t the curvature $K_{\gamma_{t}}$ is constant, and therefore $\dot{a}_{t} \equiv 0$. Conversely, if $\dot{a}_{t} \equiv 0$ for all values of t for which γ_{t} is defined, then each γ_{t} is a curve of constant curvature. Namely, each γ_{t} is a $2 \pi|v|^{-1}$-periodic parametrization with constant speed of a round circle of radius $e^{t} r>0$, and therefore has the form

$$
\gamma_{t}(s)=q_{t}+e^{t} e^{v s J} p
$$

for some $q_{t} \in \mathbb{R}^{2}, p \in \mathbb{R}^{2}$ with $\|p\|=r>0$, and $v \in \mathbb{R} \backslash\{0\}$. The inverse curvature flow PDE (2.1) can be rewritten as

$$
\partial_{t} q_{t}+e^{t} e^{v s J} p=e^{t} e^{v s J} p
$$

which implies $\partial_{t} q_{t} \equiv 0$. Therefore $q_{t}=q_{0}$ for all t, and γ_{t} is a circular solution of the inverse curvature flow.
2.3. Proof of the propositions. In this subsection we carry out the proofs of the statements given in Section 2.1.

Proof of Proposition 2.3. Let $\gamma_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ be a periodic solution of the inverse curvature flow defined for all $t \leq 0$. Up to rescaling and reparametrization, we can assume that $K_{\gamma_{0}}>0$ and $\left\|\dot{\gamma}_{0}\right\| \equiv 1$, so that we are in the setting of Section 2.2. We wish to prove that that γ_{t} is a circular solution of the inverse curvature flow, or equivalently that the function $a_{t}: \mathbb{S}^{1} \rightarrow(0,+\infty)$ is constant for all $t \leq 0$ (Lemma 2.6). We proceed by contradiction, assuming that

$$
\begin{equation*}
\dot{a}_{0} \not \equiv 0 \tag{2.2}
\end{equation*}
$$

Since

$$
\frac{d}{d t} \int_{\mathbb{S}^{1}} \frac{1}{a_{t}(s)} d s=-\int_{\mathbb{S}^{1}} \frac{\partial_{t} a_{t}(s)}{a_{t}(s)^{2}} d s=-\int_{\mathbb{S}^{1}} \ddot{a}_{t}(s) d s=0
$$

we have a constant value

$$
c_{0}:=\int_{\mathbb{S}^{1}} \frac{1}{a_{t}(s)} d s \leq \frac{2 \pi}{\min _{s \in \mathbb{S}^{1}} a_{t}(s)}, \quad \forall t \leq 0
$$

In particular

$$
\begin{equation*}
c_{1}:=\sup _{t \leq 0} \min _{s \in \mathbb{S}^{1}} a_{t}(s)<+\infty \tag{2.3}
\end{equation*}
$$

We define the smooth function

$$
b:(-\infty, 0] \rightarrow \mathbb{R}, \quad b(t):=\int_{\mathbb{S}^{1}} \ln \left(a_{t}(s)\right) d s
$$

Its derivative is non-positive, for

$$
\dot{b}(t)=\int_{\mathbb{S}^{1}} \frac{\partial_{t} a_{t}(s)}{a_{t}(s)} d s=\int_{\mathbb{S}^{1}} a_{t}(s) \ddot{a}_{t}(s) d s=-\int_{\mathbb{S}^{1}} \dot{a}_{t}(s)^{2} d s \leq 0
$$

By (2.2), we have $\dot{b}(0)<0$. Moreover

$$
\begin{aligned}
\ddot{b}(t) & =-\int_{\mathbb{S}^{1}} 2 \dot{a}_{t}(s) \partial_{t} \dot{a}_{t}(s) d s=-\int_{\mathbb{S}^{1}} 2 \dot{a}_{t}(s) \partial_{s}\left(a_{t}(s)^{2} \ddot{a}_{t}(s)\right) d s \\
& =\int_{\mathbb{S}^{1}} 2 \ddot{a}_{t}(s)^{2} a_{t}(s)^{2} d s \geq 0
\end{aligned}
$$

Therefore b is a convex function with negative derivative at the origin, and therefore

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} b(t)=+\infty \tag{2.4}
\end{equation*}
$$

The inequality

$$
b(t) \leq 2 \pi \ln \left(\max _{s \in \mathbb{S}^{1}} a_{t}(s)\right)
$$

together with (2.3), implies that

$$
\max _{s \in \mathbb{S}^{1}} a_{t}(s)-\min _{s \in \mathbb{S}^{1}} a_{t}(s) \geq e^{b(t) / 2 \pi}-c_{1}
$$

By (2.4), there exists $t_{0}<0$ such that

$$
\max _{s \in \mathbb{S}^{1}} a_{t}(s)-\min _{s \in \mathbb{S}^{1}} a_{t}(s) \geq \frac{e^{b(t) / 2 \pi}}{2}, \quad \forall t \leq t_{0}
$$

This, together with the opposite estimate

$$
\max _{s \in \mathbb{S}^{1}} a_{t}(s)-\min _{s \in \mathbb{S}^{1}} a_{t}(s) \leq \int_{\mathbb{S}^{1}}\left|\dot{a}_{t}(s)\right| d s \leq \sqrt{2 \pi}\left(\int_{\mathbb{S}^{1}} \dot{a}_{t}(s)^{2} d s\right)^{1 / 2}=\sqrt{-2 \pi \dot{b}(t)}
$$

implies that

$$
\dot{b}(t) \leq-\frac{e^{b(t) / \pi}}{8 \pi}, \quad \forall t \leq t_{0}
$$

This differential inequality cannot be satisfied for large negative values of t. Indeed, the positive function $f(t):=e^{-b(t) / \pi}$ has derivative

$$
\dot{f}(t)=-\frac{e^{-b(t) / \pi} \dot{b}(t)}{\pi} \geq \frac{1}{8 \pi^{2}}, \quad \forall t \leq t_{0}
$$

But this implies that $f(t)<0$ for large negative values of t, which gives a contradiction.

The proof of Proposition 2.4 requires the following elementary property of embedded open curves in the plane.

Lemma 2.7. Let $\gamma: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ be an embedding parametrized with unit speed $\|\dot{\gamma}\| \equiv 1$ and with positive curvature $K_{\gamma}>0$, and consider the integral curvature

$$
\Delta_{\gamma}:=\int_{-\infty}^{+\infty} K_{\gamma}(s) d s
$$

Then one of the following two points holds.
(i) $\Delta_{\gamma} \leq \pi$, and the embedding $\gamma: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ is proper.
(ii) $\Delta_{\gamma}=+\infty$, and at least one of the half curves $\left.\gamma\right|_{(-\infty, 0]}$ or $\left.\gamma\right|_{[0,+\infty)}$ is bounded.

Figure 1

Proof. We identify \mathbb{R}^{2} with the complex plane \mathbb{C}, and write the velocity vectors as $\dot{\gamma}(s)=e^{i \theta(s)}$ for some smooth functions $\theta: \mathbb{R} \rightarrow \mathbb{R}$, so that $K_{\gamma}(s)=\dot{\theta}(s)$. Since K_{γ} is positive, we have limits

$$
\theta_{ \pm}:=\lim _{s \rightarrow \pm \infty} \theta(s)
$$

and $\Delta_{\gamma}=\theta_{+}-\theta_{-}$. If θ_{+}is finite, we have

$$
\lim _{s \rightarrow+\infty} \frac{\left\|\gamma(s)-s e^{i \theta_{+}}\right\|}{s}=0
$$

and in particular $\|\gamma(s)\|$ diverges as $s \rightarrow+\infty$. Analogously, if θ_{-}is finite, then $\|\gamma(s)\|$ diverges as $s \rightarrow-\infty$. If $\Delta_{\gamma} \leq \pi$, then both θ_{+}and θ_{-}are finite, and therefore $\gamma: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ is proper.

Assume now that $\Delta_{\gamma}>\pi$, so that we can find $s_{1}<s_{2}$ such that $\theta\left(s_{2}\right)-\theta\left(s_{1}\right) \in$ $(\pi, 2 \pi)$. The lines $\ell_{1}:=\gamma\left(s_{1}\right)+\mathbb{R} \dot{\gamma}\left(s_{1}\right)$ and $\ell_{2}:=\gamma\left(s_{2}\right)+\mathbb{R} \dot{\gamma}\left(s_{2}\right)$ are not parallel, and therefore intersect. Consider the compact set $C \subset \mathbb{R}^{2}$ bounded by $\gamma\left(\left[s_{1}, s_{2}\right]\right)$ together with portions of the lines ℓ_{1} and ℓ_{2} (Figure 1(a)). If $\gamma\left(\left(-\infty, s_{1}\right]\right) \subset C$ then $\theta_{-}=-\infty$; if instead $\gamma\left(\left(-\infty, s_{1}\right]\right)$ exits C, the positivity of the curvature $K_{\gamma}>0$ implies that there exists $s_{0}<s_{1}$ such that $\gamma\left(\left[s_{0}, s_{1}\right]\right) \subset C$ and $\gamma\left(s_{0}\right) \in \ell_{2}$ (Figure 1(b)). Analogous properties hold for the other end of the curve: if $\gamma\left(\left[s_{2},+\infty\right)\right) \subset C$ then $\theta_{+}=+\infty$; if instead $\gamma\left(\left[s_{2},+\infty\right)\right)$ exits C, then there exists $s_{3}>s_{2}$ such that $\gamma\left(\left[s_{2}, s_{3}\right]\right) \subset C$ and $\gamma\left(s_{3}\right) \in \ell_{1}$. This readily implies that $\gamma\left(\left(-\infty, s_{1}\right]\right)$ and $\gamma\left(\left[s_{2},+\infty\right)\right)$ cannot both exit C, for otherwise γ would have a self-intersection. Hence at least one of the inclusions $\gamma\left(\left(-\infty, s_{1}\right]\right) \subset C$ and $\gamma\left(\left[s_{2},+\infty\right)\right) \subset C$ must hold, and $\Delta_{\gamma}=+\infty$.

Proof of Proposition 2.4. Assume by contradiction that there exists a family of curves γ_{t}, for $t \in[0, \epsilon]$, evolving according to the inverse curvature flow, such that $\gamma_{0}: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ is a proper embedding. Up to rescaling and reparametrization, we can assume that each γ_{t} has positive curvature $K_{\gamma_{t}}>0$ and that γ_{0} has unit speed $\left\|\dot{\gamma}_{0}\right\| \equiv 1$, so that once again we are in the setting of Section 2.2. Notice that the associated curves $\sigma_{t}=e^{-t} \gamma_{t}$ have also positive curvature $K_{\sigma_{t}}>0$. By Lemma 2.7, we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty} K_{\sigma_{0}}(s) \leq \pi \tag{2.5}
\end{equation*}
$$

In order to derive a contradiction, let us consider the inverse curvature function $a_{t}(s)=K_{\sigma_{t}}(s)^{-1}$, as in Section 2.2, and define, for $T \in[0, \epsilon]$,

$$
A_{T}(s):=\int_{0}^{T} a_{t}(s) d t
$$

Let us compute the derivative

$$
\begin{align*}
\dot{A}_{T}(S) & =\dot{A}_{T}(0)+\int_{0}^{S} \ddot{A}_{T}(s) d s=\dot{A}_{T}(0)+\int_{0}^{S} \int_{0}^{T} \ddot{a}_{t}(s) d t d s \\
& =\dot{A}_{T}(0)+\int_{0}^{S} \int_{0}^{T} \frac{\partial_{t} a_{t}(s)}{a_{t}(s)^{2}} d t d s=\dot{A}_{T}(0)-\int_{0}^{S} \int_{0}^{T} \partial_{t}\left(a_{t}(s)^{-1}\right) d t d s \\
& =\dot{A}_{T}(0)-\int_{0}^{S}\left(a_{T}(s)^{-1}-a_{0}(s)^{-1}\right) d s \\
& =\dot{A}_{T}(0)+\int_{0}^{S} K_{\sigma_{0}}(s) d s-\int_{0}^{S} K_{\sigma_{T}}(s) d s \tag{2.6}
\end{align*}
$$

Hence

$$
\dot{A}_{T}(S)-\dot{A}_{T}(-S)=\int_{-S}^{S} K_{\sigma_{0}}(s) d s-\int_{-S}^{S} K_{\sigma_{T}}(s) d s
$$

We infer

$$
\liminf _{S \rightarrow+\infty} \int_{-S}^{S} K_{\sigma_{T}}(s) d s=\liminf _{S \rightarrow+\infty}\left(\int_{-S}^{S} K_{\sigma_{0}}(s) d s+\dot{A}_{T}(-S)-\dot{A}_{T}(S)\right) \leq \pi
$$

The latter inequality is a consequence of (2.5) and of the fact that, by the positivity of the map $S \mapsto A_{T}(S)+A_{T}(-S), \liminf _{S \rightarrow+\infty}-\dot{A}_{T}(S)+\dot{A}_{T}(-S) \leq 0$. Hence

$$
\begin{equation*}
\int_{-\infty}^{+\infty} K_{\sigma_{T}}(s) d s \leq \pi, \quad \forall T \in[0, \epsilon] \tag{2.7}
\end{equation*}
$$

We claim that $1 / A_{\epsilon}$ is an L^{1}-function, i.e.

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{1}{A_{\epsilon}(s)} d s<+\infty \tag{2.8}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\epsilon & =\int_{0}^{\epsilon} \frac{\sqrt{a_{t}(s)}}{\sqrt{a_{t}(s)}} d t \leq\left(\int_{0}^{\epsilon} a_{t}(s) d t\right)^{1 / 2}\left(\int_{0}^{\epsilon} \frac{1}{a_{t}(s)} d t\right)^{1 / 2} \\
& =\sqrt{A_{\epsilon}(s)}\left(\int_{0}^{\epsilon} \frac{1}{a_{t}(s)} d t\right)^{1 / 2}
\end{aligned}
$$

and therefore, by (2.7),

$$
\int_{-\infty}^{+\infty} \frac{1}{A_{\epsilon}(s)} d s \leq \frac{1}{\epsilon^{2}} \int_{0}^{\epsilon} \int_{-\infty}^{+\infty} \frac{1}{a_{t}(s)} d s d t \leq \frac{\pi}{\epsilon}
$$

Now (2.6) together with (2.7) and the fact that $K_{\sigma_{T}}(s)>0$, implies that

$$
\sup _{s \in \mathbb{R}}\left|\dot{A}_{\epsilon}(s)\right| \leq\left|\dot{A}_{\epsilon}(0)\right|+\pi
$$

Therefore, we have a linear bound

$$
A_{\epsilon}(s) \leq A_{\epsilon}(0)+\left(\left|\dot{A}_{\epsilon}(0)\right|+\pi\right)|s|, \quad \forall s \in \mathbb{R}
$$

which contradicts the integrability (2.8).
2.4. Evolution of the support functions. Let $\gamma: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}$ be an embedded smooth curve with positive curvature, which parametrizes the smooth boundary of a convex compact subset $C_{\gamma} \subset \mathbb{R}^{2}$. Let us recall the classical notion of support function of a convex body: for $C_{\gamma} \subset \mathbb{R}^{2}$, it is the smooth function

$$
h_{\gamma}: \mathbb{S}^{1} \rightarrow \mathbb{R}, \quad h_{\gamma}(s)=\max _{q \in C_{\gamma}}\langle q, u(s)\rangle,
$$

where $u(s)=(\cos (s), \sin (s))$, and it satisfies $h_{\gamma}+\ddot{h}_{\gamma}>0$. Conversely, any smooth function $h: \mathbb{S}^{1} \rightarrow \mathbb{R}$ such that $h+\ddot{h}>0$ is the support function $h=h_{\gamma}$ of a unique (up to reparametrization) embedded smooth curve $\gamma: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}$ with positive curvature, given by

$$
\gamma(s)=h_{\gamma}(s) u(s)+\dot{h}_{\gamma}(s) J u(s)
$$

The velocity vector of γ can be expressed as

$$
\dot{\gamma}=\dot{h}_{\gamma} u+h_{\gamma} J u+\ddot{h}_{\gamma} J u+\dot{h}_{\gamma} J J u=\left(h_{\gamma}+\ddot{h}_{\gamma}\right) J u
$$

and its curvature as

$$
\begin{equation*}
K_{\gamma}(s)=\frac{\left\langle\dot{\gamma}, \dot{N}_{\gamma}\right\rangle}{\|\dot{\gamma}\|^{2}}=\frac{1}{\|\dot{\gamma}\|}=\frac{1}{h_{\gamma}+\ddot{h}_{\gamma}} \tag{2.9}
\end{equation*}
$$

The family of support functions of periodic curves evolving with the inverse curvature flow is described by the following well known statement, which is a particular case of a result of Tso [Tso85, Urb91, CT96]. We provide the short proof here for the reader's convenience.

Lemma 2.8. Let I be an interval with non-empty interior. A smooth family of functions $h_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}, t \in I$, satisfies

$$
\begin{equation*}
\partial_{t} h_{t}=h_{t}+\ddot{h}_{t}>0 \tag{2.10}
\end{equation*}
$$

if and only if $h_{t}=h_{\gamma_{t}}$ for a suitably parametrized smooth family of embedded periodic curves with positive curvature $\gamma_{t}: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}$ that satisfies the inverse curvature PDE (2.1).

Proof. Let $\gamma_{t}: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}, t \in I$, be a family of smooth embedded periodic curves of positive curvature evolving with the inverse curvature flow (2.1). There is a unique smooth family of diffeomorphisms $\theta_{t}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ such that the reparametrized curves $\zeta_{t}:=\gamma_{t} \circ \theta_{t}$ have negative normal vector field $N_{\zeta_{t}}(s)=u(s)$, and thus velocity vector $\dot{\zeta}_{t}=\left\|\dot{\zeta}_{t}\right\| J u$. The associated support functions $h_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}$, given by $h_{t}(s)=\left\langle u(s), \zeta_{t}(s)\right\rangle$, allow to write the curves as $\zeta_{t}=h_{t} u+\dot{h}_{t} J u$. Since the family of curves $\zeta_{t}: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}$ satisfies (2.1), by (2.9) we infer

$$
\partial_{t} h_{t}=\left\langle u, \partial_{t} \zeta_{t}\right\rangle=\frac{1}{K_{\zeta_{t}}}=\left\|\dot{\zeta}_{t}\right\|=h_{t}+\ddot{h}_{t}
$$

and the last equality also implies that these terms are positive.
Conversely, assume that $h_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}, t \in I$, satisfies (2.10). Since $\ddot{h}_{t}+h_{t}>0$, the associated family of curves $\zeta_{t}: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}, \zeta_{t}(s)=h_{t}(s) u(s)+\dot{h}_{t}(s) J u(s)$ has positive curvature $K_{\zeta_{t}}=\left(\ddot{h}_{t}+h_{t}\right)^{-1}=\left\|\dot{\zeta}_{t}\right\|^{-1}$, and we have

$$
\partial_{t} \zeta_{t}=\partial_{t} h_{t} u+\partial_{t} \dot{h}_{t} J u=\left(\ddot{h}_{t}+h_{t}\right) N_{\zeta_{t}}+\partial_{t}\left\langle J u, \zeta_{t}\right\rangle J u=\frac{N_{\zeta_{t}}}{K_{\zeta_{t}}}+\underbrace{\left\langle J u, \partial_{t} \zeta_{t}\right\rangle}_{=: f_{t}} T_{\zeta_{t}}
$$

Let $\theta_{t}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be the smooth family of diffeomorphisms defined by $\theta_{t_{0}}=$ id for an arbitrarily chosen $t_{0} \in I$, and satisfying the ODE

$$
\partial_{t} \theta_{t}(s)=-K_{\zeta_{t}}\left(\theta_{t}(s)\right) f_{t}\left(\theta_{t}(s)\right)
$$

The smooth family of reparametrized curves $\gamma_{t}:=\zeta_{t} \circ \theta_{t}$ satisfies

$$
\begin{aligned}
\partial_{t} \gamma_{t} & =\frac{N_{\gamma_{t}}}{K_{\gamma_{t}}}+\left(f_{t} \circ \theta_{t}\right) T_{\gamma_{t}}+\left(\dot{\zeta}_{t} \circ \theta_{t}\right) \partial_{t} \theta_{t} \\
& =\frac{N_{\gamma_{t}}}{K_{\gamma_{t}}}+\left(f_{t} \circ \theta_{t}+\frac{\partial_{t} \theta_{t}}{K_{\gamma_{t}}}\right) T_{\zeta_{t}}=\frac{N_{\gamma_{t}}}{K_{\gamma_{t}}}
\end{aligned}
$$

In Theorem C, we will need to deal with a given general convex compact set $C \subset \mathbb{R}^{2}$, which potentially may have empty interior or non-smooth boundary. Its associated support function

$$
h: \mathbb{S}^{1} \rightarrow \mathbb{R}, \quad h(s)=\max _{q \in C}\langle q, u(s)\rangle
$$

is continuous, and while it is not necessarily smooth, nevertheless it still satisfies the inequality $h+\ddot{h} \geq 0$ in the sense of distributions. Conversely, any continuous function $h: \mathbb{S}^{1} \rightarrow \mathbb{R}$ satisfying the latter inequality in the sense of distributions is the support function of a unique convex compact subset $C \subset \mathbb{R}^{2}$. The evolution of any such support function by means of the PDE (2.10) has good regularizing properties.

Lemma 2.9. For each continuous function $h_{0}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ as initial condition, the PDE (2.10) admits a unique continuous solution in the sense of distributions $h:[0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}, h(t, s)=h_{t}(s)$, which is smooth on $(0,+\infty) \times \mathbb{S}^{1}$ and has the form

$$
\begin{equation*}
h_{t}(s)=e^{t} z+b(t, s) \tag{2.11}
\end{equation*}
$$

where $b:[0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}$ is uniformly bounded. Moreover, if $h_{0}+\ddot{h}_{0} \neq 0$ and $h_{0}+\ddot{h}_{0} \geq 0$ in the sense of distributions, then

$$
h_{t}+\ddot{h}_{t}>0, \quad \forall t>0
$$

Proof. For each continuous function $h_{0}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ as initial condition, the family h_{t}, $t \geq 0$, is a solution of (2.10) in the sense of distributions if and only if the family $g_{t}:=e^{-t} h_{t}$ is a solution of the heat equation $\partial_{t} g_{t}=\ddot{g}_{t}$ in the sense of distributions. It is well known that the heat equation has the unique solution $g:[0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}$, $g(t, s)=g_{t}(s)$, given by

$$
g_{t}(s)=h_{0} * k_{t}(s)=\int_{-\infty}^{+\infty} g_{0}(s-r) k_{t}(r) d r
$$

where $k_{t}: \mathbb{R} \rightarrow \mathbb{R}$ is the heat kernel $k_{t}(r)=(4 \pi t)^{-1 / 2} \exp \left(-r^{2} / 4 t\right)$. Therefore g and likewise h are everywhere continuous and smooth on $(0,+\infty) \times \mathbb{S}^{1}$. If we express h_{0} in Fourier series expansion as

$$
h_{0}(s)=z_{0}+\sum_{j \geq 1}\left\langle z_{j}, u(j s)\right\rangle,
$$

where $z_{0} \in \mathbb{R}$ and $z_{j} \in \mathbb{R}^{2}$ are the Fourier coefficients, we readily obtain that g_{t} has the Fourier expansion

$$
g_{t}(s)=z_{0}+\sum_{j \geq 1} e^{-j^{2} t}\left\langle z_{j}, u(j s)\right\rangle
$$

This, together with the relation $h_{t}=e^{t} g_{t}$, shows that h_{t} has the desired form (2.11).
For $t>0$, we have $h_{t}=e^{t} h_{0} * k_{t}$. Hence

$$
\left(h_{t}+\ddot{h}_{t}\right)(s)=e^{t}\left[\left(h_{0}+\ddot{h}_{0}\right) * k_{t}\right](s)=e^{t}\left\langle h_{0}+\ddot{h}_{0}, k_{t}(s-\cdot)\right\rangle,
$$

where $h_{0}+\ddot{h}_{0} \in \mathcal{S}^{\prime}(\mathbb{R})$ is seen as a 2π-periodic tempered distribution (note that each function $k_{t}(s-\cdot)$ belongs to the Schwartz space $\left.\mathcal{S}(\mathbb{R})\right)$. Now assume that $h_{0}+\ddot{h}_{0} \neq 0$ and $h_{0}+\ddot{h}_{0} \geq 0$ in the sense of distributions. Since $k_{t}>0$, we conclude that $\left(h_{t}+\ddot{h}_{t}\right)(s)>0$ for all $s \in \mathbb{S}^{1}$.

Remark 2.10. The proof of Lemma 2.9 actually shows that the support functions h_{t} have the form

$$
h_{t}(s)=e^{t} z_{0}+\left\langle z_{1}, u(s)\right\rangle+e^{-3 t} c(t, s),
$$

where $c:[0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}$ is a continuous function whose restriction to any subset of the form $\left[t_{0}, \infty\right) \times \mathbb{S}^{1}$, with $t_{0}>0$, is smooth and has bounded C^{k} norm for every $k \geq 0$. For $t>0$, the associated smooth solution $\gamma_{t}: \mathbb{S}^{1} \hookrightarrow \mathbb{R}^{2}$ of the inverse curvature PDE (2.1) has the form

$$
\gamma_{t}(s)=h_{t}(s) u(s)+\dot{h}_{t}(s) \dot{u}(s)=z_{1}+e^{t} z_{0} u(s)+e^{-3 t} f(t, s),
$$

where $f:=c u+\partial_{s} c \dot{u}$. In particular, this shows that γ_{t} is asymptotic to a circle of center z_{1} and radius $\left|e^{t} z_{0}\right|$ as $t \rightarrow \infty$.

3. LeVi potentials

3.1. Level orbits. Let us investigate the elementary properties of level orbits. Consider a smooth potential $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the associated Newton equation $\ddot{q}=$ $-\nabla U(q)$, and a level orbit q. We recall that q is a solution of Hamilton equation defined on a maximal time interval and contained in some level set $U^{-1}(c)$.

Lemma 3.1. Every level orbit $q(s)$ is defined for all $s \in \mathbb{R}$ and has constant speed, i.e. $\frac{d}{d s}\|\dot{q}(s)\| \equiv 0$.

Proof. The conservation of energy for the solutions of Hamilton equation implies that $\frac{1}{2}\|\dot{q}(s)\|^{2}+U(q(s))$ is independent of s, and therefore the speed $v:=\|\dot{q}(s)\| \geq 0$ is independent of s as well. This readily implies that the maximal domain of definition of the level orbit q is the whole real line.

From now on, we assume that U is a Levi potential, and denote by $\operatorname{reg}(U):=$ $\mathbb{R}^{2} \backslash \operatorname{crit}(U)$ the open subset of its regular points. For each $x \in \operatorname{reg}(U)$, we denote by

$$
\ell_{x}:=U^{-1}(U(x)) \cap \operatorname{reg}(U)
$$

the regular part of the level set of U containing x. We define the vector field

$$
N: \operatorname{reg}(U) \rightarrow \mathbb{R}^{2}, \quad N(x)=\frac{\nabla U(x)}{\|\nabla U(x)\|}
$$

Notice that $N(x)$ is a unit normal to ℓ_{x} pointing in the increasing direction of U. We orient each ℓ_{x} so that $J N(x) \in T_{x} \ell_{x}$ is a positive tangent vector, where
$J: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, J\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$ is the complex structure of \mathbb{R}^{2}. We say that a parametrized smooth immersed curve contained in some ℓ_{x} is direct if its orientation agrees with the orientation of ℓ_{x}. Notice that Hamilton equation is reversible: if $q(t)$ is a solution, the backward curve $t \mapsto q(-t)$ is a solution as well. We define the smooth function

$$
K: \operatorname{reg}(U) \rightarrow \mathbb{R}
$$

such that $K(x)$ is the signed geodesic curvature of the oriented level set ℓ_{x} with respect to the normal $N(x)$. Namely, if q is a direct level orbit such that $q(0)=x$, then

$$
K(x)=-\frac{\langle N(q(0)), \ddot{q}(0)\rangle}{\|\dot{q}(0)\|^{2}}
$$

Lemma 3.2. Any level orbit q with $q(0) \in \operatorname{reg}(U)$ has constant speed

$$
\|\dot{q}(s)\|^{2}=\|\dot{q}(0)\|^{2}=\frac{\|\nabla U(q(0))\|}{K(q(0))}, \quad \forall s \in \mathbb{R}
$$

In particular, the curvature function K is everywhere positive.
Proof. Clearly, it is enough to argue for a direct level orbit q with $q(0) \in \operatorname{reg}(U)$. Plugging Newton equation $\ddot{q}=-\nabla U(q)$ and the definition of N into the expression of the curvature function K, we infer

$$
K(q(0))=-\frac{\langle N(q(0)), \ddot{q}(0)\rangle}{\|\dot{q}(0)\|^{2}}=\frac{\|\nabla U(q(0))\|}{\|\dot{q}(0)\|^{2}}
$$

This, together with the fact that the speed $\|\dot{q}\|$ is constant (Lemma 3.1), implies the lemma.

We introduce the smooth function

$$
v: \operatorname{reg}(U) \rightarrow(0,+\infty), \quad v(x)=\sqrt{\frac{\|\nabla U(x)\|}{K(x)}}
$$

and the vector field

$$
V: \operatorname{reg}(U) \rightarrow \mathbb{R}^{2}, \quad V(x)=v(x) J N(x)
$$

Notice that the integral curves of V are precisely the portions of direct level orbits q in $\operatorname{reg}(U)$, and the function v gives their speed, i.e.

$$
\dot{q}(s)=V(q(s)), \quad\|\dot{q}(s)\| \equiv v(q(s)) .
$$

In particular, the function v is constant on every path-connected component of any level set $U^{-1}(c) \cap \operatorname{reg}(U)$. Later on, in Lemma 3.5, we will show that the flow of V is complete, that is, level orbits that intersect $\operatorname{reg}(U)$ are entirely contained in $\operatorname{reg}(U)$.
3.2. Relations with the inverse curvature flow. We define the vector field

$$
W: \operatorname{reg}(U) \rightarrow \mathbb{R}^{2}, \quad W(x)=\frac{N(x)}{K(x)}
$$

and denote by ϕ_{t} its flow.

Proposition 3.3. Consider a smooth immersed curve $\gamma_{0} \subset \operatorname{reg}(U)$ contained in a level set of a Levi potential U. Then $\gamma_{t}:=\phi_{t}\left(\gamma_{0}\right)$ is also contained in a level set of U for all $t \in \mathbb{R}$ for which it is well defined. In particular, if we fix a direct parametrization $\gamma_{0}:(a, b) \leftrightarrow \operatorname{reg}(U)$ and the corresponding parametrizations $\gamma_{t}:=\phi_{t} \circ \gamma_{0}:(a, b) \leftrightarrow \operatorname{reg}(U)$, then γ_{t} is a solution of the inverse curvature flow.
Proof. For each $x \in \operatorname{reg}(U)$ and $t \in \mathbb{R}$ such that $\phi_{t}(x)$ is defined, we have

$$
\begin{equation*}
\frac{d}{d t} U\left(\phi_{t}(x)\right)=\frac{\left\langle\nabla U\left(\phi_{t}(x)\right), N\left(\phi_{t}(x)\right)\right\rangle}{K\left(\phi_{t}(x)\right)}=\frac{\left\|\nabla U\left(\phi_{t}(x)\right)\right\|}{K\left(\phi_{t}(x)\right)}=v\left(\phi_{t}(x)\right)^{2} . \tag{3.1}
\end{equation*}
$$

Since the function v is constant on the path-connected components of every level set $U^{-1}(c) \cap \operatorname{reg}(U)$, by the implicit function theorem there exists an open neighborhood Z of any given point of $\operatorname{reg}(U)$ such that $f(U(y))=v(y)^{2}$ for all $y \in Z$. This, together with (3.1), implies that, for all $t \in \mathbb{R}$ such that $\phi_{t}(x) \in Z$, the function $t \mapsto U\left(\phi_{t}(x)\right)$ is a solution of the $\mathrm{ODE} \dot{z}(t)=f(z(t))$, and therefore is uniquely determined by the initial value $U\left(\phi_{0}(x)\right)=U(x)$. Since the curve γ_{0} is connected, this proves that $U\left(\phi_{t}(x)\right)=U\left(\phi_{t}(y)\right)$ for all $x, y \in \gamma_{0}$.

Finally, fix a direct parametrization $\gamma_{0}:(a, b) \leftrightarrow \operatorname{reg}(U)$, and the corresponding parametrizations $\gamma_{t}:=\phi_{t} \circ \gamma_{0}$. Since every γ_{t} is contained in a level set of U, the vector $N\left(\gamma_{t}(s)\right)$ is normal to $\dot{\gamma}_{t}(s)$, and the value $K\left(\gamma_{t}(s)\right)$ is the curvature of γ_{t} at $\gamma_{t}(s)$ with respect to the orientations introduced in Section 3.1. Therefore, with the notation of Section 2.1, the vector field $W \circ \gamma_{t}$ coincides with $N_{\gamma_{t}} / K_{\gamma_{t}}$, and we conclude that γ_{t} satisfies the inverse curvature flow PDE

$$
\partial_{t} \gamma_{t}=\frac{N_{\gamma_{t}}}{K_{\gamma_{t}}}
$$

Corollary 3.4. Let q_{0} be a level orbit of a Levi potential U with $q_{0}(0) \in \operatorname{reg}(U)$. We set $v_{t}:=v\left(\phi_{t}\left(q_{0}(0)\right)\right)$ for all $t \in \mathbb{R}$ for which the right-hand side is defined. Then, on their maximal interval of definition containing 0 , the curves q_{t} given by

$$
q_{t}(s):=\phi_{t}\left(q_{0}\left(e^{-t} v_{0}^{-1} v_{t} s\right)\right)
$$

are also portions of level orbits.
Proof. We set $\gamma_{t}(s):=\phi_{t}\left(q_{0}(s)\right)$, where s varies in a maximal interval containing 0 for which the right-hand side is defined. Proposition 3.3 implies that γ_{t} is a solution of the inverse curvature flow, and each γ_{t} is contained in a level set of U. Lemma 2.2 implies that $\left\|\dot{\gamma}_{t}\right\| \equiv e^{t}\left\|\dot{\gamma}_{0}\right\| \equiv e^{t} v_{0}$. The reparametrized curve $q_{t}(s):=\gamma_{t}\left(e^{-t} v_{0}^{-1} v_{t} s\right)$ is an immersed curve contained in the level set of U and has speed $\left\|\dot{q}_{t}\right\| \equiv\left\|\dot{\gamma}_{t}\right\| e^{-t} v_{0}^{-1} v_{t} \equiv v_{t}$. Therefore, it is a portion of a level orbit.
3.3. Level sets of a Levi potential. As anticipated, we can now establish the completeness of the vector field V.

Lemma 3.5. If a level orbit q of a Levi potential U satisfies $q(0) \in \operatorname{reg}(U)$, then $q(s) \in \operatorname{reg}(U)$ for all $s \in \mathbb{R}$.
Proof. We denote by ψ_{s} the Hamiltonian (local) flow on $T^{*} \mathbb{R}^{2}=\mathbb{R}^{2} \times \mathbb{R}^{2}$ associated with the potential U. Namely, if q is a solution of Hamilton equation defined on some maximal neighborhood of 0 , we have $(q(s), \dot{q}(s))=\psi_{s}(q(0), \dot{q}(0))$. We denote by $\pi: T^{*} \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the base projection of the cotangent bundle, and we define the family of maps

$$
\sigma_{s}: \operatorname{reg}(U) \rightarrow \mathbb{R}^{2}, \quad \sigma_{s}(x)=\pi \circ \psi_{s}(x, V(x))
$$

Notice that these maps are indeed well defined for all $s \in \mathbb{R}$. Indeed, $q(s):=\sigma_{s}(x)$ is the direct level orbit starting at $q(0)=x$, and Lemma 3.1 guarantees that $q(s)$ is well defined for all $s \in \mathbb{R}$.

Assume by contradiction that q is a level orbit of the Levi potential U such that $q(0) \in \operatorname{reg}(U)$ and $q\left(s_{0}\right) \in \operatorname{crit}(U)$ for some $s_{0} \in \mathbb{R} \backslash\{0\}$. Without loss of generality, we assume that q is a direct level orbit, and we consider the case $s_{0}>0$, the other case being analogous. By Proposition 3.3, the family of curves $\gamma_{t}(s):=\phi_{t}(q(s))$ is a solution of the inverse curvature flow on their maximal domain of definition. Moreover, if we set $w_{t}:=e^{t} v\left(\gamma_{0}(0)\right) v\left(\gamma_{t}(0)\right)^{-1}$ and $q_{t}(s):=\gamma_{t}\left(s / w_{t}\right)$, Corollary 3.4 implies that every q_{t} is a portion of a level orbit. For $t \in \mathbb{R}$ sufficiently close to 0 , let $s_{t} \in(0,+\infty]$ be the largest positive value such that $\left.\gamma_{t}\right|_{\left[0, s_{t}\right)}$ is contained in $\operatorname{reg}(U)$. Therefore

$$
\begin{equation*}
\gamma_{t}(s)=\sigma_{w_{t} s}\left(\gamma_{t}(0)\right), \quad \forall s \in\left[0, s_{t}\right) \tag{3.2}
\end{equation*}
$$

Since $\operatorname{reg}(U)$ is an open subset of \mathbb{R}^{2}, we have that $t \mapsto s_{t}$ is lower semicontinuous. Therefore, for each $s \in\left[0, s_{0}\right)$, we can differentiate the identity (3.2) with respect to t at $t=0$, and after taking the inner product with $N(q(s))$, we infer

$$
\begin{align*}
\frac{1}{K(q(s))} & =\frac{\left\langle d \sigma_{w_{t} s}(q(0)) N(q(0)), N(q(s))\right\rangle}{K(q(0))}+\underbrace{\langle V(q(s)), N(q(s))\rangle}_{=0} \frac{d}{d t} w_{t} s \tag{3.3}\\
& \leq \frac{\left\|d \sigma_{w_{t} s}(q(0))\right\|}{K(q(0))}
\end{align*}
$$

Since

$$
K(q(s))=-\frac{\langle N(q(s)), \ddot{q}(s)\rangle}{\|\dot{q}(s)\|^{2}}=\frac{\|\nabla U(q(s))\|}{\|\dot{q}(0)\|^{2}}
$$

and $\nabla U\left(q\left(s_{0}\right)\right)=0$, we infer that $K(q(s)) \rightarrow 0$ as $s \rightarrow 0$. But this contradicts the uniform upper bound for $K(q(s))^{-1}$ given in (3.3).

We say that a level orbit q of the Levi potential U is regular when it intersects $\operatorname{reg}(U)$, or equivalently when it is fully contained in $\operatorname{reg}(U)$ (Lemma 3.5).

Lemma 3.6. Let q be a regular level orbit of a Levi potential U such that $\phi_{t}(q(0))$ is well defined for all $t \in[a, b]$, with $a<0<b$. Then $\phi_{t}(q(s))$ is well defined for all $t \in[a, b]$ and $s \in \mathbb{R}$.
Proof. Assume without loss of generality that the regular level orbit q is direct. For each $t \in(a, b)$, since $\phi_{t}(q(0)) \in \operatorname{reg}(U)$, Lemmas 3.1 and 3.5 imply that the regular direct level orbit q_{t} such that $q_{t}(0)=\phi_{t}(q(0))$ is a curve of the form $q_{t}: \mathbb{R} \rightarrow \operatorname{reg}(U)$. We set $w_{t}:=e^{t} v(q(0)) v\left(q_{t}(0)\right)^{-1}$. Corollary 3.4 implies that $\phi_{t}(q(s))=q_{t}\left(w_{t} s\right)$ for all s in a maximal neighborhood of 0 such that the left-hand side is defined.

Since $\phi_{t}(q(0))$ is in the open set $\operatorname{reg}(U)$ for all $t \in[a, b]$, there exists a maximal interval $\left(s_{0}, s_{1}\right) \subset \mathbb{R}$ such that $\phi_{t}(q(s))$ is a well defined point of $\operatorname{reg}(U)$ for all $t \in$ $[a, b]$ and $s \in\left(s_{0}, s_{1}\right)$. We claim that $\left(s_{0}, s_{1}\right)=\mathbb{R}$. Indeed assume by contradiction that $s_{1}<+\infty$. The curve $t \mapsto \phi_{t}\left(q\left(s_{1}\right)\right)$ is defined on a neighborhood of 0 but not on the whole $[a, b]$, and therefore exits every compact subset of $\operatorname{reg}(U)$. We readily obtain a contradiction: since $\phi_{t}(q(s))=q_{t}\left(w_{t} s\right)$ for all $s \in\left[0, s_{1}\right)$ and $t \in[a, b]$, the curve $t \mapsto \phi_{t}\left(q\left(s_{1}\right)\right)$ is contained in the compact subset

$$
\left\{q_{t}\left(w_{t} s\right) \mid t \in[a, b], s \in\left[0, s_{1}\right]\right\} \subset \operatorname{reg}(U)
$$

This proves that $s_{1}=+\infty$. Analogously, we have $s_{0}=-\infty$.

Proposition 3.7. Any regular level orbit q of a Levi potential U is periodic, i.e. $q=q(\sigma+\cdot)$ for some $\sigma>0$.

Proof. For each $c \in \mathbb{R}$, the intersection $U^{-1}(c) \cap \operatorname{reg}(U)$ is a (possibly empty or disconnected) 1-dimensional properly embedded submanifold of $\operatorname{reg}(U)$, since it is a level set of the submersion $\left.U\right|_{\text {reg }(U)}$. If q is a parametrization of a connected component of $U^{-1}(c) \cap \operatorname{reg}(U)$ with constant speed $\|\dot{q}\| \equiv v(q(0))$, then q is a level orbit, and therefore $q(s)$ is defined and contained in $\operatorname{reg}(U)$ for all $s \in \mathbb{R}$ (Lemma 3.5). This shows that the regular level orbits are parametrizations of the connected components of $U^{-1}(c) \cap \operatorname{reg}(U)$. Assume by contradiction that there exists a regular level orbit q that is not periodic.

Since q is a 1-dimensional properly embedded submanifold in $\operatorname{reg}(U)$ and is not a circle, as a map it is a proper embedding $q: \mathbb{R} \hookrightarrow \operatorname{reg}(U)$. We claim that q is also proper as a map $q: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$. If this is not true, then by Lemma 2.7 at least one of the half orbits $q((-\infty, 0])$ or $q([0,+\infty))$ is contained in a compact subset $C \subset \mathbb{R}^{2}$. Consider the case $q([0,+\infty)) \subset C$, the other one being analogous. Since $q:[0,+\infty) \hookrightarrow \operatorname{reg}(U)$ is proper, its ω-limit is contained in the compact subset $C \cap \operatorname{crit}(U)$. Therefore

$$
\epsilon_{s}:=\sup _{r \geq s}\|\ddot{q}(r)\|=\sup _{r \geq s}\|\nabla U(q(r))\| \underset{s \rightarrow+\infty}{ } 0
$$

This implies, for each $s>0$ and $r:=s+\frac{v(q(0))}{2 \epsilon_{s}}$,

$$
\begin{aligned}
\|q(r)-q(s)\| & =\left\|(r-s) \dot{q}(s)+\int_{s}^{r}(\dot{q}(u)-\dot{q}(s)) d u\right\| \\
& \geq(r-s) v(q(0))-\int_{s}^{r}(u-s) \epsilon_{s} d u \\
& \geq \frac{v(q(0))^{2}}{4 \epsilon_{s}} \underset{s \rightarrow+\infty}{ }+\infty
\end{aligned}
$$

contradicting the fact that $\left.q\right|_{[0,+\infty)}$ is contained in the compact set C.
We showed that $q: \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ is a proper embedding. Let $\tau>0$ be small enough so that $\phi_{t}(q(0))$ is well defined for all $t \in[0, \tau]$. Lemma 3.6 implies that $\gamma_{t}(s):=\phi_{t}(q(s))$ is well defined for all $t \in[0, \tau]$ and $s \in \mathbb{R}$. Corollary 3.4 implies that each γ_{t} is a reparametrization of a regular level orbit. But Proposition 3.3 implies that γ_{t} is a solution of the inverse curvature flow defined for $t \in[0, \tau]$, which violates Proposition 2.4.

Proof of Theorem A. Let U be a smooth Levi potential whose set of critical points $\operatorname{crit}(U)$ is totally path-disconnected, and q a regular direct level orbit. By Proposition 3.7, q is σ-periodic for some $\sigma>0$. Therefore, q is an embedding of the form $q: \mathbb{R} / \sigma \mathbb{Z} \hookrightarrow \operatorname{reg}(U)$ with positive curvature. We denote by $\tau \in[-\infty, 0)$ the infimum of the values $t<0$ such that $\phi_{t}(q(0))$ is a well defined point of $\operatorname{reg}(U)$. Lemma 3.6 implies that the curves $\gamma_{t}:=\phi_{t} \circ q: \mathbb{R} / \sigma \mathbb{Z} \hookrightarrow \operatorname{reg}(U)$ are well defined for all $t \in(\tau, 0]$. Proposition 3.3 implies that the family γ_{t} is a solution of the inverse curvature flow, and Corollary 3.4 implies that each γ_{t} is a reparametrization of a regular level orbit, and actually a direct one (since $\gamma_{0}=q$ is direct). In particular each γ_{t} has positive curvature, and therefore it bounds a convex compact subset $C_{t} \subset \mathbb{R}^{n}$. The inverse curvature PDE (2.1) readily implies that $C_{t_{1}} \subset \operatorname{int}\left(C_{t_{2}}\right)$ for all $t_{1}, t_{2} \in(\tau, 0]$ with $t_{1}<t_{2}$.

We claim that $\tau=-\infty$. Indeed, let us assume by contradiction that τ is finite. This implies that, for every $s \in \mathbb{R} / \sigma \mathbb{Z}$, the curve $(\tau, 0] \ni t \mapsto \gamma_{t}(s)$ exits any compact subset of $C_{0} \cap \operatorname{reg}(U)$. Therefore, the non-empty convex compact set

$$
C:=\bigcap_{t \in(-\tau, 0]} C_{t}
$$

has boundary contained in $\operatorname{crit}(U)$. Since ∂C is path connected (being the boundary of a convex compact set) while $\operatorname{crit}(U)$ is totally path-disconnected, ∂C must be a singleton. However, this implies that

$$
\begin{equation*}
\ell_{t}:=\operatorname{length}\left(\gamma_{t}\right) \underset{t \rightarrow \tau^{+}}{ } 0 \tag{3.4}
\end{equation*}
$$

Since the regular level orbit q is parametrized with constant speed $\|\dot{q}\| \equiv v(q(0))$, each γ_{t} is parametrized with constant speed $\left\|\dot{\gamma}_{t}\right\| \equiv e^{t} v(q(0))$ (Lemma 2.2), and therefore $\ell_{t}=e^{t} v(q(0)) \sigma \rightarrow e^{\tau} v(q(0)) \sigma$ as $t \rightarrow \tau^{+}$, which contradicts (3.4).

We proved that the family of smooth periodic curves $\gamma_{t}: \mathbb{R} / \sigma \mathbb{Z} \hookrightarrow \operatorname{reg}(U)$, for $t \in(-\infty, 0]$, is a solution of the inverse curvature flow. Proposition 2.3 implies that γ_{t} is a circular solution (Example 2.1). Let $\tau>0$ be the supremum of the time values $t>0$ such that $\phi_{t}(q(0))$ is well defined. Using Lemma 3.6, Proposition 3.3, and Corollary 3.4 as before, we can extend the family of curves $\gamma_{t}:=\phi_{t} \circ q: \mathbb{R} / \sigma \mathbb{Z} \hookrightarrow$ $\operatorname{reg}(U)$ for all $t \in(-\infty, \tau)$, such a family is a solution of the inverse curvature flow, and each γ_{t} is a reparametrization of a regular level orbit. Therefore, the first part of the proof implies that γ_{t} is a circular solution of the inverse curvature flow, i.e.

$$
\gamma_{t}(s):=x_{0}+e^{t} e^{2 \pi s / \sigma J} x_{1}, \quad \forall t \in(-\infty, \tau), s \in \mathbb{R} / \sigma \mathbb{Z}
$$

where $x_{0} \in \mathbb{R}^{2}, x_{1} \in \mathbb{R}^{2} \backslash\{0\}$. We claim that $\tau=+\infty$. Indeed, if $\tau<+\infty$, then for each $s \in \mathbb{R} / \sigma \mathbb{Z}$ the curve $[0, \tau) \ni t \mapsto \gamma_{t}(s)$ exits any compact subset of $\operatorname{reg}(U)$; therefore the curves γ_{t} would converge as $t \rightarrow \tau^{-}$to an embedded circle in $\operatorname{crit}(U)$, contradicting the fact that $\operatorname{crit}(U)$ is totally path-disconnected.

Summing up, we proved that every round circle centered at $x_{0} \in \mathbb{R}^{2}$ is a regular level set of U. Therefore U has a unique critical point at x_{0}, and can be written as $U(x)=f\left(\left\|x-x_{0}\right\|^{2}\right)$ for some smooth function $f:[0,+\infty) \rightarrow \mathbb{R}$.
3.4. Analytic Levi potential. In order to prove Theorem B, we first need some preliminaries on analytic functions. We begin by recalling the real version of the classical Puiseux theorem from, e.g., [Ghy17, page104], and some of its consequences.

Theorem 3.8 (Puiseux). Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto U(x, y)$ be a non-constant analytic function that vanishes at the origin and is not divisible by x (which can always be achieved by means of an analytic change of variables). Then, in a neighborhood of the origin, the level set $U^{-1}(0)$ is either equal to the origin, or is the union of a finite number of arcs of the form

$$
\gamma_{i}:\left[-\epsilon_{i}, \epsilon_{i}\right] \rightarrow \mathbb{R}^{2}, \quad \gamma_{i}(t)=\left((-1)^{k_{i}} t^{m_{i}}, f_{i}(t)\right),
$$

for some positive integers $k_{i} \in\{0,1\}$ and $m_{i} \geq 1$, and for some analytic functions f_{i} such that $f_{i}(0)=0$. The arcs γ_{i} are injective, and their images only intersect at the origin.
Corollary 3.9. For each analytic function $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the set of critical points $\operatorname{crit}(U)$ is locally path connected.

Proof. The function $V:=\|\nabla U\|^{2}$ is also analytic, and $\operatorname{crit}(U)=V^{-1}(0)$. The level set $V^{-1}(0)$ is locally path connected according to Theorem 3.8.

We recall that a planar graph is a graph topologically embedded in \mathbb{R}^{2}. Here, the graph is endowed with the usual topology that makes it a CW complex, with the vertices being the 0 -cells and the edges being the 1-cells. The degree of a vertex v of a graph is the number of edges incident to v, where an edges incident to v at both ends is counted twice.

Corollary 3.10. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an analytic function. Each compact connected component of a level set $U^{-1}(c)$ is a planar graph (possibly empty or with no edges) whose vertices have even degrees.

Proof. Let us assume that $U^{-1}(c)$ is not empty, and $\Gamma \subset U^{-1}(c)$ is a compact connected component that is not a singleton. By Theorem 3.8, each point $q \in \Gamma$ has a bounded open neighborhood $B_{q} \subset \mathbb{R}^{2}$ such that $U^{-1}(c) \cap B_{q}$ is the union of finitely many arcs $\gamma_{q, 1}, \ldots, \gamma_{q, n_{q}}$ with endpoints in ∂B_{q}, where each arc is without self-intersections and distinct arcs intersect only at q. Since Γ is compact, there exist finitely many points q_{1}, \ldots, q_{k} such that $B_{q_{1}} \cup \ldots \cup B_{q_{k}}$ contains Γ. We can now endow Γ with a planar graph structure, whose vertices are q_{1}, \ldots, q_{k}, and whose edges are the finitely many connected components of $\Gamma \backslash\left\{q_{1}, \ldots, q_{k}\right\}$. Notice that every arc $\gamma_{q_{i}, j}$ intersects precisely two edges incident to the vertex q_{i}, or a single edge incident to the vertex q_{i} at both ends. This, together with the fact that $\gamma_{q_{i}, j} \cap \gamma_{q_{i}, h}=\left\{q_{i}\right\}$ for all $j \neq h$, readily implies that the degree of each vertex q_{i} is even.

Corollary 3.11. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an analytic function such that the complement of a level set $\mathbb{R}^{2} \backslash U^{-1}(c)$ has a non-empty bounded connected component. Then U has a strict local maximum or a strict local minimum.

Proof. We assume by contradiction that U does not have a strict local maximum nor a strict local minimum. By assumption, $\mathbb{R}^{2} \backslash U^{-1}(c)$ has a non-empty bounded connected component A^{\prime}. We denote by $A^{\prime \prime}$ the (possibly empty) union of all bounded connected components of $\mathbb{R}^{2} \backslash A^{\prime}$. The union $A_{1}:=A^{\prime} \cup A^{\prime \prime}$ is a simply connected open set whose boundary is contained in $U^{-1}(c)$. Let us assume that $\left.U\right|_{A^{\prime}}<c$, the case in which $\left.U\right|_{A^{\prime}}>c$ being analogous. We set $a_{1}:=\left.\min U\right|_{A_{1}}$. The intersection $U^{-1}\left(a_{1}\right) \cap A_{1}$ is compact, and thus it is a union of finitely many connected components of the level set $U^{-1}\left(a_{1}\right)$. Notice that $U^{-1}\left(a_{1}\right)$ does not contain isolated points, for otherwise any such point would be a strict local minimum of U. Corollary 3.10 implies that $U^{-1}\left(a_{1}\right) \cap A_{1}$ is a planar graph whose vertices have non-zero even degrees, and in particular its connected components are not simply connected. This implies that the complement $A_{1} \backslash U^{-1}\left(a_{1}\right)$ has a simply connected bounded connected component B_{1} whose closure is contained in A_{1}.

We set $b_{1}:=\left.\max U\right|_{B_{1}}$. Arguing as in the previous paragraph, the intersection $U^{-1}\left(b_{1}\right) \cap B_{1}$ is a compact planar graph whose connected components are not simply connected. Therefore $B_{1} \backslash U^{-1}\left(b_{1}\right)$ has a simply connected bounded connected component A_{2} whose closure is contained in B_{1}. Next we define $a_{2}:=\left.\min U\right|_{A_{2}}$, and continue the process iteratively. Overall, we obtained a sequence of simply connected open sets $A_{i}, B_{i} \subset \mathbb{R}^{2}$ such that

$$
\overline{B_{i}} \subset A_{i}, \quad \overline{A_{i+1}} \subset B_{i}, \quad \partial B_{i} \subset U^{-1}\left(a_{i}\right), \quad \partial A_{i+1} \subset U^{-1}\left(b_{i}\right)
$$

where $a_{i}<b_{i}$ are critical values of U. Consider an arbitrary sequence $q_{i} \in \partial B_{i} \subset$ $\operatorname{crit}(U) \cap U^{-1}\left(a_{i}\right)$, which is contained in the bounded set B_{1}. Up to extracting a subsequence, we have $q_{i} \rightarrow q \in \operatorname{crit}(U)$. Since all the points q_{i} belong to pairwise distinct level sets of U, we infer that $\operatorname{crit}(U)$ is not locally path connected at q. This contradicts Corollary 3.9.

Proof of Theorem B. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an analytic Levi potential. If U is a constant function, it is also trivially radial. Assume now that U is not constant, and let $c \in \mathbb{R}$ be a regular value of U such that $U^{-1}(c)$ is not empty. By Proposition 3.7, the connected components of the level set $U^{-1}(c)$ are circles. Therefore, $\mathbb{R}^{2} \backslash U^{-1}(c)$ has a bounded connected component, and Corollary 3.11 implies that U has a strict local minimum or a strict local maximum.

We claim that U cannot have a strict local maximum. Indeed, assume that $q \in$ \mathbb{R}^{2} is a strict local maximum of U, and set $c:=U(q)$. Let $W \subset \mathbb{R}^{2}$ be a sufficiently small compact neighborhood of q such that $\left.U\right|_{W \backslash\{q\}}<c$. By Corollary 3.9, $\operatorname{crit}(U)$ is locally path connected, and therefore $\operatorname{crit}(U) \cap W=\{q\}$ provided W is chosen small enough. For each $\epsilon>0$ small enough, the level set $U^{-1}(c-\epsilon)$ has a connected component γ contained in W. Since $c-\epsilon$ is a regular value of $\left.U\right|_{W}, \gamma$ is an embedded circle in W. Notice that γ bounds a disk B that must contain a local maximum or a local minimum of U. Since the only critical point of $\left.U\right|_{W}$ is q, we infer that $\operatorname{crit}(U) \cap B=\{q\}$. Since q is a local maximum of U, we infer that, for each $q^{\prime} \in \gamma$, the gradient $\nabla U\left(q^{\prime}\right)$ points inside B. Lemma 3.2 implies that the curvature of γ with respect to the normal vector field $\nabla U /\|\nabla U\|$ is everywhere positive, but this is impossible, as it would prevent γ to encircle q.

Since U cannot have strict local maxima, it must have a strict local minimum q_{0}. Without loss of generality, let us assume that $q_{0}=0$ and $U\left(q_{0}\right)=0$. With the same argument already employed in the last paragraph, There exists $\epsilon>0$ such that, for each $c \in(0, \epsilon]$, the level set $U^{-1}(c)$ has a connected component that is a circle, does not contain critical points of U, and encircles the origin. Let $\gamma_{0} \subset U^{-1}(0, \epsilon]$ be any such circle. Since U is a Levi potential, γ_{0} must be a regular level orbit. We now proceed as in the proof of Theorem A: we apply to γ_{0} the inverse curvature flow (2.1) in negative time, and obtain family of curves γ_{t} defined for t in some neighborhood of 0 in $(-\infty, 0]$. Proposition 3.3 implies that each γ_{t} is a regular level orbit for the Levi potential, and Lemma 3.1 implies γ_{t} is the boundary of a convex open subset B_{t} containing the origin. Arguing as in the proof of Theorem A, we infer that γ_{t} is defined for all $t \leq 0$. Proposition 2.3 implies that γ_{t}, for $t \leq 0$, is a circular solution of the inverse curvature flow. This proves that U is radial in B_{0}. The radial condition can be expressed by saying that the function $V(q):=d U(q) J q$ vanishes on B_{0}. However, V is analytic, and since it vanishes in the open set B_{0} it must vanish identically on the whole \mathbb{R}^{2}. This proves that U is a radial function.
3.5. Levi potentials with prescribed critical set. The proof of Theorem C is a consequence of Lemmas 2.8, 2.9, and of the following statement.

Lemma 3.12. Let $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be a proper continuous function such that $\min f=0$ and whose restriction to $f^{-1}(0,+\infty)$ is smooth and has no critical points. There exists a smooth function $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$ with critical set $\operatorname{crit}(g)=$ $g^{-1}(0)=f^{-1}(0)$ and having the same level sets as f, i.e. $f(x)=f(y)$ if and only if $g(x)=g(y)$ for all $x, y \in \mathbb{R}^{n}$.

Proof. Let $\psi:[0,+\infty) \rightarrow[0,+\infty)$ be a smooth function such that $\left.\psi\right|_{[0,1]} \equiv 0$, $\left.\dot{\psi}\right|_{(1,2]}>0$, and $\left.\dot{\psi}\right|_{[2,+\infty)} \equiv 1$. For each integer $k \geq 1$, we define

$$
f_{k}: \mathbb{R}^{n} \rightarrow[0,+\infty), \quad f_{k}(x)=\psi(k f(x))
$$

We introduce the compact subsets

$$
W_{k}:=f^{-1}\left[0, \frac{1}{k}\right] .
$$

Notice that f is smooth outside $f^{-1}(0)$, and $\left.f_{k}\right|_{W_{k}} \equiv 0$. Therefore f_{k} is everywhere smooth. We set $c_{k}:=1+\left\|\left.f_{k}\right|_{W_{1}}\right\|_{C^{k}}$, and define the function

$$
g: \mathbb{R}^{n} \rightarrow[0,+\infty), \quad g(x)=\sum_{k \geq 1} \frac{f_{k}(x)}{e^{k} c_{k}}
$$

Since f is smooth away from $f^{-1}(0)$, on every compact subset $V \subset \mathbb{R}^{n} \backslash f^{-1}(0)$ and for every integer $p \geq 1$, we have

$$
\left\|\left.f_{k}\right|_{V}\right\|_{C^{p}} \leq b k^{p}
$$

where $b=b(\psi, f, p, V)>0$ is independent of the integer k. This estimate implies that $\left.g\right|_{V}$ is smooth. Moreover,

$$
\left\|\left.f_{k}\right|_{W_{1}}\right\|_{C^{p}} \leq \max \left\{\left\|f_{1}{\mid W_{1}}\right\|_{C^{p}},\left\|\left.f_{2}\right|_{W_{1}}\right\|_{C^{p}}, \ldots,\left\|\left.f_{p}\right|_{W_{1}}\right\|_{C^{p}}, c_{k}\right\}
$$

This shows that $\left.g\right|_{W_{1}}$ is smooth as well, and therefore g is everywhere smooth. Notice that $g^{-1}(0)=f^{-1}(0)$. Moreover, for each $x \in \mathbb{R}^{n} \backslash f^{-1}(0)$, we have $d f(x) \neq$ 0 , and therefore

$$
d g(x)=\underbrace{\sum_{k \geq 1} \frac{k \dot{\psi}(k f(x))}{e^{k} c_{k}}}_{>0} d f(x) \neq 0 .
$$

This implies that $\operatorname{crit}(g)=g^{-1}(0)=f^{-1}(0)$. Finally, since g is of the form $h \circ f$ for a strictly monotone increasing function $h:[0,+\infty) \rightarrow[0,+\infty)$, we conclude that f and g have the same level sets.

Proof of Theorem C. Let C be a non-empty compact convex subset of \mathbb{R}^{2}. If $C=$ $\left\{q_{0}\right\}$, then $U(q)=\left\|q-q_{0}\right\|^{2}$ is a Levi potential with critical set $\operatorname{crit}(U)=\left\{q_{0}\right\}$. Assume now that C is not a singleton, so that its support function

$$
h_{0}: \mathbb{S}^{1} \rightarrow \mathbb{R}, \quad h_{0}(s)=\max _{q \in C}\langle q, u(s)\rangle
$$

satisfies $h_{0}+\ddot{h}_{0} \geq 0$ and $h_{0}+\ddot{h}_{0} \neq 0$ in the sense of distributions. Here, as in Section 2.4, $u(s)=(\cos (s), \sin (s))$. By Lemma 2.9, using the support function h_{0} as initial condition, there exists a unique continuous solution $h:[0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$, $h(t, s)=h_{t}(s)$ of the $\operatorname{PDE~} \partial_{t} h_{t}=h_{t}+\ddot{h}_{t}$, such that:
(i) h is smooth and satisfies $h_{t}+\ddot{h}_{t}>0$ on $(0,+\infty) \times \mathbb{S}^{1}$,
(ii) h has the form $h_{t}(s)=e^{t} z+b(t, s)$, where $b:[0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ is uniformly bounded.
Point (i) implies that, for each $t>0, h_{t}$ is the support function of a compact convex subset $C_{t} \subset \mathbb{R}^{2}$ with smooth positively-curved boundary. Moreover, since $\partial_{t} h_{t}>0$
for all $t>0$, we have $C_{t_{1}} \subset \operatorname{int}\left(C_{t_{2}}\right)$ for all $t_{1}<t_{2}$. Since $\lim _{t \rightarrow 0+} h_{t}(s)=h_{0}(s)$ for all $s \in \mathbb{S}^{1}$, we have

$$
C_{0}=\bigcap_{t>0} C_{t}
$$

Point (ii) implies that $\min h_{t} \rightarrow+\infty$ as $t \rightarrow+\infty$, and therefore the family C_{t}, $t>0$, is an exhaustion by compact sets of \mathbb{R}^{2}, i.e.

$$
\bigcup_{t>0} C_{t}=\mathbb{R}^{2}
$$

By Lemma 2.8, there exists a family of smooth periodic curves $\gamma_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}, t>0$, that evolve according to the inverse curvature flow, and each γ_{t} is a parametrization of the boundary of C_{t}. Without loss of generality, we can assume that each γ_{t} is parametrized with constant speed $\left\|\dot{\gamma}_{t}\right\|$. Notice that this family, seen as a map

$$
\gamma:(0,+\infty) \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{2} \backslash C_{0}, \quad \gamma(t, s)=\gamma_{t}(s)
$$

is a diffeomorphism. We define the continuous function $\tau: \mathbb{R}^{2} \rightarrow[0,+\infty)$ by $\left.\tau\right|_{C_{0}} \equiv 0$ and $x \in \gamma_{\tau(x)}\left(\mathbb{S}^{1}\right)$ for all $x \in \mathbb{R}^{2} \backslash C_{0}$. Notice that τ is proper. Moreover, the restriction $\left.\tau\right|_{\mathbb{R}^{2} \backslash C_{0}}$ is smooth, strictly positive, and has no critical points. By Lemma 3.12, there exists a smooth function $U: \mathbb{R}^{2} \rightarrow[0,+\infty)$ with critical set $\operatorname{crit}(U)=U^{-1}(0)=\tau^{-1}(0)=C_{0}$ and having the same level sets as τ. Namely, the level sets of U are C_{0} and the curves γ_{t}. We set $w(t):=U\left(\gamma_{t}(s)\right)$, and stress that $w(t)$ is independent of $s \in \mathbb{S}^{1}$ and smooth for all $t>0$. Moreover, since $\nabla U\left(\gamma_{t}(s)\right)$ is positively proportional to the normal vector $N_{\gamma_{t}}(s)$, we have

$$
\dot{w}(t)=\left\langle\nabla U\left(\gamma_{t}(s)\right), \partial_{t} \gamma_{t}(s)\right\rangle=\frac{\left\|\nabla U\left(\gamma_{t}(s)\right)\right\|}{K_{\gamma_{t}}(s)}>0
$$

The family of reparametrized curves

$$
q_{t}(s):=\gamma_{t}\left(\frac{\sqrt{\dot{w}(t)}}{\left\|\dot{\gamma}_{t}\right\|} s\right)
$$

are level orbits of U. Indeed, for $r=\frac{\sqrt{\dot{w}(t)}}{\left\|\dot{\gamma}_{t}\right\|} s$, we have

$$
\begin{aligned}
\ddot{q}_{t}(s) & =\frac{\dot{w}(t)}{\left\|\dot{\gamma}_{t}\right\|^{2}} \ddot{\gamma}_{t}(r)=-\frac{\dot{w}(t)}{\left\|\dot{\gamma}_{t}\right\|^{2}}\left\|\dot{\gamma}_{t}\right\|^{2} K_{\gamma_{t}}(r) N_{\gamma_{t}}(r) \\
& =-\left\|\nabla U\left(q_{t}(s)\right)\right\| N_{q_{t}}(s)=-\nabla U\left(q_{t}(s)\right)
\end{aligned}
$$

This shows that the collection of all level orbits q_{t}, for $t>0$, fills the regular set $\operatorname{reg}(U)$. All the points of critical set $\operatorname{crit}(U)$ are trivially level orbits. Therefore, U is a Levi potential.

References

[CT96] Bennett Chow and Dong-Ho Tsai, Geometric expansion of convex plane curves, J. Differential Geom. 44 (1996), no. 2, 312-330. MR1425578
[DH22] Panagiota Daskalopoulos and Gerhard Huisken, Inverse mean curvature evolution of entire graphs, Calc. Var. Partial Differential Equations 61 (2022), no. 2, Paper No. 53, 37. MR4375799
[Gag83] Michael E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, 1225-1229. MR726325
[Gag84] M. E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), no. 2, 357-364. MR742856
[Ger90] Claus Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299-314. MR1064876
[Ghy17] Étienne Ghys, A singular mathematical promenade, ENS Éditions, Lyon, 2017. MR3702027
[Gra89] Matthew A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71-111. MR979601
[HI01] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. MR1916951
[HI08] Gerhard Huisken and Tom Ilmanen, Higher regularity of the inverse mean curvature flow, J. Differential Geom. 80 (2008), no. 3, 433-451. MR2472479
[Lev03] Mark Levi, Talk at the workshop "Variational Methods in celestial mechanics", 2003. American Institute of Mathematics, Palo Alto, California.
[RS20] Susanna Risa and Carlo Sinestrari, Strong spherical rigidity of ancient solutions of expansive curvature flows, Bull. Lond. Math. Soc. 52 (2020), no. 1, 94-99. MR4072034
[Tso85] Kaising Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867-882. MR812353
[Urb91] John I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), no. 1, 91-125. MR1085136

Philippe Bolle
LMA, Université D'Avignon
301 rue Baruch de Spinoza, BP 21239, F-84 916 Avignon, France
Email address: philippe.bolle@univ-avignon.fr
Marco Mazzucchelli
CNRS, UMPA, École Normale Supérieure de Lyon
46 allée d'Italie, 69364 Lyon, France
Email address: marco.mazzucchelli@ens-lyon.fr
Andrea Venturelli
LMA, Université d'Avignon
301 rue Baruch de Spinoza, BP 21239, F-84 916 Avignon, France
Email address: andrea.venturelli@univ-avignon.fr

[^0]: Date: March 28, 2024.
 2020 Mathematics Subject Classification. 53E10, 37J06.
 Key words and phrases. Level orbits, Levi potentials, inverse curvature flow.
 M. Mazzucchelli and A. Venturelli are supported by the ANR grants CoSyDy (ANRCE400014). M. Mazzucchelli is also supported by the ANR grant COSY (ANR-21-CE40-0002).

