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Abstract. In this short note we discuss and clarify some issues related to the

generalization of Bernard’s theorem on the symplectic invariance of Aubry,

Mather and Mañé sets, to the cases of non-zero cohomology classes or non-
exact symplectomorphisms, not necessarily homotopic to the identity.

Résumé. On discute et clarifie quelques questions liées à la généralisation du
théorème de Bernard sur l’invariance symplectique des ensembles d’Aubry,

de Mather, et de Mañé, aux cas de classes de cohomologie non nulles et de

symplectomorphismes non exacts et pas nécessairement homotopes à l’identité.

1. Introduction

In the study of Hamiltonian dynamical systems, Aubry–Mather theory refers to a
series of variational techniques, related to the Principle of Least Action, that singled
out particular orbits and, more generally, invariant sets obtained as minimizing
solutions to a variational problem. These sets are nowadays called the Mather,
Aubry and Mañé sets, and as a result of their action-minimizing property, they
enjoy many interesting dynamical properties and a rich geometric structure.

Symplectic aspects of Aubry–Mather theory and its relation to symplectic ge-
ometry have soon attracted a lot of interest, starting from the work of Paternain,
Polterovich, and Siburg [7]. In his seminal paper [1], Bernard established the sym-
plectic invariance of the Aubry–Mather sets corresponding to the zero cohomology
class under the action of exact symplectomorphisms that preserve the condition of
being of Tonelli type. See also, just to mention a few papers in the literature that
followed, [2, 3, 9–11].

In this note, starting from Bernard’s result, we would like to discuss and clarify
some aspects related to the generalization of his theorem to other cohomology
classes and to non-exact symplectomorphisms, not necessarily homotopic to the
identity (see Theorem 9 and Corollary 10). As we shall see, in fact, one has to keep
into account two distinct issues: the cohomology class of the symplectomorphism,
as well as the action of the symplectomorphism on de Rham cohomology classes.

2. Notation and setting

Let M be a closed manifold, and let us denote by TM and T∗M , respectively,
its tangent and cotangent bundles. A Tonelli Hamiltonian is a C2 function H :
T∗M −→ R that is strictly convex and superlinear in each fiber. For each de Rham
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cohomology class c ∈ H1(M ;R), we denote by M∗c(H), A∗c(H) and N ∗c (H), re-
spectively the Mather, Aubry and Mañé sets of cohomology class c, associated to
H. Moreover, we denote by αH : H1(M ;R) −→ R and βH : H1(M ;R) −→ R

the so-called Mather’s minimal average actions. We refer to [5, 6, 8] for a precise
definition of these objects and for a discussion of their properties.

Let λ be the Liouville form on T∗M , which can be written in local coordinates as∑
j pj dqj . The projection onto the base π : TM −→M is a homotopy equivalence

whose homotopy inverse is given by the inclusion of the 0-section ι : M ↪→ T∗M .
From now on, we tacitly identify the de Rham cohomology groups H1(M ;R) and
H1(T∗M ;R) by means of the isomorphisms induced by π and ι. Analogously, we
identify the singular homology groups H1(M ;R) and H1(T∗M ;R).

Given a symplectomorphism Ψ of (T∗M, dλ), we denote by [[Ψ]] the cohomology
class [Ψ∗λ − λ] ∈ H1(M ;R). Such a symplectomorphism is called exact when
[[Ψ]] = 0.

Example 1.

(i) A particularly simple class of symplectomorphisms is given by translations
in the fibers, that is, maps Θα(q, p) = (q, p+αq), where α is a closed 1-form
on M . These symplectomorphisms are obviously homotopic to the identity,
and their cohomology class is given by [[Θα]] = [α].

(ii) Any diffeomorphism ψ : M −→ M can be lifted to a diffeomorphism Ψ :
T∗M −→ T∗M defined by

Ψ(q, p) := (ψ(q), (ψ−1)∗p) =
(
ψ(q), p ◦ dψ−1(ψ(q))

)
,

that preserves the Liouville form λ, i.e., Ψ∗λ = λ. In particular, Ψ is
an exact symplectomorphism. As a special instance, let A ∈ GLn(Z) and
consider the linear map on Tn given by ψ(q) = (AT )−1q. The associated
symplectomorphism of T∗Tn is given by Ψ(q, p) = ((AT )−1q, Ap).

3. Symplectic aspects of Aubry–Mather theory

Let us start by recalling Bernard’s result.

Theorem 2 (Bernard, [1]). Let H : T∗M −→ R be a Tonelli Hamiltonian and
Φ : T∗M −→ T∗M an exact symplectomorphism such that H ◦ Φ is still of Tonelli
type. Then:

M∗0(H ◦ Φ) = Φ−1
(
M∗0(H)

)
A∗0(H ◦ Φ) = Φ−1

(
A∗0(H)

)
N ∗0 (H ◦ Φ) = Φ−1

(
N ∗0 (H)

)
.

Remark 3. Obviously the condition that the Hamiltonian H ◦ Φ be still of Tonelli
type is very restrictive. For instance, if M = S1 and H(q, p) = p2, consider any
Hamiltonian diffeomorphism Φ : T∗S1 −→ T∗S1 mapping a fiber T∗qS

1 to a curve
(q(t), p(t)) such that t 7→ p(t) is not monotone; then the composition H ◦ Φ is not
Tonelli, as its restriction to the fiber T∗qS

1 is not convex.
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Remark 4.

(i) Bernard’s theorem does not hold anymore if Φ is not exact. For example,
if we consider the symplectomorphism Θα(q, p) = (q, p+ αq), where α is a
closed 1-form on M , then one can easily check that

M∗0(H ◦Θα) = Θ−1
α

(
M∗[α](H)

)
,

which, in general, could be different from Θ−1
α

(
M∗0(H)

)
. Similarly, for the

Aubry and Mañé sets (see Proposition 7).
(ii) Even in the case of exact symplectomorphisms, Bernard’s theorem may fail

for non-zero cohomology classes. For example, let us consider a matrix
A ∈ GLn(Z) and consider the exact symplectomorphism

Ψ(q, p) = ((AT )−1q, Ap),

as explained in Example 1(ii). If H(q, p) = h(p) is an integrable Tonelli
Hamiltonian on T∗Tn, one can easily check that, after identifying the
de Rham cohomology group H1(Tn;R) with Rn, for all c ∈ Rn one has

M∗c(h) = A∗c(h) = N ∗c (h) = {(q, p) ∈ T∗Tn : p = c}, (3.1)

see e.g. [8] for the details. The Hamiltonian h ◦ Ψ is still of Tonelli type
and integrable, hence (3.1) continues to hold if we replace h with h ◦Ψ. In
particular, for each c ∈ Rn we obtain:

M∗c(h ◦Ψ) = Ψ−1 (M∗Ac(h)) 6= Ψ−1 (M∗c(h)) .

The above remark shows that two distinct features must be kept into account
in order to generalize Bernard’s theorem to general symplectomorphisms: the co-
homology class of a symplectomorphism, and the action of the symplectomorphism
on de Rham cohomology classes.

Lemma 5. Let Ψ and Φ be symplectomorphisms of (T∗M, dλ). Then1

[[Φ ◦Ψ]] = Ψ∗[[Φ]] + [[Ψ]].

In particular, if Ψ is homotopic to the identity or if Φ is exact, then

[[Φ ◦Ψ]] = [[Φ]] + [[Ψ]].

Proof. It is sufficient to observe that (Φ ◦Ψ)∗λ− λ = Ψ∗(Φ∗λ− λ) + Ψ∗λ− λ. �

Lemma 6. Any symplectomorphism Ψ of (T∗M,dλ) can be written as Ψ = Φ ◦
Θη, where η is a closed 1-form on M and Φ is an exact symplectomorphism. In
particular, [η] = [[Ψ]].

Proof. Let η be any closed 1-form on M , such that [η] = [[Ψ]], and consider Θη,
defined as in Example 1(i). Let Φ = Ψ ◦ (Θη)−1 = Ψ ◦ Θ−η. In order to conclude
the proof, we need to check that Φ is exact. This follows from Lemma 5, since

[[Φ]] = [[Ψ ◦Θ−η]] = Θ∗−η[[Ψ]] + [[Θ−η]] = [[Ψ]]− [η] = 0,

where in the third identity we have used that Θ−η is homotopic to the identity. �

1In this equation, Ψ∗ must be understood as ι∗ ◦Ψ∗ ◦π∗, according to the identification of the
de Rham cohomology groups H1(M ;R) and H1(T∗M ;R)
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Proposition 7. Let H : T∗M −→ R be a Tonelli Hamiltonian and η a closed 1-form
on M . Then for each c ∈ H1(M ;R) we have:

M∗c(H) = Θη

(
M∗c−[η](H ◦Θη)

)
A∗c(H) = Θη

(
A∗c−[η](H ◦Θη)

)
N ∗c (H) = Θη

(
N ∗c−[η](H ◦Θη)

)
.

Proof. Here, as well as in Proposition 8 and Theorem 10, we provide the proof for
the Mather sets, but the same argument works for the Aubry and Mañé sets.

First of all, observe that if H is a Tonelli Hamiltonian, then H ◦Θη is a Tonelli
Hamiltonian as well. The Lagrangian dual to H ◦ Θη is L − η, and the associated
Legendre transform LL−η is Θ−η ◦ L. On the Lagrangian side, the identity

M̃c−[η](L− η) = M̃c(L)

follows directly from the definition of the Mather set for a given cohomology class.
Therefore

M∗c−[η](H ◦Θη) := LLη
(
M̃c−[η](L− η)

)
= (Θ−η ◦ LL)

(
M̃c(L)

)
= Θ−η

(
M∗c(H)

)
.
�

Proposition 8. Let H : T∗M −→ R be a Tonelli Hamiltonian, and Ψ : T∗M −→
T∗M an exact symplectomorphism such that H ◦ Ψ is of Tonelli type. For each
de Rham cohomology class c ∈ H1(M ;R), we have:

M∗c(H) = Ψ
(
M∗Ψ∗c(H ◦Ψ)

)
A∗c(H) = Ψ

(
A∗Ψ∗c(H ◦Ψ)

)
N ∗c (H) = Ψ

(
N ∗Ψ∗c(H ◦Ψ)

)
.

In particular, if Ψ is homotopic to the identity, then

M∗c(H) = Ψ
(
M∗c(H ◦Ψ)

)
A∗c(H) = Ψ

(
A∗c(H ◦Ψ)

)
N ∗c (H) = Ψ

(
N ∗c (H ◦Ψ)

)
.

Proof. We choose two closed 1-forms α and β on M whose cohomology classes are
equal to c and Ψ∗c respectively. Lemma 5 implies that the symplectomorphism
Φ := Θ−α ◦Ψ ◦Θβ is exact, since

[[Φ]] = Θ∗βΨ∗[[Θ−α]] + Θ∗β [[Ψ]] + [[Θβ ]] = Ψ∗[−α] + [β] = −Ψ∗c+ Ψ∗c = 0.

By Proposition 7 and Bernard’s Theorem 2, the Mather sets transform under sym-
plectomorphism according to

M∗[α](H) = Θα(M∗0(H ◦Θα))

= Θα ◦ Φ(M∗0(H ◦Θα ◦ Φ))

= Ψ ◦Θβ(M∗0(H ◦Ψ ◦Θβ))

= Ψ(M∗Ψ∗[α](H ◦Ψ)). �
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Theorem 9. Let H : T∗M −→ R be a Tonelli Hamiltonian and Ψ : T∗M −→
T∗M a symplectomorphism such that H ◦Ψ is of Tonelli type. For each de Rham
cohomology class c ∈ H1(M ;R), we have:

M∗c(H) = Ψ
(
M∗Ψ∗c−[[Ψ]](H ◦Ψ)

)
A∗c(H) = Ψ

(
A∗Ψ∗c−[[Ψ]](H ◦Ψ)

)
N ∗c (H) = Ψ

(
N ∗Ψ∗c−[[Ψ]](H ◦Ψ)

)
.

In particular, if Ψ is homotopic to the identity, then

M∗c(H) = Ψ
(
M∗c−[[Ψ]](H ◦Ψ)

)
A∗c(H) = Ψ

(
A∗c−[[Ψ]](H ◦Ψ)

)
N ∗c (H) = Ψ

(
N ∗c−[[Ψ]](H ◦Ψ)

)
.

Proof. Let η be a closed 1-form on M whose cohomology class is equal to [[Ψ]].
By Lemma 6, the symplectomorphism Φ := Ψ ◦Θ−η is exact. This, together with
Proposition 7, implies

Ψ
(
M∗Ψ∗c−[[Ψ]](H ◦Ψ)

)
= Φ ◦Θη

(
M∗Θ∗

ηΦ∗c−[η](H ◦ Φ ◦Θη)
)

= Φ ◦Θη

(
M∗Φ∗c−[η](H ◦ Φ ◦Θη)

)
= Φ

(
M∗Φ∗c(H ◦ Φ)

)
.

Finally, by Proposition 8, the latter term is equal to M∗c(H). �

Corollary 10. LetH : T∗M −→ R be a Tonelli Hamiltonian and Ψ : T∗M −→ T∗M
a symplectomorphism, such that H ◦ Ψ is still of Tonelli type. For each de Rham
cohomology class c ∈ H1(M ;R), we have:

αH(c) = αH◦Ψ(Ψ∗c− [[Ψ]]).

Moreover, for each homology class h ∈ H1(M ;R) we have:

βH(h) = βH◦Ψ(Ψ−1
∗ h)− 〈[[Ψ−1]], h〉,

where2 Ψ∗ : H1(M ;R) −→ H1(M ;R) is the homology homomorphism induced by
Ψ.

Proof. A classical result of Carneiro [4] implies that M∗c(H) ⊂ H−1(αH(c)). From
this, together with Theorem 9, we infer

αH◦Ψ(Ψ∗c− [[Ψ]]) = H ◦Ψ(M∗Ψ∗c−[[Ψ]](H ◦Ψ)) = H(M∗c(H)) = αH(c).

As for the Mather’s β function, first notice that

(Ψ−1)∗[[Ψ]] = (Ψ−1)∗(Ψ∗λ− λ) = λ− (Ψ−1)∗λ = −[[Ψ−1]].

Since α and β are convex conjugate of each other, we have

βH(h) = sup
c∈H1(M ;R)

(
〈c, h〉 − αH(c)

)
= sup
c∈H1(M ;R)

(
〈(Ψ−1)∗Ψ∗c, h〉 − αH◦Ψ(Ψ∗c− [[Ψ]])

)
2Here, Ψ∗ must be understood as π∗ ◦ Ψ∗ ◦ ι∗, according to the identification of the singular

homology groups H1(M ;R) and H1(T∗M ;R)
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= sup
c̃∈H1(M ;R)

(
〈(Ψ−1)∗c̃+ (Ψ−1)∗[[Ψ]], h〉 − αH◦Ψ(c̃)

)
= sup
c̃∈H1(M ;R)

(
〈c̃,Ψ−1

∗ h〉 − αH◦Ψ(c̃)
)
− 〈[[Ψ−1]], h〉

= βH◦Ψ(Ψ−1
∗ h)− 〈[[Ψ−1]], h〉. �

We can summarize everything in the following commutative diagram.

T∗M

ΦH◦Ψ
t

��
Ψ //

H◦Ψ
$$

T∗M

H
zz

ΦHt

��

R

H1(M ;R)

αH◦Ψ

::c 7→


M∗
c (H ◦ Ψ)

A∗
c (H ◦ Ψ)

N∗
c (H ◦ Ψ)

OO

H1(M ;R)
c 7→Ψ∗c−[[Ψ]]
oo

αH

dd c 7→


M∗
c (H)

A∗
c (H)

N∗
c (H)

OO
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