MINIMAL BOUNDARIES IN TONELLI LAGRANGIAN SYSTEMS

LUCA ASSELLE, GABRIELE BENEDETTI, AND MARCO MAZZUCCHELLI

ABSTRACT. We prove several new results concerning action minimizing peri-
odic orbits of Tonelli Lagrangian systems on an oriented closed surface M.
More specifically, we show that for every energy larger than the maximal en-
ergy of a constant orbit and smaller than or equal to the Mané critical value of
the universal abelian cover, the Lagrangian system admits a minimal bound-
ary, i.e. a global minimizer of the Lagrangian action on the space of smooth
boundaries of open sets of M. We also extend the celebrated graph theorem of
Mather in this context: in the tangent bundle T M, the union of the supports
of all lifted minimal boundaries with a given energy projects injectively to the
base M. Finally, we prove the existence of action minimizing simple periodic
orbits on energies just above the Mafié critical value of the universal abelian
cover. This provides in particular a class of non-reversible Finsler metrics on
the 2-sphere possessing infinitely many closed geodesics.
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1. INTRODUCTION

In low dimensional convex Hamiltonian dynamics, an important role is played
by periodic orbits that locally minimize the action. An instance of this can be
seen in the remarkable result of Bangert [Ban80] showing that the existence of
a locally length minimizing closed geodesic — a so-called “waist” — on a 2-sphere
forces the existence of infinitely many more closed geodesics. A Riemannian or
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Finsler 2-sphere does not necessarily have waists, and indeed there are Finsler
spheres with only finitely many closed geodesics [Kat73, Zil83]. However, Taimanov
[Tai91, Tai92] showed that magnetic geodesic flows on closed surfaces always have
waists on sufficiently small energy levels. This result has been given an independent
proof and put in the context of Aubry-Mather theory by Contreras, Macarini, and
Paternain [CMPO04]. Recently, its validity has been extended to the class of Tonelli
Lagrangian system, the largest class Aubry-Mather theory deals with, by the first
and third author [AM19]. In the current paper, we improve these results and derive
new, rather unexpected, applications.

1.1. The setting. We recall that a Tonelli Lagrangian L : TM — R, where M is a
closed manifold, is a smooth function whose restriction to the fibers of the tangent
bundle TM is superlinear with positive definite Hessian. Its Euler-Lagrange flow
¢4 : TM — TM is a second order flow on M: a smooth curve v : R — M is a
Lagrangian orbit if and only if it satisfies the Euler-Lagrange equation %&L(’y, 4)—
9,L(7,%) = 0; the corresponding flow line is given by ¢% (7(0),%(0)) = (v(t),5(t)).
The energy
E:TM — R, E(q,v) = 0yL(q,v)v — L(gq,v)

is a first integral of the dynamics, meaning that F o ¢) = F for all t € R.

In this paper, we focus on periodic orbits, that is, those orbits of the form
v : R/pZ — M for some period p > 0. The Lagrangian action with energy e € R
of an absolutely continuous periodic curve v : R/pZ — M is the quantity

s.0)= | " Lr(t),4(8) i + pe € RU {00},

The functional S., whose domain is the space of absolutely continuous periodic
curves with arbitrary period, is known as the free-period action. A version of the
least action principle implies that the periodic orbits v of the Lagrangian system
of L with energy e := E(v,%) are precisely the critical points of S.. The simplest
example of critical points are the minimizers: we will call Tonelli waist with energy
e a local minimizer of S.. We refer the reader to [Con06, Abb13] for the background
on the variational properties of the free-period action functional.

The qualitative properties of the Lagrangian dynamics depend on the energy level
that one considers. A first, significant, energy level is eg(L) := maxqenr E(q,0).
This is the lowest level such that, for all e above it, there are orbits with energy
e going through any given point of M. Another remarkable energy level is the
Mané critical value ¢(L), which is defined as the minimal energy e € R such that
the free-period action functional S, is non-negative. Given a covering space M’
of M, one can consider the Mané critical value of the lift of the Lagrangian L to
TM’'. When M’ is equal to the universal abelian cover or to the universal cover,
the respective Mané critical values are usually denoted by c¢o(L) and c¢,(L). The
energy values that we have introduced so far are ordered as

eo(L) < eu(L) < ep(L) < ¢(L).

Throughout this paper, we will always assume that eg(L) < ¢o(L). This is a mild
assumption, and indeed the strict inequality eo(L) < ¢, (L) is verified on a C°-open
and C'-dense subspace of the space of Tonelli Lagrangians (Proposition 4.2).

On any energy level e > ¢y(L), the Lagrangian dynamics is of Finsler type, that
is, the Euler-Lagrange flow on E~!(e) is orbitally equivalent to a Finsler geodesic
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flow on the unit tangent bundle of M, see [CIPP98, Cor. 2]. On energy levels
e < ¢o(L), the Lagrangian dynamics is in general different from a Finsler one, and
particularly when e < ¢, (L) its study poses several issues due to the potential lack
of good variational properties of S., see [Con06, Abb13, AMP15, AMMP17].

Building on the above mentioned Taimanov’s work, Contreras, Macarini, and
Paternain [CMPO04] showed that, when M is a closed surface and L is magnetic
(that is, of the form L(q,v) = 3g4(v,v) + 0,4(v) for some Riemannian metric g
and 1-form 0), for any e € (eg(L),cy(L)) there exists a (not necessarily simple)
Tonelli waist v with energy e and negative action S.(7) < 0.} In the recent paper
[AM19], the first and third authors extended the validity of this result to general
Tonelli Lagrangians on closed surfaces. In this paper, we further strengthen the
result: on any energy level e € (eg(L), co(L)), we will show the existence of simple
Tonelli waists, that is, Tonelli waists that have no self-intersections. Actually, as in
[Tai91, Tai92, CMP04], we will actually show the existence of particular multicurves
of periodic orbits.

Throughout this paper, by a multicurve we mean a collection v = (V1 ..., Vm)
of finitely many absolutely continuous periodic curves v; : R/p;Z — M. Each
v; is called a component of . When the v;’s are topologically embedded and
have pairwise disjoint image, the multicurve ~ is said to be embedded and can be
seen as an oriented 1-dimensional topological submanifold of M with connected
components i, ..., Ym- On a closed oriented surface M, an embedded multicurve
~ is a topological boundary when it is the piecewise smooth (with finitely many
singular points) oriented boundary of an open subset ¥ C M. We denote by B the
space of topological boundaries of M. The free-period action functional admits a
natural extension, that we will still denote by S, on the space of multicurves in M:
given any such multicurve v = (1, ..., Ym ), we set Se () := Se(y1)+-.+Se(Ym ). We
say that a topological boundary v = (71, ..., V) is a minimal boundary with energy
e for the Tonelli Lagrangian L : TM — R when S.(y) = infgS.. If e > eg(L),
the components of minimal boundaries with energy e are simple Tonelli waists with
energy e (Lemma 2.6).

1.2. Results on subcritical energies. The first result of our paper implies, in par-
ticular, the existence of simple Tonelli waists in the energy range (eq(L), co(L)].

Theorem 1.1. Let M be an oriented closed surface, and L : TM — R a Tonelli
Lagrangian with eg(L) < co(L). For each energy value e € (eo(L),co(L)], there
exists a minimal boundary ~ with energy e for L with action S.(7y) < 0 ife < co(L),
or Sc(v) =0 ife = co(L).

IThe above mentioned result in [CMPO04] is actually claimed for all e € (eo(L),co(L)), but
the proof contains a mistake, which makes the argument correct only for e € (eo(L),cu(L)).
The mistake is in the technical lemma [CMP04, Lemma 3.3]: the claim that the multicurve 7 is
null-homologous is not always true. This is only an issue for energies e > cy(L). Indeed, when
e < cu(L), the curve 7 can be chosen to be the lift of a contractible curve, and in particular it
is null-homologous. Nevertheless, the impact of the mistake on the main result of [CMPO04] is
essentially at level cy(L). Indeed, the strict inequality ¢y (L) < co(L) can only hold for surfaces of
genus at least 2, which have non-abelian fundamental group, and for each energy e > ¢y (L) the
existence of a Tonelli waist becomes elementary: Se satisfies the Palais-Smale condition, and one
can find global minimizers of S in every connected component of non-contractible periodic curves.
Our Theorem 1.1 in particular recovers the full result of [CMPO04] for all e € (eg(L), co(L)).
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Let My (L) be the set of Borel probability measures p on the tangent bundle TM
that are invariant by the Euler-Lagrange flow ¢ and have rotation vector p(u) = 0.
We denote by Mynin (L) the set of minimal measures with zero rotation vector, that
is, those p € Mo (L) such that S(u) = infoy, 1y S, where S is the action functional

on probability measures
S(u) = / Ldu.
™

One of the earliest results of Aubry-Mather theory asserts that infoy, (1) S = —co(L),
and that any minimal measure with zero rotation vector has support in the energy
level E~Y(co(L)). Moreover, Mather’s graph theorem asserts that the base projec-
tion 7 : TM — M restricts to an injective map on the Mather set

Mo(L):= | J supp(),
HEMmin (L)
see [Mat91, CI99, FGS09).
The subcritical energy levels are unaccessible by Aubry-Mather theory, but nev-
ertheless the minimal boundaries provide invariant sets by the Euler-Lagrange flow
analogous to the Mather set. Indeed, for each e € (eq(L), co(L)], we define

G.(L) C E7*(e)

to be the union, over all components « of all minimal boundaries with energy e, of
all points of the form (y(t),¥(t)). If eo(L) < co(L), the set G, (ry(L) turns out to be
precisely the Mather set Mg(L) (Proposition 2.13). Therefore, our next theorem
can be seen as an extension of Mather’s graph theorem to subcritical energy levels
on closed oriented surfaces.

Theorem 1.2 (Subcritical graph theorem). Let M be an oriented closed surface,
and L : TM — R a Tonelli Lagrangian with eqg(L) < ¢o(L). For each energy value
e € (eo(L),co(L)], the restriction 7|g, (1) : Ge(L) — M is injective.

As an application of the subcritical graph theorem and of Theorem 1.1, we prove
the existence of simple Tonelli waists on subcritical energy levels of non-orientable
closed surfaces, see Theorem 3.2.

1.3. Results on supercritical energies. Let M be a closed oriented surface, and
L:TM — R a Tonelli Lagrangian. It is well-known that, if e > ¢o(L) and M has
positive genus, there exist infinitely many Tonelli waists with energy e, and at least
a simple one. On the other hand, there are never minimal boundaries for e > ¢y(L),
since infg S, = 0 and the infimum is not attained. Our next theorem shows that
there are at least locally minimal boundaries.

Theorem 1.3. Let M be an oriented closed surface, and L : TM — R a Tonelli
Lagrangian such that eq(L) < co(L). There exists cw(L) > co(L) and, for each
e € (co(L),cw(L)), a topological boundary v = (1, ..., Ym) whose components are
(simple) Tonelli waists for L with energy e.

The assumption eg(L) < ¢o(L) in Theorem 1.3 cannot be dropped. Indeed, if g
denotes the round Riemannian metric on S?, the Tonelli Lagrangian L : TS? — R,
L(q,v) = 3gq(v,v) satisfies eq(L) = co(L) = ¢(L) = 0 and does not have Tonelli
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waists on any energy level e > 0. Theorem 1.3 becomes particularly significant
precisely when M = S2%, as there are examples due to Katok [Kat73, Zil83] of
Tonelli Lagrangians L : TS? — R with eg(L) < ¢(L) and such that, on some
energy level e > ¢(L), there are only finitely many periodic orbits and no Tonelli
waists at all.

The waist theorem for Tonelli Lagrangians on surfaces, which was stated with-
out proof in [AMMP17, Corollary 2.7], implies in particular that the presence of
a contractible Tonelli waist on energy levels e > ¢, (L) forces the existence of in-
finitely many other contractible periodic orbits with energy e. This, together with
Theorem 1.3, implies a new multiplicity result for Tonelli periodic orbits on S? at
energies just above the ¢(L).

Theorem 1.4. Let L : TS? — R be a Tonelli Lagrangian such that eq(L) < c¢(L).
For all energy levels e € (¢(L), cw (L)), the Lagrangian system of L admits infinitely
many periodic orbits with energy e.

We will show in Section 5 that Theorem 1.4 provides a class of non-reversible
Finsler metrics (of Randers type, as the Katok’s one [Kat73, Zil83]) on S? having
infinitely many closed geodesics.

1.4. Organization of the paper. In Section 2, after some preparatory lemmas on
embedded multicurves on surfaces, we prove the four main theorems stated in the
introduction. In Section 3, we prove Theorem 3.2 on the existence of simple Tonelli
waists on subcritical energy levels in non-orientable closed surfaces. In Section 4
we provide a sufficient condition for the inequality eg(L) < ¢y(L), and show in
particular that it is verified for a C'-generic Tonelli Lagrangian. In Section 5 we
study the implications of Theorem 1.4 to Finsler dynamics on S?. In the Appendix,
we prove a remark concerning Tonelli waists in the W2 functional setting of the
free-period action functional.

1.5. Acknowledgements. We are grateful to Gonzalo Contreras, Leonardo Macarini,
and Gabriel Paternain for a helpful discussion concerning their paper [CMPO04].
Luca Asselle is partially supported by the DFG-grants AB 360/2-1 “Periodic or-
bits of conservative systems below the Mané critical energy value” and AS 546/1-1
“Morse theoretical methods in Hamiltonian dynamics”. Marco Mazzucchelli is par-
tially supported by the ANR COSPIN (ANR-13-JS01-0008-01).

2. THE ORIENTABLE CASE

2.1. Homological versus topological boundaries. Let M be a closed oriented sur-
face. A multicurve « in M defines a homology class [v] € Hy(M;Z), and is called a
homological boundary when [vy] = 0. Clearly, a topological boundary in M is also
a homological boundary. Conversely, we have the following statement. Given two
multicurves v = (v1, ..., Ym) and ¢ = ({1, ..., (,) in M, their union is the multicurve

Y U C = (717 coey Yms Cl? 74-1'7,)

Lemma 2.1. An embedded multicurve « is a homological boundary if and only if it
can be written as a disjoint union of topological boundaries.
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Proof. We only have to prove the “only if” direction of the statement. Therefore,
let us assume that the embedded multicurve v = (71,...,%m,) is a homological
boundary. Let ¥i,...,X; be the connected components of M \ «. The oriented
boundary of ¥; is an (a priori not necessarily disjoint) union 0%; = 9;%; UJ_X;,
where the orientations of 9%; and ~ coincide on 0,%; and differ on 9_%;. We
introduce a suitable triangulation of M such that the periodic curves 7; and the
closures of the regions 3; define simplicial chains that we still denote by 7; and
¥; with a common abuse of notation. Since the multicurve « is a homological
boundary, we can find a 2-chain II such that v = OII.

We claim that there exist ni,...,ng € Z such that Il = n13 +...+ni 2. Indeed,
IT is an integer linear combination of the 2-simplexes of the triangulation; if A and
A’ are 2-simplexes contained in the closure of the same ¥;, then their coefficients
must be the same; this is clear if A and A’ are adjacent and, in general, follows
from the connectedness of ;. We conclude that

MAF Y =110+ +0-%1) + ...+ np (04 Xk + 0-y). (2.1)

We define the functions ¢y : {1,...,m} — {1,...,k} such that, for each ¢ = 1,...,m,
the oriented loop ~; belongs to 0,3, (;) and, with reverse orientation, to 9_%,_(;.
Equation (2.1) implies that

L+(Z‘

) = M_@) t 1, Vi=1,..,m. (2.2)

We set J; := {1} and proceed iteratively, for increasing values of h starting at
h =1, as follows: if J;, # @, we set

= U e (210)):

JE€Jn

Notice that, if j € Jj, and j' € ¢4 (1= (j)), Equation (2.2) implies that nj = n;+ 1.
Therefore Jp 11N (J1 U...u Jh) = &, which implies that the iterative procedure will
eventually stop, giving Jy41 = @ for some integer h. This means that the oriented
boundary 4’ of the compact subset
E/ = U ij
JjEU...UT,

is a union of some connected components of . Now we repeat the same procedure
with the homological boundary 4; := « \ 4/; the process clearly stops after finitely
many steps, thus giving the desired decomposition of « as the disjoint union of
topological boundaries. O

We call an embedded homological boundary irreducible if it cannot be decom-
posed as a disjoint union of two non-empty homological boundaries. Lemma 2.1
implies that irreducible homological boundaries are indeed topological boundaries.
We recall that a non-zero homology class h € Hy(M;Z) is called primitive when it
is not of the form h = nk, with n > 1 and k € H,(M; Z).

Lemma 2.2. Let v = (71,...,7m) be an irreducible topological boundary on an
oriented closed surface M of genus g. Then m < g+ 1 and, if m > 1, all the classes
[vi] € Hi(M;Z) are non-zero, primitive and pairwise distinct.

Proof. If [;,] = 0 for some i, then ~;, is itself a topological boundary. Therefore,
if we assume that m > 1, all the classes [v;] € H1(M;Z) are non-zero. Since every
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component ~; is a simple curve, its homology class [y;] is primitive, see [FM12,
Proposition 1.4].

Let us assume by contradiction that [v;] = [v;] for some ¢ # j. We denote 7; the
curve 7; with opposite orientation. The multicurve 4’ = (7;,7;) is a homological
boundary, and since both [vy;] and [¥;] = —[v,] are non-zero in Hy (M; Z), Lemma 2.1
implies that 4" is a topological boundary. Let ¥’ C M \ 4’ be the connected
component whose oriented boundary is 4’. The oriented boundary of the open
subset ¥ := X U~; UX' C M is a topological boundary +”. Notice that +; is not
a component of 4. Therefore v is strictly contained in -, which contradicts the
irreducibility of ~.

Finally, assume by contradiction that m > g+1. Let V' C Hy (M; Q) be the vector
space over the rational numbers generated by the homology classes [v1], ..., [vm]. We
recall that H;(M; Q) can be equipped with a symplectic bilinear form w given by
w(h,k) = h Nk, where N denotes the homology intersection product. Since the
curves 7; are pairwise disjoint, V is an isotropic subspace of H;(M;Q), and in
particular dim V' < %dim Hi(M;Q) = g. Since « is null-homologous, the origin
in V is in the convex hull of the set {[v1], ..., [ym]}. By Caratheodory’s Theorem,
there are g + 1 non-negative integers ni,...,ng41 and g + 1 components of v, say
Y1, - Yg+1, Such that

0=ni[n]+... +ngt1[vg+1]-
Let 4" be an auxiliary embedded homological boundary 4’ with n; components in
the class [v;], for i = 1,...,g + 1. By Lemma 2.1, we can write v as a disjoint
union v' = " U~"" for some irreducible topological boundary v = (v, ...,v/,).
We already proved that the components of irreducible topological boundaries have
pairwise distinct homology classes. Therefore, there exist pairwise distinct indices
i1y s iy € {1,...,g + 1} such that [v]] = [v;,] for all j = 1,...,m'. In particular,
m' < g+1and [y;,]+ ...+ [v,,] = 0. This contradicts the irreducibility of v. [

2.2. Subcritical minimal boundaries. Let M be a closed oriented surface. For a
number m € IN, we denote by B(m) C B the subspace of topological boundaries
in M with m components. We endow B(m) with the absolutely continuous topol-
ogy, and we consider its closure B(m), which is the space of “pinched” topological
boundaries. Notice that the components of the multicurves in B(m) are allowed to
intersect one another, but only with tangencies.

Let L : TM — R be a Tonelli Lagrangian. The notion of injectivity radius
from Riemannian geometry generalizes to Tonelli systems as follows (see [AM19,
Subsection 2.1] for the proofs). Let g be an auxiliary Riemannian metric on M,
which induces a distance d : M x M — [0,00). For each energy value e > eg(L)
there exist 7inj > 0 and pinj > 0 such that, for each go,¢1 € M with d(go,q1) < pinj
there exists 7 € [0, Tinj] and a smooth curve « : [0, 7] — M that is a unique local
free-time action minimizer with endpoints v(0) = go and y(7) = ¢;. This means
that, if B C M denotes the closed Riemannian ball of radius pj,j centered at go,
for any other absolutely continuous curve ¢ : [0,0] — B such that ¢(0) = go and
¢(o) = q1, we have

/T L(y(t),%(t)) dt + e < /U L(¢(t),¢(t)) At + ge.
0 0

For m € IN, we denote by D.(m) the space of absolutely continuous multicurves
with m components v = (71, ...,7m) such that each ~; is the concatenation of a
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finite number of unique local free-time action minimizers. We set
M. = | B(m)ND.(m).
meN
In [AM19, Lemmas 2.7-2.8], the first and third authors investigated the properties of

the minimizers of the free-period action functional S, over the spaces B(m)ND.(m),
and in particular proved the following.

Lemma 2.3. For every e > eg(L), any multicurve v € M, satistying S.(v) =
inf S¢|m, is embedded, and its components are Tonelli waists with energy e. [l

The proof of [AM19, Theorem 1.1] actually implies the following statement.

Lemma 2.4. If, for some e > eg(L), S, attains negative values on the space M,
then there exists a multicurve v € M, such that S.(7v) = inf Se|pm, -

Proof. Lety = (71, ..., Ym) € M,. For every connected component ; : R/7;,Z — M
there exists a minimal n; € IN and real numbers 0 = 750 < 71 < ... < Ty, =T
such that every restriction 7|7, ; 7, ;,,] is a unique local free-time action minimizer.
We define n. :=ny + ... + ny,. For each n € IN, we define the subspace

Me(n) := {'y € M, | Ny < n}

We endow M. (n) with the subspace topology induced by its inclusion into the space
of absolutely continuous multicurves. With such a topology, M.(n) is compact (see
[AM19, Lemma 2.6]) and S, : M.(n) — R is continuous. In particular, S, has a
global minimizer on every M.(n).

Assume that there exists a multicurve ¢ € M. such that Sc(¢) < 0. Let nyeq
be a large enough positive integer such that { € M, (nnee). We now invoke the
compactness result [AM19, Prop. 2.21], which provides an integer nmin > Nneg such
that, for every n > npin, every global minimizer of S| M. (n) belongs to M (Nmin)-
This implies

infSe = lim min S = min &,

Me n—00 Mc(n) Me (i)
and thus proves the lemma. We stress that in [AM19, Prop. 2.21] the energy level
e was assumed to be in the interval (eg(L), ¢y (L)), but the fact that e < ¢, (L) was
only needed in order to guarantee that S, : M. — R attain negative values. O

Lemma 2.4 is always applicable on subcritical energy levels, according to the
following statement.

Lemma 2.5. For each e € (eg(L),co(L)), S attains negative values on M,.

Proof. Since e € (eg(L),co(L)), there exists an absolutely continuous and null-
homologous curve ¢ : R/sZ — M such that S.(¢) < 0. Let k¥ € IN be large enough
so that d(¢(£s),((HLs)) < pinj foralli = 0,...,k—1. We denote by n : R/rZ — M
the piecewise smooth curve such that, for some 0 = rg < ... < rp_1 = r, each
restriction 7|, ,,,,] is the unique local free-time action minimizers with energy e
joining n(r;) = ((4s) and n(rip1) = ((“s). Clearly Se(n) < S.(¢) < 0 and,
up to choosing k large enough, the periodic curve 7 is freely homotopic to ¢. In
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(a) (b) (¢)

FIGURE 1. (a) A curve n with three double points. (b) The rearrangement of
n as a multicurve 8 = (61,02) whose only self-intersections are tangencies.
(c) The embedded multicurve 4 = (y1,~2) obtained by chamfering the corners
of 6.

particular, n is null-homologous. Moreover, up to a generic perturbation of the
vertices 7(r;), we can assume that n has only finitely many self-intersections, all of
which are double points.

We now produce a multicurve 8 = (64, ...,0,,) € D.(m), for some m < n, with
the following properties: the total support of @ coincide with the support of 7, its
action is Sc(0) = Se(n), and the only self intersections of @ are tangencies. Such a
multicurve 6 is obtained starting from 7, by transforming any crossing at a double
point into a tangency in the unique way compatible with the orientation, as in the
example in Figure 1(a-b).

Since 0 is obtained by rearranging 7, its homology class is [@] = [§] = 0 in
H,(M;Z), that is, € is a homological boundary. By chamfering the corners of 6
(Figure 1(c)), we can find an embedded multicurve v € D.(m) that is arbitrarily
close to 0. In particular, we choose 4 to be sufficiently close to 0 so that [v] = [0] =
0 in Hy(M;Z) and S.(v) < 0. By Lemma 2.1, the multicurve « can be written
as a finite union v = 4; U ... U 5, where each ~; is a topological boundary. In
particular, each ~; belongs to M.. Since

Se(y1) + -+ 4 Selvn) = Se(v) <0,

at least one such «; must satisfy S.(v;) < 0. O

Lemma 2.6. For each e > eg(L), the components of minimal boundaries with energy
e are (simple) Tonelli waists with energy e.

Proof. Let «y; be a component of a minimal boundary ~ with energy e, and tg € R
be such that 7; is smooth at tg. For all sufficiently large n € IN, we have that
d(vi(to),vi(to + n™1)) < pinj. We denote by ¢, : [0,7,] — M the unique local
free-time action minimizer with energy e such that (,(0) = v;(to) and (. (1) =
vi(to +n~1). As n — oo, we have that 7, — 0 and (,(0) — Fi(to). This readily
implies that, for all n large enough, (,, intersects the embedded multicurve « only
in v;([to, to+n"']). Fix now such a large enough n € IN. We denote by 7/ the curve
7; with the portion 7|, +,+n-1) replaced by ¢, and by v the multicurve v with
the component ; replaced by ;. Clearly, Se(v") < Sc(7), and this inequality is not
strict if and only if the curves ;| +,+n-1] and ¢, coincide. Since v is a minimal
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boundary with energy e and 4’ € B, we infer that v € M, N B, that is, each
component of ~ is a piecewise smooth solution of the Euler-Lagrange equation with
energy e. Now, arguing as in the proof of [AM19, Lemma 2.7], we infer that each
component y; of v is a simple periodic orbit with energy e. Assume by contradiction
that one such ~; is not a Tonelli waist. Therefore, there exists a piecewise smooth
v/ that is arbitrarily C''-close to ; and satisfies S.(7)) < Se(7:). We fix one such ~//
that is C'-close enough to 7; so that it is a simple curve that does not intersect any
other component of . By replacing the component v; of v with ~/', we thus obtain
a multicurve 4" that is still a topological boundary and satisfies S.(v") < Se(7).
This contradicts the fact that + is a minimal boundary. (I

Proof of Theorem 1.1 for e < ¢o(L). Lemmas 2.4 and 2.5 imply that there exists a
multicurve v € M, such that S.(v) = inf S¢|am, < 0. Lemma 2.3 further implies
that ~ is embedded (thus a topological boundary), and its components are Tonelli
waists with energy e. Finally, Lemma 2.6 implies that minimal boundaries with
energy e belongs to M., and in particular

inf S, = inf S, = S (7).
in inf )
Therefore, « is a minimal boundary with energy e. ]

2.3. Critical minimal boundaries. The very definition of the Mané critical value
co(L) implies that S, (z) is non-negative over the space of null-homologous abso-
lutely continuous periodic curves in M. This actually implies the following property,
which holds for general closed manifolds M.

Lemma 2.7. Let M be a closed manifold, and L : TM — R a Tonelli Lagrangian.
The associated action functional S, (1 is non-negative over the space of homological
boundaries of M.

Proof. Let us assume by contradiction that there exists a homological boundary
Y = (V15 Ym) with Sgzy(v) < 0. For each i = 1,..,m — 1, we choose an
absolutely continuous path ¢; : [0,1] — M such that (;(0) = +;(0) and (;(1) =
vi+1(0). For each n € N, we define the loop

En = * G * ook Gt % YV % ey * Cug %0 % Gy

where (; : [0,1] — M denotes the reversed path (;(t) = (;(1 — t) joining ~;41(0)
and 7;(0), * denotes concatenation of paths, and the superscript n denotes the n-th
iteration of a loop. Notice that &, is null-homologous, for

[l =D+ + Dl + [ Gl +. o+ o1 Gy] = 0[] = 0.
=0 =0

However, its action

m—1
SC(J(L) (fn) = co L) + Z S(,O (L) Cz i)a
i=1

is negative for n large enough, contradicting the definition of ¢o(L). O

Proof of Theorem 1.1 for e = ¢o(L). Fix an energy value e; € (eg(L),co(L)), and
consider the Tonelli injectivity radius pinj = pinj(e1) > 0 introduced in Section 2.2.
Its properties readily imply that every absolutely continuous periodic curve 7 :
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R/pZ — M, with p > 0, that is entirely contained in a closed Riemannian ball of
radius pinj satisfies Se, (7) > 0, and thus also Se(7y) = Se, (7) + (e —e1)p > 0 for all
e > e;. Here, pinj is small enough so that all closed Riemannian balls of radius pip;
are contractible.

By [AM19, Lemma 2.9], any piecewise smooth multicurve v = (v1,...,7m) €
B(m) with components of the form v; : R/p;Z — M satisfies

zm:pi < Se(v) + [y 146

ath (2.3)

i=1
where 6 is the 1-form on M given by 6,(v) = 9,L(g,0)v.

For cach e € (e1,co(L)), let ve = (Ve,1, s Ye,m. ) € Me be the minimal boundary
given by Theorem 1.1, so that

Se(ve) = 1réfSe = ﬂ{ S. < 0. (2.4)

We claim that no component of v, is contained in a Riemannian ball of radius piy;.
Otherwise, after removing all such components 7. ; (which have action Sc (7. ;) > 0),
we would be left with a multicurve 4" C 4, that is still a topological boundary,
but satisfies Sc(v') < Se(7e), contradicting (2.4). In particular, every component
Ye,i : R/peiZ — M has length at least 2p;n; and period bounded from below as

De,i 2 Pmin = 2pinj min {|'U‘q | E(Qav) > 61}~
By (2.3), the total period of the multicurve 4, can be bounded from above as
O de
Zpe,i < Pmax ‘= M
=1 €1 — eo(L)

Notice that pmax and pmin are independent of e € (e1,¢o(L)). The total length of
the multicurve ~, can be uniformly bounded as

Zlength('ye,i) < Pmax Max {|v|q ’ E(q,v) < cO(L)}.

i=1

Therefore, the number m, of connected components of 4, is uniformy bounded as

1<m,< gmaf max {|v], ‘ E(q,v) < co(L)}.

mj
This, together with the pigeonhole principle, implies that there exists m € IN and
a monotone increasing sequence e, — ¢o(L) such that each multicurve -, has
m connected components. Since the lengths and the periods of the connected
components of the 4., ’s are uniformly bounded from above and uniformly bounded
away from zero, up to extracting a subsequence we have that ., converges in the
C°-topology to some multicurve v € M, (1) as @ — oo. The action of v satisfies

Sco(L) (7) = ah—{%o SEa (’Yea) <0.

Since ~ is a homological boundary, Lemma 2.7 implies that = is a global minimizer
of Sy (1) on the space of homological boundaries and has action S, (ry(7v) = 0. In
particular, v is a global minimizer of SCO(L)|MCO(L)’ and Lemma 2.3 implies that ~
is embedded, and thus a minimal boundary. ([l

Unlike on subcritical energies, minimal boundaries with energy co(L) have the
following decomposition property.
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Corollary 2.8. Let M be an oriented closed surface of genus g, and L : TM — R
a Tonelli Lagrangian with eg(L) < c¢o(L). Every minimal boundary with energy
co(L) can be decomposed as the disjoint union of irreducible minimal boundaries
with energy co(L). In particular, there exist irreducible minimal boundaries with
energy co(L), which have at most g + 1 components.

Proof. Let 4 be a minimal boundary at level ¢o(L), whose existence is guaranteed
by Theorem 1.1. By Lemma 2.1, the homological boundary ~ can be decomposed
as a disjoint union v = ~; U ... U g, where each ~; is an irreducible topological
boundary. Since S,y (V) = Seo(r)(71) + - + Seo(2)(Ym) = 0, Lemma 2.7 implies
that S, ()(vi) = 0 for all i = 1,...,m. Therefore, all the irreducible topological
boundaries «; are minimal, and Lemma 2.2 implies that each of them has at most
g + 1 components. O

The upper bound g + 1 on the number of components of an irreducible minimal
boundary with energy co(L) is optimal. Indeed, as the following example shows,
any given irreducible topological boundary is the unique minimal boundary with
energy co(L) for a suitable Tonelli Lagrangian L.

Example 2.9. Let M be a closed oriented surface, and v = (71, ..., 7m) an irreducible
topological boundary in M. We choose a Riemannian metric g on M with respect
to which the components ~; : R/p;Z — M have unit speed. We denote by | - | the
norm on vectors and covectors induced by g. We choose a 1-form # on M such that
04| < 1forallqg e M\~,and 0,4 = —g(%(t),-) foralli =1,..,mand t € R/p;Z.
We define the Tonelli Lagrangian

L:TM - R,  L(q,v) = 2g4(v,v) + 04(v),

and claim that - is the unique minimal boundary for L with energy co(L). Indeed,
consider the dual Tonelli Hamiltonian H : T*M — R, H(q,p) = %\p —0,]?. By the
minmax characterization [CIPP98, Theorem A] of the Mané critical value, we have

< = i < =1
co(L) < ¢e(L) uecl‘gf(M) max H(q,du(q)) < mex H(q,0) = 3

Since
p . .
Sip = | (310 +0(E) ) de+ §p=—4p+ fp=0,

we have that ¢o(L) > 5. Therefore,

>
o(L) =co(L) = 3 > 0=eo(L).

and 4 is a minimal boundary with energy c¢o(L). Assume now that ¢ : R/pZ — M
is a periodic orbit with energy co(L). Since the energy function associated with L
isE:TM — R, E(q,v) = %gq(v,v), the curve ¢ has unit speed. If we assume that

¢ is not one of the components of 4, we have 6(¢) > —1, and therefore

S0 = [ (B + 06N de+ o> ~dp+ dp =0,

This shows that no curve other than the ;’s is the component of a minimal bound-
ary with energy co(L). a
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2.4. The invariant sets G.(L). Let M be a closed oriented surface, and L : TM — R
a Tonelli Lagrangian such that eg(L) < ¢o(L). Let us rephrase the statement of
Theorem 1.2 in a way that is more convenient for its proof:

Theorem 1.2 (rephrased). If v = (v1,...,vm) and ¢ = (¢1, ..., (n) are two minimal
boundaries with energy e € (eg(L), co(L)] for L such that ~;(r) = (;(s) for some
ie{l,..,m}, je{l,...,n}, and r,s € R, then v;(r +t) = (j(s +1t) for all t € R.

Proof. We fix an energy e > eg(L) and an arbitrary Riemannian metric on M
which induces a distance d : M x M — [0,00). We already introduced the Tonelli
injectivity radius pin; > 0 in Section 2.2. Actually, by [AM19, Lemma 2.3 and
Cor. 2.5], pinj can be chosen so that, for each closed Riemannian ball B C M of
radius pinj, the following properties hold:

(i) for all distinct curves v : [a,b] — B and ( : [¢,d] — B that are portions of
some orbits of the Lagrangian system of L with energy e satisfying v(t1) =
C(s1) and 7(t2) = ((s2) for some t1,ty € [a,b] and s1,s2 € [¢,d], we have
t1 < to if and only if s1 > so;

(ii) any absolutely continuous periodic curve v : R/pZ — B with p > 0 is
contractible and has action S.(y) > 0.

Let us now consider two minimal boundaries v and ¢ as in the statement. Since
they are in particular smooth embedded multicurves (by Lemma 2.6), we can find
p = p(7,¢) € (0, pinj) small enough such that the following property holds

(iii) for each closed Riemannian ball B C M of radius p, the intersections v N B
and (N B are diffeomorphic to a compact interval (and possibly the interval
reduces to a single point when a multicurve intersects B with an external
tangency).

Let ¥1,%5 C M be the open subsets whose oriented boundaries are 90%; = « and
039 = (. A priori, the open sets ¥1NY5 and M\ (X1 U Xo) may have infinitely many
connected components (this happens if 4 and ¢ have non-isolated intersections).
We denote by II; C ¥ N and Iy € M\ (37 U X9) the union of their “small”
connected components, where a connected component is considered small if it is
contained in a Riemannian ball of radius p. Points (i) and (iii) imply that every
connected component of II; and Il; is an open ball whose oriented boundary is
a curve obtained by concatenating an interval contained in ~ with an interval
contained in (.

Notice that the open sets 1 NXo \II; and M\ (X1 U X2 UII,) have finitely many
connected components. Indeed, any such connected component T is not contained
in any Riemannian ball of radius p, and therefore its boundary 0T has length at
least 2p. This gives

(51 050 \ L) + #mo (M \ (5, U, UTLL)) < length(”;plength(o .

The oriented boundaries 8 := 9(31 N¥2 \II1) and i := (=M \ (X1 U X2 UTIy)),
where the minus sign denotes the reverse orientation, are obtained by concatenating
finitely many subintervals of the multicurve v U ¢ (here, each subinterval of v U ¢
contributes to at most one subinterval of @ Un). Indeed, assume that there is a
continuous curve of the form o : [0,%4] — 9(X1NE3) or o : [0, t4] — I(M\ (X1 U X))
such that, for some 0 < t; <ty < t3 <t4, oljg,] and 0|}, 4, are subintervals of =,
0lt1,t,) and olj, 4, arve subintervals of ¢, and that o|;, ;) and oy, ., have length
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i X2
======-_-<
Gj b

FIGURE 2. Example of intersections between the multicurves v and {. The
small white regions are components of IIs. The support of the curves +; and
¢; coincide with opposite orientation in the dashed subintervals, which are
contained in 9(X1 UX2) \ 9(X1 U o).

at most p. The curve |, 4,1 is contained in a closed Riemannian ball B of radius p.
Properties (i) and (iii) imply that o(t1) = o(t3), that is, 0 winds around the closed
curve o/, 4,1 of length at most 2p, and therefore it is the boundary of a connected
component of II; or Il,.

The portions of v and ¢ that are not employed for building 8 and 1 can be of
two kinds: those that form the oriented boundaries 0I1; and —0Ils, and those who
form “thin” closed curves in 9(X; U 33) \ 9(X1 U E3), see Figure 2. We denote by
v+ [0,ai] = M, for i = 1,....,k, and (j : [0,b;] — M, for j = 1,...,1, the portions
of v and ( respectively that are not employed for building 8 and 1. We denote by
I C M the set of intersections between v and ¢. Notice that ~.(0),~i(a;) € I, and
moreover each t € [0,a;] is contained in a closed interval [/, ¢’] € [0, a;] such that
Y@, v (") € I and d(vi(¢'),7i(t")) < 2p. An analogous statement holds for the
curves (;. Properties (i) and (iii) imply that k = [ and, up to reordering the curves
i -, (], we can find finite sequences

O=ai0<aj1 <..<aig = a,
0=0b;k <bjp—1<..<bg=0b
such that, for all i =1, ..., k,
vilaij) = ¢ (i), Vi=1,...k,
d(vi(aij).vi(aij41)) < 2p,  Vji=1,..k -1
Therefore, for each i € {1,...,k} and j € {1, ..., k; — 1}, the restrictions ¥;|(a, ; a; ;1]

and (f|[p, ;. ,b;;) are contained in a same closed Riemannian ball of radius p, and
can be concatenated to form a loop. This, together with property (ii), implies that

k

> (Seth) +8.(6D) = 0 (2.5)

i=1
and such an inequality is strict unless k£ = 0, that is, unless all the portions of ~
and ¢ are employed for building @ and n. This implies that

k
5.(0) + S.(m) < Se(8) + Su(m) + Y (Se(2h) + S.(¢)))
=1

_SM+80Q) (2.6)
= Qi%f Se

= 2inf S,
Me
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FIGURE 3. (a) Tangency between « and ¢. (b) Transversal intersection between
~ and ¢.

Since 8 and i are formed by concatenating finitely many subintervals of « and ¢,
in particular 8, € M.. The inequality (2.6) thus forces

86(0) = Se(n) = 86(7) = Se(C) = ﬂf S,
and k = 0. In particular II; =1II; = @, and
(7] 26(21 QZQ), 7728(21 UZ2).

By Lemma 2.3, 8 and n are embedded multicurves whose components are simple
Tonelli waists with energy e. Since @ and 1 were constructed by concatenating
subintervals of v and ¢, each component of 8 and 7 is a component of ~ or (.
Assume now that v;(r) = (;(s) for some i € {1,...,m}, j € {1,...,n}, and
r,s € R, but v;(r +t) # (;(s+t) for some t € R. Therefore, v; and (; intersect,
but are not the same curve. This gives a contradiction: if the only intersections
between ~; and (; were tangencies, the multicurve n = 9(X; U £2) would not be
embedded (see Figure 3(a)); otherwise, if 7; and (; intersected in a topologically
essential way (for instance transversally), the components of 17 would not be orbits
of the Lagrangian system of L (in case of a transvere intersection, they would not
even be smooth, see Figure 3(b)). O

Let us now focus on the energy level ¢o(L), and consider the setting of invariant
measures introduced before Theorem 1.2. We fix a minimal measure g € 9Myin(L).
An argument due to Haefliger [CMP04, Prop. 2.1] implies that the support of
is foliated by periodic orbits of the Euler-Lagrange flow ¢! in the energy level
E~Y(co(L)). For each (q,v) € supp(u), we denote by p(q,v) the period of the orbit
t = Dgu)(t) := @7 (q,v), and we denote by (4, := m o (4 its base projection,
which is a simple periodic curve in M according to Mather’s graph theorem.

Lemma 2.10. For each (q,v) € supp(u) and € > 0, there exists a neighborhood
U C TM of (q,v) such that, for every (¢',v") € supp(u)NU, the periodic orbit g
has minimal period p(q',v") € (p(q,v) —¢€,p(q,v) +€) and satisfies (g v)] = [Y(q,0)]
in Hy(M; 7).

Proof. We fix (q,v) € supp(u), and an embedded open interval I C M intersecting
the curve 7(,.) transversely at g. Mather’s graph theorem [Mat91] also says that
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C(q’,v/)ﬁz’.
=

Vg’ ")

FIGURE 4. The annulus A.

the inverse of the injective projection 7 : supp(u) — 7(supp(p)) C M is a Lipschitz
map. Therefore, up to shrinking I, we can suppose that for each ¢’ € INw(supp(u)),
if we denote by v’ € T, M the unique tangent vector such that (¢',v") € supp(u),
v’ is transverse to I and points to the same side of I as the vector v. Up to choosing
a smaller interval J C I around g, there is a well defined continuous hitting-time
function 7 : J N (supp(p)) — (0,00) given by

7(q') := inf {t >0 ‘ (¢',v") € supp(p), V(g0 (t) € I}.

Up to further shrinking J around ¢ the following holds: for every (¢’,v") € supp(u)N
7 1(J), the curve V(a0 [0,r(qy) 18 either closed or almost closed. In the latter
case, Mather’s graph theorem implies that the points ¢' and 7y ) (7(¢")) lie in
the same connected component of I\ {¢q}. Therefore, if we close up v(g',v)l[0,7(¢")]
by concatenating it with a little segment () C I, we obtain a closed curve
Vg’ v |[0,7(a")] * (g 07y that, together with v(, .y, form the (non-oriented) boundary
of an annulus A C M. We claim that 7(¢') = p(q’, '), that is, the segment (4 .1
is always reduced to a point, and thus the curve 7y, /) closes up at the hitting
time 7(¢’). Indeed, assume by contradiction that ((, . is not a point curve. Then,
Y(¢',0)(t) belongs to the interior of the annulus A for either ¢t > 7(¢') sufficiently
close to 7(¢') or t < 0 sufficiently close to 0. Consider the first case (Figure 4),
the second one being completely analogous. Since the curve 7y, ) is periodic and
does not have self-intersections nor intersections with v, ., the exit time

t' :=sup {t > 7(q") ‘ Vg o) (5) €A, Vs € (T(q/)at)}

is finite and (4 ) (t') lies in the interior of (¢4 ). However, this violates the above
mentioned transversality property implied by Mather’s graph theorem, which forces
V(g0 (t") to point in the interior of A.

Now, for each € > 0, we can choose a neighborhood U C TM of (¢g,v) that is
small enough so that:

o 7(q') € (p(q,v) — €,p(q, v) + €) for each (¢',v") € U Nsupp(u) N7~ (J),
e the periodic curve (g ) (t) = T o ¢} (g,v) hits J in both positive and
negative time ¢, for each (¢, v’) € supp(p) N U.

The neighborhood U has the desired properties. [
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A Theorem of Mafié implies that the measure p € Myuin(L) also minimizes
the action functional & among (not necessarily invariant) holonomic probability
measures with zero rotation vector. This implies that each periodic orbit 74,
for (q,v) € supp(p), is a Tonelli waist with energy co(L). Moreover, we have the
following lemmas.

Lemma 2.11. Every periodic orbit v1 of L whose lift (71, 1) is contained in supp(u)
is a component of topological boundary v = (v1, ..., Ym) whose lift to TM is con-
tained in supp(u).

Proof. If [y1] = 0, then 7, is itself a topological boundary, and the lemma follows.
Therefore, in the remainder of the proof, we consider the case where [y1] # 0. Since
supp(u) is compact, by Lemma 2.10 we can decompose it as a finite disjoint union
supp(u) = K1 U ... U K, such that, for each i = 1,...,n, the subset K; is open and
closed in supp(u), and there exists h; € Hi(M;Z) such that [y(,.)] = h; for all
(¢,v) € K;. If needed, we relabel the sets K; so that the lift (y1,41) is contained
in K;. We denote by x; : TM — [0, 1] the characteristic function of K;, that is,

( ) ]-7 if (qvv) € Kiv

i\q,V) =

Xid 0, (q,v) € TM\K,.
Since the sets K; are open in supp(u), we have p(K;) > 0, and therefore we can
introduce the probability measures p; = u(KZ-)*lxi,u on K;. Since
p=p(K1)pa + -+ p(5G) pn,

we have

0= p(p) = p(K1)p(p1) + - .. + p(n) p(pn). (2.7)
For each 1-form n on M, Birkhoff’s ergodic theorem implies that

(1 (K)p()) = [ o) dtao)

:/Kip(q,v)l <L n) dp(q,v)

(q,v)

= (n, hz’>/ p(g,v) " du(q,v).

i

=ia;
and therefore u(K;)p(u;) = ash; € Hi(M;R), where a; > 0. Thus, Equation (2.7)
implies that a;hy + ... + anh, = 0. Since the classes h; are contained in Hy(M;Z),
the previous equality can also be satisfied with positive integer coefficients, i.e.

bithi+...+b,h, =0

for some integer coefficients b; > 0. Let us choose an arbitrary embedded homologi-
cal boundary ¢ having precisely b; components with homology h;, for alli =1, ..., n.
By Lemma 2.1, ¢ contains an irreducibile topological boundary ¢’ = ({,...,¢.,)
such that [(]] = hi. By Lemma 2.2, the classes [(}] are pairwise distinct. There-
fore, up to relabeling the homology classes ha, ..., by, we have that [(;] = h; for all
j=1,...,m. We conclude that

0=[¢"T=h1+ ...+ hn. (2.8)
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Now, for each ¢ = 2, ..., m, we choose an arbitrary (g;,v;) € K;, and we consider the
corresponding periodic orbit v; := 7(4, v,)- Since [y;] = h;, Equation 2.8 implies that
the multicurve 4 := (71, ..., ¥m) is a homological boundary. Since 4 is irreducible,
it is a topological boundary. ([

Lemma 2.12. Every topological boundary whose lift to TM is contained in the
Mather set Mo(L) is a minimal boundary with energy co(L).

Proof. The so-called Mather’s alpha function «([n]) = ¢(L —n), where 7 is a closed
1-form on M and [n] € H'(M;R), is convex and superlinear, see [C199, Theo-
rem 2-6.4]. We denote by 1 a closed 1-form whose cohomology class [n] is a global
minimizer of a.. A result of Paternain-Paternain [PP97, Theorem 1.1] implies that
co(L) = ¢(L —n). Let M(L) be the set of Borel probability measures p on the
tangent bundle TM that are invariant by the Euler-Lagrange flow ¢ (here, unlike
in the definition of My (L), we do not require p to have zero rotation vector). Notice
that 9(L) = 9M(L —n), since the Euler-Lagrange flows ¢! and qth*n coincide. The
Maiié critical value ¢(L) can be characterized as

c(L)=— inf / Ldu.
() neM(L) JTm :

For each (q,v) € Mg(L), we denote by fi(q.) € M(L) the invariant probability
measure supported on the periodic orbit (., i-e.

1 p(q,v)
flugu = [ fodhlavdt v eCoTM)
/TM (@) p(q,v) Jo t

A result of Fathi-Giuliani-Sorrentino [FGS09, Lemma 3.5] implies that, for every
(q,v) € Mo(L), the probability measure j(4,, satisfies

L—n)du .,y = inf L—n)du=—c(L —n)=—co(L).

/TM( 1) di(q,v) ot TM( 1) dp (L —mn) o(L)

If we rephrase this identity in terms of the periodic orbit v(, ., we obtain that

Sun () (Vo)) = / n= ol Y@v) e Mo(L).  (29)

V(q,v)
Now, let & be a topological boundary whose lift of each component (7;,;) is con-
tained in the Mather set Mo (L). Since [y] = 0 in Hy (M; Z), Equation (2.9) implies
that

Seo(y(7) = (n;[v]) = 0.
Therefore, Lemma 2.7 implies that « is a minimal boundary with energy c¢o(L). O

We can now provide the characterization of the Mather set Mo(L) in terms of
minimal boundaries.

Proposition 2.13. Let M be an oriented closed surface, and L : TM — R a Tonelli
Lagrangian with eo(L) < co(L). Then G, (1)(L) = Mo(L).

Proof. The inclusion Mo(L) € G, (r)(L) follows immediately from Lemmas 2.11
and 2.12. Conversely, let ¥ = (71, ..., 7m) be a minimal boundary with energy co(L),
and p1,...,p;m the periods of its components. From Theorem 1.1 we know that
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Seo(z)(7) = 0. The minimal boundary v defines an invariant measure j., € (L)
by

fdus = ;i / " pn@), Ayt vF € COTM),

TM

where p := p1 + ... + pp,. Clearly, p14 has zero rotation vector and action given by

1
S =—(S, —pco(L)) = —co(L) = inf /Ld7
(N'y) p( o(L)(’Y) P co )) o(L) €M (L) Jas H
where in the last equality we used the characterization of ¢o(L) from [PP97]. This
implies that the tangent lift of -+ is contained in the Mather set Mg (L), and there-
fore QCO(L)(L) - Mo(L) [l

2.5. Locally-minimal boundaries on supercritical energies. Let us quickly recall the
technicalities of the functional setting of the free-period action S.. For our purpose,
it is enough to define S, over the space of W12 periodic curves with arbitrary period.
Indeed, it is well known that the local minimizers in this setting are precisely
the local minimizers in the absolutely continuous setting. This space of curves is
formally given by W12(R/Z, M) x (0,00), where a pair (I',p) in this product is
identified with the p-periodic curve y(t) = I'(t/p), and as usual we will simply write
v = (T, p). The functional S, is lower semicontinuous on Wh2?(R/Z, M) x (0, c0),
and certain v = (T, p) € W123(R/Z, M) x (0, 00) may have action S() = co. When
working on a bounded energy range [e1, es] C R, as is the case in Theorem 1.3, a way
to gain more regularity is to modify the Lagrangian L on E~![es + 1,00) in order
to make it fiberwise quadratic outside a compact set of the tangent bundle TM.
A construction of such a modified Lagrangian L’ can be found in, e.g., [CIPP00,
Prop. 18]. By [CIPP00, Lemma 19], we have ¢(L) = ¢(L’). For each e € [e1, e2] the
free-period action functional S’ of L’ is real-valued, C!, and satisfies the Palais-
Smale condition on subsets of the form W12(R/Z, M) x [p_,p.]. Moreover it has
the same critical points and local minimizers as the original S, (see Lemma A.1 in
the Appendix). For this reason, in the rest of this subsection we can assume without
loss of generality that the Tonelli Lagrangian L is fiberwise quadratic outside a
compact set of TM.

The following general statement, which is actually valid on any closed config-
uration space M, will be needed to show that the periodic orbits provided by
Theorem 1.3 are simple.

Lemma 2.14. Let M be a closed manifold, and L : TM — R a Tonelli Lagrangian.
For every simple periodic orbit v = (T,p) € WY2(R/Z, M) x (0,00) of the La-
grangian system of L, there exists a neighborhood U C WY2(R/Z, M) x (0,0)
such that any periodic orbit of the Lagrangian system of L in U is simple as well.

Proof. By [Fat08, Theorem 2.7.4], for each energy value e > eg(L) there exists
7 = 7(e) > 0 small enough such that, for all ¢ € M and t € (0,7), the map 7 o
qStL|TanE71(_OO76) is a diffeomorphism onto an open neighborhood of ¢. Moreover,
by [Fat08, Theorem 3.6.1], for all (¢,v) € M with E(q,v) < e and ¢ € (0,7), the
curve

v:[0,0] > M, y(t)=mo¢l(q,0)
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is a strict action minimizer: if ¢ : [0,0] — M is any other absolutely continuous
curve such that ¢(0) = v(0) and {(o) = (o), then

| ewama< [ 1eo.doa (2.10)
0 0

Let v, = (T'n,pn) be a sequence of periodic orbits that converges to the simple
one v = (I',p) in WH3(R/Z, M) x (0,00) as n — co. Let e, := E(7,(0),4,(0)).
We claim that there exists e € R such that e, < e for all n € IN. Otherwise,
up to passing to a subsequence, we would have e,, — oo. This would imply that
|4 (t)] — oo for all ¢ € R, where | - | denotes an arbitrary Riemannian norm.
Therefore, since the periods p,, are bounded away from zero, we would obtain that
length(v,) = [;" |9n(t)| dt = oo, which is impossible, for length(,) — length(y).

Let 7 = 7(e) > 0 be the constant introduced above, so that for all ¢ € M and ¢ €
(0, 7) the map 7TO¢tL|TquE*1(7oo,e) is a diffeomorphism onto an open neighborhood
of q. Since, for all ¢t € (0,7), we have that v, (t) = 7 o ¢% (71,(0),9,(0)) = ~(¢) as
n — oo, we infer that 4,,(0) — 4(0). Therefore, T',, converges to I' in C*°(R/Z, M).
Since being a simple curve is a C'-open condition, we conclude that, for n large
enough, v, is a simple curve. O

For the rest of this section, let M be an oriented closed surface, and L : TM — R
a Tonelli Lagrangian such that eg(L) < ¢o(L). Let ¥ = (71, ..., Ym ) be an irreducible
minimal boundary with energy co(L), whose existence is guaranteed by Theorem 1.1
and Corollary 2.8. For ¢ = 1,...,m, we denote by C; the connected component of
W12(R/Z, M) x (0,00) containing ;. If m > 1, Lemma 2.2 implies that C; # C;
for all ¢ # j, and none of the C;’s contains iterated curves.

We recall that the free-period action functional S, (1) is bounded from below on
every connected component of W12(R/Z, M) x (0,00), see [Abb13, Lemma 4.1].
Actually,

Seo(n)(7:) = 10f Seqr) =i ¢ (2.11)

Otherwise, there would exists v, € C; with S.(v)) < Se(vi); since [y)] = [] in
H,(M;Z), the multicurve 4" = (Y1, ..y Yie1,Vis Yit1s ---» Ym) Would be a homological
boundary with action

Seo) (V) = Seo()(V) = Seo ) (i) + Seo(r) (1) < Seo(ry(¥) = 0,
contradicting Lemma 2.7.
If v has m > 1 components, we define the closed subsets

]Ci = Ciﬁ‘sc_o}L)(ci)’ 1= 1,...,m,

which do not contain iterated curves. If instead = has only m = 1 component, we
have ¢; = 0, and the intersection C; N S;O%L)(cl) also contains iterated curves; in
this case, we set

Ky = {C ey OS;)%L)(Cl) ‘ ¢ is not iterated}.

In both cases, the subsets K; are non-empty according to (2.11), contain Tonelli
waists with energy c¢o(L), and do not contain iterated curves. Consider a multicurve
¢ e (CyyGm) € Ky X... x Ky, Since every component ¢; has the same homology of
the corresponding component -;, € is a homological boundary. Since it has minimal
action Sgy(1)(¢) = Seo(z)(v) = 0, its lift is contained in the Mather set Mo(L).
Notice that ¢; # ¢; for all ¢ # j, since K; N K; = @. Moreover, Mather’s graph
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Theorem implies that the components (;’s have pairwise disjoint image and are
simple periodic orbits, that is, ¢ is an embedded homological boundary with action

Seo(1)(€) = 0.
Lemma 2.15. Each space K; is compact.

Proof. If m > 1, we already know that the KC;’s are closed. If m = 1, we claim that
K1 is closed as well; indeed, on an oriented closed surface, a loop that is the limit
of simple loops cannot be an iterated loop; therefore, the closure of ; is disjoint
from the complement C; N S;O}L)(cl) \ Ky; since C; N S;O}L)(cl) is closed, we infer

that K; is closed as well?. The evaluation map
ev:KiU..UKp = E Y (eo(L)),  ev(¢) = (¢(0),¢(0))

is a homeomorphism onto its image. Since the energy level E~!(co(L)) is compact,
we conclude that the closed sets IC; are compact as well. O

We fix real numbers p_, p4 € (0,00) such that
po < min{p ‘ 0=(0,p) e Ky U... UlCm},
Py > max{p } 0=(0,p) e K1 U... U/Cm}.

The compactness of K U ... U K,,, together with Lemma 2.14, implies that each
K; has an open neighborhood U; € W2(R/Z, M) x [p_,p+] such that all the
periodic orbits of the Lagrangian system of L contained in U; are simple. Since
every multicurve ¢ = ({1,...,(m) € K1 X ... X K, is embedded, up to further
shrinking the ¢;’s, all curves ¢ € U; and n € U; have disjoint image provided i # j.

Lemma 2.16. There exist € > 0 and arbitrarily small neighborhoods W; C U; of IC;
such that

5% Se > %fse, Ve € [co(L), co(L) + €).

Proof. We fix i € {1,...,m} once for all. Let d be the distance on W12(R/Z, M) x
(0, 00) induced by its standard Riemannian metric. For each r > 0, we denote by
V. the open neighborhood of IC; of radius r, that is

Y, = {’y c leQ(R/Z,M) x (0, 00) ‘ d(~,¢) < r for some ¢ € ICZ-}.

We choose r > 0 small enough so that Vs, C U;, and the gradient norm [|VS, |l
is bounded from above on Vs3,. We set K} to be the set of critical points of S (1,
contained in the closure of V5, \ V... Since Seo (1) satisfies the Palais-Smale condition
on WY2(R/Z, M) x [p_,p.], we have that

= infSco(L)|lC§ > C;.

We fix ¢” € (¢;, ). The closure of {S;, 1) < ¢’} N (Var \ V;) does not contain any
critical point of S, (7 and, again by the Palais-Smale condition, there exists § > 0
such that [|[VS., )l > 6 on {Seony < ¢’} 0 (Vs \ Vr).

2Actually, if 1 is not contractible, C; does not even contain iterated loops, for a non-
contractible simple loop on an oriented closed surface is never freely homotopic to an iterated
curve, see e.g. [FM12, Proposition 1.4])
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We set W; := V,,., and we claim that
inf Se,(nylow, > inf Seo (1) lw, = ci.
Indeed, assume by contradiction that there exists a sequence {v; | j € N} C OW;
with Seor)(v;) < ¢ +1/j. Fix 0 < b < min{c¢"” — ¢;,0r} and j > 1/b. Notice
that the curve v; is contained in the sublevel set {S.,z) < ¢”}. Consider the anti-

gradient flow ® of the functional S, (), that is, the partial flow defined by the
ordinary differential equation

AP, = VS, 1) 0 Ps.

Since ||[VS., ()| is bounded from above on Vs, every orbit s — ®,(v) that does
not stay inside Vs, for all s > 0 will eventually hit the boundary of Vs,. Let
Sout € (0,00] be the largest real number such that

D, (7v;) € Var \ Vr, Vs € (0, Sout)-

We must have squ; < b/d% < 0o, for

Ci < Seo(2)(Psone (V) = Seo(r)(75) — /O IVSeo(1)(@s(y))II < i + b — 6% sout.-

However, since on the time interval [0, sou¢] the curve s — ®4(7;) crosses a region
of width r, we have the estimate

Seo(L) (Psone (17)) = Seo(r)(V5) — /0 [VSeo(z)(®s(7;))]*ds

<ci+b—6/ 10,2, (v;)]] ds
0

<c¢i+b—or
<Ci7

which contradicts the fact that inf S, (z)lc, = ¢;. This completes the proof of the
lemma for e = ¢o(L). The general statement follows from this, by observing that

Se(va) = SCO(L) (F7p) + (6 - CO(L))p t

Proof of Theorem 1.3. Consider the quantity € > 0 and the open neighborhoods
W; provided by Lemma 2.16. Fix e € (co(L),co(L) 4+ €). It is well known that
S, satisfies the Palais-Smale condition on subsets of the form W12(R/Z, M) x
[p—,p+], see [Abb13, Lemma 5.3]. Therefore, for each ¢ = 1,...,m, there exists a
minimizer ¢; of S|, , which is a simple Tonelli waist with energy e. By Lemma 2.1,
the embedded homological boundary ¢ = ({3, ...,(;) is a union of finitely many
topological boundaries. O

Proof of Theorem 1.4. Let M be the two-sphere and consider an arbitrary energy
level e € (¢(L),cw(L)). Since we are looking for infinitely many periodic orbits
with energy e, we can assume that the set of critical points crit(S,) is a collection
of isolated critical circles. Let « be a simple Tonelli waist with energy e, which
exists by Theorem 1.3. For each m € IN, we introduce the space of paths

P = {P:[0,1] S5 W (R/Z,5%) x (0,00) | P(0) € 7, P(1) € 7"},
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and the minimax value

m = inf So(P .

smi= iof - max Se(P(s))

Since the two-sphere is an oriented surface, every iterate of ~y is still a local minimizer
of 8., see [AMP15, Lemma 4.1]. Therefore

Sm > S (V™) = mSe (7).

As e > ¢y(L), the free-period action functional S, is strictly positive and satisfies
the Palais-Smale condition at every level on the whole W2(R/Z, S?) x (0, 00), see
[Abb13, Lemmas 5.1-5.4]. Therefore, s, is a critical value of the free-period action
functional S, and s,, — +0o0 as m — +oo. Actually, a standard deformation
argument from critical point theory allows us to find, for each arbitrarily small
neighborhood W € W12(R/Z, S?) x (0,00) of the set of critical points crit(S.) N
S.'(sm), a path P € P, such that

P([0,1]) € {Se < sm}UW. (2.12)

Assume now by contradiction that the Lagrangian system of L admits only
finitely many non-iterated periodic orbits 71, ...,y with energy e. In particular,
every such periodic orbit 7; lies on an isolated critical circle Z; of S.. Let us re-
call the non-mountain pass Theorem for high iterates, which was originally proved
in [AMMP17, Theorem 2.6] for magnetic Lagrangians, and extended in [AM19,
Lemma 4.3 and proof of Theorem 1.2] to the case of general Tonelli Lagrangians:
there exist constants m; € IN and, for all m > m;, arbitrarily small open neighbor-
hoods W ,,, of Z" := {¢™ | ¢ € Z;} such that the inclusion induces an injective
map between path-connected components

To({Se < 8e(7i")}) = mo({Se < Se(%i")} UWim). (2.13)

Consider a large enough m € IN such that s,, > max {S.(v]"") | i = 1,...,k}. The
set of critical points crit(S.) NS, 1 (s,,) is comprised of finitely many critical circles

crit(S) NS, (sm) = ZMu..uzZpt

1

where m; > m;; for all j = 1,...,k. We choose the neighborhoods Wj, ,,, of ZZ_”
small enough so that they are pairwise disjoint. We set

W = Wi m, U UWip e

and we choose a path P € P,, satisfying (2.12). By (2.13), we can modify P in order
to obtain a new path @ € P, such that Q([0,1]) C {Se < $m,}. This contradicts
the definition of the minimax value s,,. ([

3. THE NON-ORIENTABLE CASE

Let M be a closed manifold, and L a Tonelli Lagrangian. For a given cover
M’ — M, we denote by L' : TM’ — R the lift of L. Clearly eo(L’) = eo(L). Let
My — M and M} — M’ be the universal abelian covers, which have fundamental
groups

™ (Mo) = [my (M), m(M)], w1 (M) = [m (M), w1 (M)].
Since 71 (M) is a subgroup of 71 (Mjy), M{ is a cover of My, and in particular
co(L") < eo(L). (3.1)

Moreover, we have the following statement.
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Lemma 3.1. Let M be a closed manifold, L : TM — R a Tonelli Lagrangian, and
L' : TM’ — R its lift to the tangent bundle of a finite cover M’ of M. Then

Co(L/) = Co(L).

Proof. As above, we denote by My and M| the universal abelian covers of M
and M’, respectively. We already know that c¢o(L') < ¢o(L). Let us assume by
contradiction that c¢o(L') < ¢o(L). In particular, there exists a null-homologous
periodic curve v : R/pZ — M with action S, z)(7) < 0. Let m € IN be the
minimal integer such that the homotopy class [y]™ € 71 (M) belongs to the subgroup
m1(M'). Let d be the number of sheets of the finite cover M’. Notice that m
divides d, and we set k := d/m. The m-th iterate of 7 lifts to periodic curves
G R/mpZ — M, for i =1, ..., k, with pairwise distinct image. Notice that

Seox)(Gi) = mSeo () (),

where S/ is the action functional associated with the Lagrangian L’. At chain level,
the multicurve ¢ = ({1, ...,{x) is nothing but the image of v under the transfer
map associated with the finite cover M’, see [Hat02, page 321]. Since the transfer
map is a chain homomorphism, the multicurve ¢ is a homological boundary in M’.
However,

éO(L’)(C) = kmS., ) (7) <0,

which contradicts Lemma 2.7. O

We can now state and prove the main result about periodic orbits on subcritical
energy levels on non-orientable surfaces.

Theorem 3.2. Let M be a closed non-orientable surface, and L : TM — R a Tonelli
Lagrangian such that eq(L) < ¢o(L). For each energy value e € (eo(L), co(L)], there
exists a homological boundary « in M with the following properties:
(i) each component ; is a simple Tonelli waist of L with energy e,
(i) for each i,j € {1,...,m}, either v; and vy, coincide or they have disjoint
support,
(iii) + has action Sc(v) < 0 if e < ¢o(L), and action S.(v) =0 if e = ¢o(L),
(iv) ~ lifts to a minimal boundary with energy e for L', where L' is the lift of
L to the tangent bundle of the orientation double cover M’ of M.

Proof. Let m : M’ — M be the orientation double cover of the non-orientable
closed surface M. We lift L to a Tonelli Lagrangian L' : TM' — R, L'(q,v) =
L(m(q),dm(q)v), and we denote by S, the action functional associated with L'.
Clearly eg(L) = eo(L’) and, by Lemma 3.1, ¢o(L) = ¢o(L'). Fix an energy value e €
(eo(L), co(L)]. By Theorem 1.1, there exists a minimal boundary v = (¥4, ..., 7.,)
with energy e for L' whose action is either S/ (v') < 0if e < ¢o(L), or SL(v') = 0 if
e = ¢o(L). The projection v = (y1, ..., ¥m) := w(7’) is a homological boundary that
satisfies points (iii-iv) of the statement, and whose components are Tonelli waists
with energy e. Let F' : M’ — M’ be the non-trivial deck transformation of the
orientation double cover. Notice that v;(r) = ~;(s) for some (,7) # (4, s) if and only
if F'(7;(r)) = 7;(s). Since the Lagrangian L’ satisfies L'(F(q),dF (q)v) = L'(q,v) for
all (¢,v) € TM’, the multicurve F'(v') = (F(v}), ..., F(v},)) is a minimal boundary.
Therefore, by Theorem 1.2, F(v;(r)) = vj(s) if and only if F(v;(r +1)) = vj(s +1)
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for all t € R. This completes the proof of point (i), showing that the components
of ~v are embedded, and of point (ii). O

4. GENERICITY OF THE CONDITION eo(L) < ¢, (L)

Let M be a closed manifold, and L : TM — R a Tonelli Lagrangian with energy
E: TM — R. We denote by S, : WH2(R/Z, M) x (0,00) — R U {cc} the free-
period action functional at energy e. It is well known that eg(L) < ¢, (L). Indeed,
Seo()(I',p) = 0if T' is a constant curve at some ¢ € M with eo(L) = E(q,0) =
—L(q,0). We set

Vi(g) == —L(q,0),
QQ(,U) = 6UL((L O)Ua

9alv,v) = 02, L(q,0)[v, ).
Notice that g is a Riemannian metric on M, since L is Tonelli. Moreover,
eo(L) = —min L(-,0) = max V.
We consider the function
AV eo(L) = R, Ag) = 2[d°V(g)]"/? — |db,,

where | - | is the norm induced by g, and d?V(q) is the Hessian of V at ¢. Notice
that this Hessian is well defined, for V=1(eq(L)) C crit(V).

Proposition 4.1. If the function X\ is somewhere negative, then eyg(L) < ¢y (L).

Proof. Assume that there exists a point ¢ € V~!(eg(L)) such that A(¢) < 0, and
fix two normal tangent vectors u,v € T¢M such that |u| = |v| =1 and

db,(u,v) = |dfy| # 0. (4.1)
Let D C M be an embedded open 2-disk containing the point ¢ and such that
TyD = span{u,v}. We orient D so that v,u is an oriented basis of T, D, and we
denote by p the Riemannian volume form on D induced by g for this orientation.

Notice that df|p = fu for some smooth function f : D — R such that f(q) < 0.
We set b := |d?V(g)|. Since A(q) < 0, we can also fix a > 0 small enough so that

2va+b+ f(q) <O0. (4.2)
For each r > 0 smaller than the injectivity radius of g|p at ¢, we set

er = eo(L) + 412,
and we denote by -, the boundary of the Riemannian ball B,. C D of g|p centered at

q of radius r. We parametrize v, counterclockwise with constant speed |, (t)| = s,

and period 7, given by
A
Ty = —, sr:=rva-+b,
rva—+b

where /¢, is the length of ~,.. Since ¢, = 2xr + o(r), we have
2T

va+b

+o(1).

Tr =

Since eg(L) = V(q), we can estimate

L(w,u) < —eo(L) + 0, (u) + lul* + bdist(q, 2)* + o(dist(q, )*) + o(|u[*),
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where we denoted by “dist” the Riemannian distance in (D, g). Therefore

. 1 . b
L, ) + €r = 587 + 05, () + € = €0 + 577 + 0(r)

a+b . a+
2 T2 + Q'Yr (’yr) +

(a+b)r* 405, (5) + o(r?).

br2 + 0(r2)

Moreover
[ ooGenae= [ ao= [ gu= @ +ot)
0 B, B,
Putting together the last two equations, we obtain the estimate
Se, (1) = Te(a+b)r® + o(r®) + f(g)mr® + o(r?)
= (2Va+b+ f(g))mr* + o(r?).

This, together with (4.2), shows that S, (7v,) is negative for r > 0 small enough
and hence eg(L) < e, < ¢y(L). O

We denote by T the set of Tonelli Lagrangians L : TM — R, and by 7/ C T
the subset of those Tonelli Lagrangians L such that eq(L) < ¢, (L).

Proposition 4.2. The subset T’ is C°-open and C'-dense in T.

Proof. Consider a Tonelli Lagrangian L € 7', and fix an energy e € (eg(L), cu(L))
and a curve v = (I',p) € WL2(R/Z, M) x (0,00) such that S.(y) < 0. Let L' € T
be an arbitrary Tonelli Lagrangian such that |L — L’| < § on the support of (v,%)
and on the zero section, where

6 = min {15.(7), ¢ — eo(L) }
If S/ denotes the free-period action functional associated with L', we have
Se(7) < Se(v) +pd <0,
and therefore e < ¢,(L’). Moreover,
eo(L')=—minL'(-,0) < —min L(-,0) + 6 = eg(L) + d < e < ey (L).

This proves that 7' is C%-open in 7.

Now, let L € T be an arbitrary Tonelli Lagrangian and fix an arbitrary ¢ > 0.
Let us adopt the notation of Proposition 4.1, and consider V', 0, g, and A associated
with L. We fix a global maximum ¢ of V', so that V(q) = eo(L) and prove that
there exists L” € T' with |L — L"|c1 < ¢ in two steps.

First, we claim that there exists L' € T such that |[L — L"|¢c1 < §/2 and with the
property that V'(q) = eg(L’) and d?V’(q) = 0. To this purpose, for every arbitrary
€ > 0, we consider a small open ball B, (q) of radius r(e¢) such that |[dV| < € on
Bi(¢)(q). There exist a compactly supported function x. : By()(q) — [0, 1] which
is equal to 1 on B,.()/2(¢) and a constant C' depending only on a choice of a metric
on M such that

lea(L) — V| < Crre, [dxe| < Crt, on By (q).
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We define L. : TM — R as L. = L — (eg(L) — V)x.. There holds
Lo = LI+ |d(Le = L)| = [(eo(L) = V)xe| + [xedV| + [(e0(L) — V)dxc]
< Cre+e+Cre-Crt,

from which we see that L. € 7 and |L. — L|c1 < 6/2 provided € is small enough.
Moreover, V! =V + (eg(L) — V)xe < ep(L) and

VIq) =V(d)+ (eo(L) = V(¢ )xe(d) = eo(L), V¢ € Bpeyy2(q).

Therefore, we conclude that eo(L.) = V'(q) = eo(L) and that d®V’(q) = 0, so that
we can take L' = L/ for e small.

The second step consists in finding L” € T’ with |L” — L'|c1 < §/2. We look for
L" of the form

LY (z,v) = L'(z,v) + ex(|v]*) vz (v)

for € > 0 small. Here, x : [0,00) — [0,1] is a smooth bump function supported in
[0,1] equal to 1 in a neighborhood of 1 while v is some 1-form on M. Clearly, LY
converges to L’ as € tends to 0 and coincides with L’ + ev close to the zero section.
Therefore, V" = V' and ¢ = 6’ + ev. By Proposition 4.1 it is enough to choose v
in such a way that the number

M (q) = 2d*V (@) = |d(87 )| = —|dby + eduy]

is negative for some small e. This can clearly be achieved and finishes the proof
that 77 is C! dense in 7. O

5. APPLICATIONS TO FINSLER GEODESIC FLOWS OF RANDERS TYPE ON S?

Let L : TS? — R be a Tonelli Lagrangian, with associated energy function
E : TS? — R and free-period action functionals S,. It is well known that for
every e > c(L), the Euler-Lagrange flow of L on the energy hypersurface E~!(e)
is orbitally equivalent to the geodesic flow of a Finsler metric on the unit tangent
bundle of S?, see [CIPP98, Cor. 2]. If the Lagrangian is magnetic, this equivalence
is particularly explicit, as we now recall following [Pat99].

Let g be a Riemannian metric and o an exact 2-form on S2. For every primitive
0 of L, we define the magnetic Tonelli Lagrangian

L(g,v) = 394(v,v) + 0 ().

The Euler-Lagrange flow ¢! and the free-period action functional S, are indepen-
dent of the choice 6. In particular, the same is true for the Mané critical value
¢(L) and for the energy value ¢y, (L) provided by Theorem 1.3. The energy function
associated with L is given by F(q,v) = 3|v[?, and thus eo(L) = 0. The Tonelli
Hamiltonian H : T*S? — R dual to L is given by

H(q,p) = 3|p — 04>

We denote by | - | the norm of tangent and cotangent vectors associated with the
Riemannian metric g on S2, and by || - || the corresponding L>-norm of 1-forms,
i.e.

16]o0 = max|fg].
By [CIPP98, Theorem A], we have

(L) = inf 110'I2,



28 L. ASSELLE, G. BENEDETTI, AND M. MAZZUCCHELLI

where the infimum is taken over all primitives ¢’ of o, and Proposition 4.1 implies
that ¢(L) > eg(L) provided o is not identically zero. We fix r > ||0]|, and consider
the Finsler metric of Randers type on S?

F(q,v) = |[v| +7710,(v).
The diffeomorphism
BTN (r?/2) = F7(1),  ¢(g,v) = (¢, F(g,v) " 'v)

realizes an orbit equivalence between the Euler-Lagrange flow of L and the geodesic
flow of F on the respective energy hypersurfaces (see [Pat99, Lemma 2.1]).
We define

rolo.0) == VZeD) = inf 0]
TW(g’0> =V 2CW(L)>

where the infimum is taken over all primitives 6’ of o. Notice that
TO(gaU) < Tw(g7a)7

according to Theorem 1.3. A periodic curve I' : R/Z — S? is called a waist of the
Finsler metric F' when it is a local minimizer of the length function
1
L:C®R/Z,5%) =R, L(I)= [ F@),I(t))dt.

0
The reparametrization of a waist with constant F-speed is a closed geodesic for
the Finsler metric F. Notice that, if v = (', p) is a smooth periodic curve with
constant energy E(7(t),%(t)) = 4r%, then S,2/5(y) = L£(I'). This, together with the
fact that £(T") is independent of the parametrization of I', implies that I" is a waist
of F whenever v = (T',p) is a local minimizer of the free-period action functional
Sy2/2. Therefore, by applying Theorems 1.3 and 1.4 to magnetic Lagrangians on
S?2, we obtain a class of Finsler metrics of Randers type on S? possessing infinitely
many closed geodesics.

Theorem 5.1. Let g be a Riemannian metric and o an exact 2-form on S? that is
not identically zero. Let 6 be any primitive of o such that ||0]|» < r(g,0), and r
any positive real number such that ||0|lcc < r < 7w(g,0). Then, the Finsler metric

F:TS? - [0,00), F(g,v) = gq(v,0)? + 7710, (v)
has a simple waist and infinitely many closed geodesics. O
In view of Theorem 5.1, it is useful to have a criterion that guarantees whether
a given primitive 0 of o satisfies ||0||cc < rw(g,0). One such criterion is provided

by the following lemma, which applies in particular when g and 6 are rotationally
symmetric.

Lemma 5.2. Let M be a closed oriented surface, g a Riemannian metric on M,
and 6 a non-closed 1-form on M. Consider the vector field Z on M defined by
g(Z, -) = —0, and the set

N = {ge M| 16, =lfll}-



MINIMAL BOUNDARIES IN TONELLI LAGRANGIAN SYSTEMS 29

If N contains a topological boundary v whose components are periodic orbits of
the flow of Z, then ||0||oo = r0(g,df) < 7y (g,dd).

Proof. We introduce the associated Tonelli Lagrangian L : TM — R, L(q,v) =
29q(v,v) + 04(v). All we have to show is that co(L) > ||0]|%,. To this purpose we
notice that

L(g,v) + 31015 = 3 (Jv + Z(q)|* + 10112 — 104]%)-

In particular

L(g,v) + 302 = v+ Z(q))>, Vg€ N, veT,S% (5.2)
Let v = (711, -..,Ym) C N be a topological boundary whose components are periodic
orbits of the flow of Z, and consider the multicurve { := 7 given by reversing

the orientation of any component of «. Since every component ¢; of ¢ satisfies
Gi(t) = —Z((i(t)), by (5.2) we have

m m Di .
Sjo)z. /2(¢) = ZS\|9H§O/2(Q) = Z/O G + Z(G(t)Pdt = 0.
i=1 i=1
This implies the desired inequality. ([

APPENDIX A. WAISTS AND MODIFICATIONS OF THE LAGRANGIAN

Let M be a closed manifold, and L : TM — R a Tonelli Lagrangian with
associated energy E : TM — R, free-period action functional S, : W2(R/Z, M) x
(0,00) = R, and Euler-Lagrange flow ¢t : TM — TM. Any Tonelli waist v with
energy e is a periodic orbits of the Lagrangian system of L with energy e. If we
modify the Lagrangian away from E~!(e), v remains a periodic orbit of the new
Lagrangian system, but a priori it may not be a minimizer of the new free-period
action functional. However, we have the following statement.

Lemma A.1. Let L’ : TM — R be a Tonelli Lagrangian that coincide with L on
the sublevel set E~!(—o0, €'], for some €’ > e > eq(L), and let S! be the free-period
action functional of L’. A local minimizer of S is a local minimizer of S. as well.

Remark A.2. The lemma becomes trivial if one considers the free-period action
functionals defined on the space of C! periodic curves. However, in order to apply
global methods from nonlinear analysis, it is more suitable to work with the Sobolev
loop space W2(R/Z, M). O

Proof of Lemma A.1. Let w: TM — M denote the base projection. As we already
recalled in the proof of Lemma 2.14, there exists 7 = 7(e’) > 0 small enough
such that, for all ¢ € M and t € (0,7), the map 7 0 ¢f |1 MnE-1(—cc,ery 18 &
diffeomorphism onto an open neighborhood of ¢, and for all o € (0,7) and v € T, M
with E(q,v) < €, the curve

~v:[0,0] = M, V(t) = 7o ¢1(g,v)

is a strict action minimizer: if ¢ : [0,0] — M is any other absolutely continuous
curve such that ¢(0) = ~(0) and {(o) = (o), then

/ " L. 4() dt < / T L), ¢ dr.
0 0



30 L. ASSELLE, G. BENEDETTI, AND M. MAZZUCCHELLI

Assume by contradiction that there exists a local minimizer v = (T, p) of S, that
is not a local minimizer of S.. Therefore, there exists a sequence ¢, = (Z,,pn) €
WL2(R/Z, M) x (0,00) such that S.(¢,) < Se(y) and ¢, — v in WH2(R/Z, M) x
(0,00). Fix k € N large enough so that p/k < 7. For all n large enough, we have
that p,/k < 7 as well and, for each t € R/p,Z, the map

Un,t TCn(t)M n E_l(—oo, e/) — M, wn,t(v) =mo ¢1£n/k(Cn(t)vv)
is a diffeomorphism onto a neighborhood of {(,,(t), {n(t + pn/k)}. We set

Upi = ;;ni/k(cn(%)), i=0,..k—1,

and we define the periodic curve v, = (T, p) € WH2(R/Z, M) x (0,00) by

Yo (B2 +t) =70 gi)i((n(”,’f), Un,i)~
Notice that 7, is a continuous and piecewise broken periodic orbit of the Lagrangian
system of L satisfying Sk (7n) < Sk(Cn). Moreover, since v, (%2) = (n(42) — (%)
as n — 00, we have that Ty |;/x,(i+1)/4] — Llfi/k,(i+1)/#) in the C> topology. In par-
ticular, for all n € IN large enough and t € R/p,Z, we have that E(y,(t), ¥,(t")) <
e’, which implies

88('771) = Sé(’yn) < Sé(’y) = 86(7)‘

This contradicts the fact that ~ is a minimizer of S. (]

REFERENCES

[Abbl13] A. Abbondandolo, Lectures on the free period Lagrangian action functional, J. Fixed
Point Theory Appl. 13 (2013), no. 2, 397-430.

[AM19] L. Asselle and M. Mazzucchelli, On Tonelli periodic orbits with low energy on sur-
faces, Trans. Amer. Math. Soc. 371 (2019), no. 5, 3001-3048.

[AMMP17] A. Abbondandolo, L. Macarini, M. Mazzucchelli, and G. P. Paternain, Infinitely many
periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy
level, J. Eur. Math. Soc. 19 (2017), 551-579.

[AMP15] A. Abbondandolo, L. Macarini, and G. P. Paternain, On the existence of three closed
magnetic geodesics for subcritical energies, Comment. Math. Helv. 90 (2015), no. 1,

155-193.

[Ban80] V. Bangert, Closed geodesics on complete surfaces, Math. Ann. 251 (1980), no. 1,
83-96.

[C199] G. Contreras and R. Iturriaga, Global minimizers of autonomous Lagrangians, 22°

Coléquio Brasileiro de Matemética, IMPA, Rio de Janeiro, 1999.

[CIPP98] G. Contreras, R. Iturriaga, G. P. Paternain, and M. Paternain, Lagrangian graphs,
minimizing measures and Manié’s critical values, Geom. Funct. Anal. 8 (1998), no. 5,
788-809.

, The Palais-Smale condition and Mané’s critical values, Ann. Henri Poincaré
1 (2000), no. 4, 655-684.

[CMP04]  G. Contreras, L. Macarini, and G. P. Paternain, Periodic orbits for ezact magnetic
flows on surfaces, Int. Math. Res. Not. (2004), no. 8, 361-387.

[CIPPOO]

[Con06] G. Contreras, The Palais-Smale condition on contact type energy levels for convex
Lagrangian systems, Calc. Var. Partial Differ. Equ. 27 (2006), no. 3, 321-395.

[Fat08] A. Fathi, Weak KAM theorem in Lagrangian dynamics, unpublished book, version
10, 2008.

[FGS09] A. Fathi, A. Giuliani, and A. Sorrentino, Uniqueness of invariant Lagrangian graphs
in a homology or a cohomology class, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) VIII
(2009), 659-680.

[FM12] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical
Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.

[Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.



[Kat73]
[Mat91]
[Pat99]
[PP97]
[Tai91]
[Tai92]

[Zi183]

MINIMAL BOUNDARIES IN TONELLI LAGRANGIAN SYSTEMS 31

A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, lzv.
Akad. Nauk SSSR Ser. Mat. 37 (1973), 539-576.
J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian
systems, Math. Z. 207 (1991), no. 2, 169-207.
G. P. Paternain, On two noteworthy deformations of negatively curved riemannian
metrics, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 639-650.
G. P. Paternain and M. Paternain, Critical values of autonomous Lagrangian systems,
Comment. Math. Helv. 72 (1997), 481-499.
I. A. Taimanov, Non-self-itersecting closed extremals of multivalued or not everywhere
positive functionals, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 2, 367-383.

, Closed non-self-intersecting extremals of multivalued functionals, Sibirsk.
Mat. Zh. 33 (1992), no. 4, 155-162, 223.
W. Ziller, Geometry of the Katok examples, Ergodic Theory Dynam. Systems 3 (1983),
no. 1, 135-157.

LucA ASSELLE

JusTUs LIEBIG UNIVERSITAT GIESSEN, MATHEMATISCHES INSTITUT
ARNDTSTRASSE 2, 35392 GIESSEN, GERMANY

Email address: luca.asselle@ruhr-uni-bochum.de

GABRIELE BENEDETTI

UNIVERSITAT HEIDELBERG, MATHEMATISCHES INSTITUT

IM NEUENHEIMER FELD 205, 69120 HEIDELBERG, GERMANY
Email address: gbenedetti@mathi.uni-heidelberg.de

MARCO MAZZUCCHELLI

CNRS, EcoLE NORMALE SUPERIEURE DE LyoN, UMPA
46 ALLEE D’ITALIE, 69364 LyoN CEDEX 07, FRANCE
Email address: marco.mazzucchelli@ens-lyon.fr



