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Abstract. We provide a simple proof of a theorem due to Nancy Hingston,

asserting that symplectically degenerate maxima of any Hamiltonian diffeo-
morphism φ of the standard symplectic 2d-torus are non-isolated contractible

periodic points or their action is a non-isolated point of the average-action

spectrum of φ. Our argument is based on generating functions.
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1. Introduction

A remarkable feature of Hamiltonian systems on symplectic manifolds is that
they tend to have many periodic orbits. For autonomous systems, this was already
noticed by Poincaré in one of his so-called “other” conjectures:

“Il y a même plus : voici un fait que je n’ai pu démontrer rigou-
reusement, mais qui me parâıt pourtant très vraisemblable. Étant
données des équations de la forme définie dans le numéro 13 [i.e.
autonomous Hamilton equations] et une solution particulière quel-
conque de ces équations, on peut toujours trouver une solution pé-
riodique (dont la période peut, il est vrai, être très longue), telle que
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la différence entre les deux solutions soit aussi petite qu’on le veut,
pendant un temps aussi long qu’on le veut. D’ailleurs, ce qui nous
rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour
ainsi dire, la seule brèche par où nous puissions essayer de pénétrer
dans une place jusqu’ici réputée inabordable.”

Henri Poincaré, [Poi87, page 82].

For non-autonomous systems the abundance of periodic motion is a global phe-
nomenon somehow reflecting the fact that periodic orbits can be detected by a
variational principle: they are critical points of the action functional. In 1984,
Conley [Con84] conjectured that every Hamiltonian diffeomorphism of the stan-
dard symplectic torus (T2d, ω) has infinitely many contractible periodic points (a
periodic point is contractible when it corresponds to a contractible periodic orbit
of any associated Hamiltonian system, see Section 2.1). The weaker version of
this conjecture, for a generic Hamiltonian diffeomorphism, was soon established
by Conley and Zehnder [CZ84] and then extended to all the closed symplectically
aspherical manifolds by Salamon and Zehnder [SZ92]. The general Conley conjec-
ture is significantly harder. In dimension 2, for all the closed surfaces other than
the sphere, it was established by Franks and Handel [FH03] and further extended
to the category of Hamiltonian homeomorphisms by Le Calvez [LC06]. In higher
dimension, the original conjecture for tori was recently established by Hingston
[Hin09] and further generalized to closed symplectically aspherical manifolds by
Ginzburg [Gin10]. Further extensions, refinements and related results are contained
in [Lon00, Lu09, Maz11, GG10, GG09, Hei09, Hei11, GG12].

The general strategy of the proof of the Conley conjecture goes along the follow-
ing lines. A contractible periodic point with period p corresponds to a contractible
p-periodic orbit of an associated Hamiltonian system, which in turn is a critical
point of the Hamiltonian action functional in period p. For homological reasons, for
every period p one can detect critical points of the action functional with non-trivial
local homology in Maslov degree d, where d is the half-dimension of the symplectic
manifold. If one assumes that the Hamiltonian diffeomorphism has only finitely
many contractible periodic points, one among these points must be homologically
visible in degree d for infinitely many periods. This means that for infinitely many
periods p, the p-periodic orbit corresponding to the periodic point has non-trivial
local homology in Maslov degree d. By replacing the considered Hamiltonian flow
with another one having the same time-p map, one can further realize these orbits
as sufficiently flat local maxima of the Hamiltonian function at every time: for this
reason, orbits of this kind are often called symplectically degenerate maxima1. The
second part or the proof of the Conley conjecture is the crucial one: the existence
of a symplectically degenerate maximum z automatically implies the existence of
infinitely many other contractible periodic points. Indeed, if z is isolated in the
set of periodic points, its average-action turns out to be a non-isolated point in the
average-action spectrum of the Hamiltonian diffeomorphism (see Section 2.1 for the
precise definition).

The first part of the proof, namely the detection of a symplectically degenerate
maximum, is well understood: it can be carried out for the case of tori by means of
Morse theory for the Hamiltonian action in a suitable functional setting, whereas

1In [Hin09], Hingston calls them topologically degenerate orbits instead.
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for more general symplectic manifolds one has to use Floer theory (see e.g. [Sal99]),
a special Morse theory for the Hamiltonian action. The second part of the proof,
namely the statement asserting that the presence of a symplectically degenerate
maximum implies the existence of infinitely many other periodic points, is much less
transparent. For the torus, Hingston [Hin09] argued by a sophisticated analysis of
the behavior of the action functional in a small neighborhood of a symplectically de-
generate maximum. For more general symplectic manifolds, Ginzburg [Gin10] used
several subtle properties of Floer homology. As already pointed out by Hingston
in [Hin09], it is not known whether the new average-action values detected around
the average action of a symplectically degenerate maximum z actually correspond
to periodic points accumulating at z.

The motivation for the current work is to give a simple and more transparent
argument for the second part of the proof of the Conley conjecture in the case of
Hamiltonian diffeomorphisms of tori.

Theorem 1.1. Let z be a symplectically degenerate maximum of a Hamiltonian
diffeomorphism φ of the standard symplectic torus (T2d, ω), with d ≥ 1. If, for all
n ∈ N, z is isolated in the set of contractible fixed points of φn, then the action of
z is a non-isolated point of the average-action spectrum of φ.

In the paper, we will actually prove a more precise statement (Theorem 3.3) that
also gives some information on the period of the periodic points that are found. For
its proof, instead of relying on the variational principle associated with the Hamil-
tonian action functional, we make use of a “discrete” version of it, introduced by
Chaperon [Cha84, Cha85]. The functional associated with this variational princi-
ple, called the discrete symplectic action, is a generating family for the graph of
the Hamiltonian diffeomorphism. In the final section of the paper, we will em-
ploy this function to provide quick proofs of special cases of the Conley conjecture:
for Hamiltonian diffeomorphisms of (T2d, ω) whose graph is described by a single
generating function (which is almost a corollary of Theorem 1.1), and for non-
degenerate Hamiltonian diffeomorphisms of (T2d, ω) (which is one of the celebrated
Conley-Zehnder’s theorems).

1.1. Organization of the paper. In Section 2 we provide the reader with the neces-
sary background. We introduce the variational principle associated with the discrete
symplectic action and discuss the relation between its Morse indices at a critical
point and the Maslov index of the corresponding periodic point of the considered
Hamiltonian diffeomorphism. Moreover, we review the definition and the basic
properties of local homology groups. Section 3 is the core of this paper: we define
and investigate the properties of symplectically degenerate maxima, and we prove
Theorem 1.1. Finally, in Section 4 we provide quick proofs of some special cases of
the Conley conjecture.

1.2. Acknowledgments. I wish to thank Alberto Abbondandolo, Viktor Ginzburg
and Nancy Hingston for encouraging and for useful remarks, and Dietmar Salamon
for explaining to me some details of the relation between Maslov and Morse indices
of generating families. I especially thank the anonymous referee for his careful
reading of the preprint, for catching several inaccuracies in the first draft, and for
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providing important comments. This research was supported by the ANR project
“KAM faible”.

2. Preliminaries

Throughout this paper, φ will denote a Hamiltonian diffeomorphism of the stan-
dard symplectic torus (T2d, ω), where d ≥ 1. For us, T2d is the quotient R2d/Z2d

and we will denote the global Darboux coordinates on it as usual by z = (x, y),
so that ω = dx ∧ dy. We refer the reader to [MS98, HZ94] for an introduction to
symplectic geometry and Hamiltonian dynamics.

2.1. The discrete symplectic action. We are interested in the periodic points of
φ, namely at those z0 ∈ T2d such that φp(z0) = z0 for some period p ∈ N =
{1, 2, 3, ...}. By definition of Hamiltonian diffeomorphism, φ = φ1 is the time-1
map of a Hamiltonian flow φt : T2d → T2d, and without loss of generality one can
always assume φt to be generated by a Hamiltonian that is 1-periodic in time, in
such a way that

φt+1 = φt ◦ φ1.(2.1)

Therefore, there is a one-to-one correspondence between periodic points z0 of φ and
periodic orbits γ(t) = φt(z0) of the corresponding Hamiltonian flow. A well-known
property of Hamiltonian diffeomorphisms is that, at least on closed symplectically
aspherical manifolds (among which are the tori), the fact that a periodic orbit
corresponding to a periodic point of φ be contractible does not depend on the
choice of the Hamiltonian flow φt having φ as time-1 map, see [Sch00, Prop. 3.1].
Hence, it makes sense to talk about contractible periodic points of the Hamiltonian
diffeomorphism φ.

It is well known that contractible periodic orbits of Hamiltonian systems can be
detected by means of a variational principle: they are critical points of the action
functional. In the current paper, we will make use of a discrete version of this
variational principle, which was introduced by Chaperon [Cha84, Cha85] in the
early eighties in order to provide a simple proof of the Arnold conjecture for tori.
Here, we recall this principle following Robbin and Salamon [RS93b]. First of all,
let us factorize φ as

φ = ψk−1 ◦ ψk−2 ◦ ... ◦ ψ0,(2.2)

where each ψj : T2d → T2d is the Hamiltonian diffeomorphism defined by

ψj := φ(j+1)/k ◦ φ−1
j/k.

By choosing the discretization step k large enough we can make the ψj ’s as C1-
close to the identity as we wish. Eventually, we can lift them to Z2d-equivariant
Hamiltonian diffeomorphisms ψ̃j : R2d → R2d that are still C1-close to the identity,

and therefore admit generating functions f̃j : R2d → R such that

(xj+1, yj+1) = ψj(xj , yj)

if and only ifxj+1 − xj = ∂y f̃j(xj+1, yj),

yj+1 − yj = −∂xf̃j(xj+1, yj).

(2.3)
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Hereafter, j must be interpreted as a cyclic index, i.e. j ∈ Zk. The functions f̃j are
invariant by the action of Z2d, and therefore they descend to functions of the form

fj : T2d → R,

see [MS98, Lemma 11.1] or [Gol01, page 223]. We define the discrete symplectic
action

F̃ : (R2d)×k = R2d × ...×R2d︸ ︷︷ ︸
×k

→ R

by

F̃ (z) :=
∑
j∈Zk

(
〈yj , xj − xj+1〉+ fj(xj+1, yj)

)
.

Here, z = (z0, ..., zk−1) and zj = (xj , yj). Notice that F̃ is invariant by the diagonal
action of Z2d on (R2d)×k, and therefore it descends to a function

F : (R2d)×k/Z2d → R.

A straightforward computation shows that [z] ∈ (R2d)×k/Z2d is a critical point

of F if and only if zj+1 = ψ̃j(zj) for every j ∈ Zk, and therefore if and only if
[z0] ∈ T2d is a contractible fixed point of the Hamiltonian diffeomorphism φ. In
particular, critical points of F are in one-to-one correspondence with contractible
fixed points of the Hamiltonian diffeomorphism φ.

Let Ht : T2d → R be the 1-periodic Hamiltonian function generating the flow
φt. Set ζ(t) = (χ(t), ν(t)) := φ̃t(z0) to be an arbitrary line of the lifted flow,

zj := ζ( jk ), and z = (z0, ..., zk−1). Up to normalizing each generating function fj
with an additive constant (depending only on Ht), we have

fj [(xj+1, yj)] = 〈yj , xj+1 − xj〉+

∫ (j+1)/k

j/k

(
− 〈ν(t), d

dtχ(t)〉+Ht(ζ(t))
)

dt,

If [(xj+1, yj)] is a critical point of fj , its critical value is given by∫ (j+1)/k

j/k

(
− 〈ν(t), d

dtχ(t)〉+Ht(ζ(t))
)

dt.

Analogously, if [z] is a critical point of F , its critical value is∫ 1

0

(
− 〈ν(t), d

dtχ(t)〉+Ht(ζ(t))
)

dt.

This shows that the critical values of the discrete symplectic action F are indeed
action values of the periodic orbits corresponding to the critical points of F . We
define the action spectrum of φ to be the set of critical values of F . In the following,
in order to simplify the notation we will omit the squared brackets [·].

We wish to apply the machinery of critical point theory, and more specifically
Morse theory, to the discrete symplectic action. In order to do this, we need to
make sure that the so-called Palais-Smale condition [Pal63] is satisfied: every se-
quence {zα | α ∈ N} such that F (zα) → c and |dF (zα)| → 0 admits a converging
subsequence.

Proposition 2.1. The discrete symplectic action F satisfies the Palais-Smale condi-
tion, and its critical points are contained in a compact subset of its domain.
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Proof. Following McDuff and Salamon [MS98, page 352], let

τ : (R2d)×k/Z2d ∼=−→T2d × (R2d)×k−1

be the diffeomorphism given by

τ(z0, ..., zk−1) = (z0, z1 − z0, z2 − z1, ..., zk−1 − zk−2).

We have

F ◦ τ−1(z0, ζ) = 〈Aχ,υ〉+B(z0, ζ), ∀z0 ∈ T2d, ζ = (ζ0, ..., ζk−2) ∈ (R2d)×k−1,

where B is a function of the form

B : (T2d)×k → R,

A is the d(k − 1) × d(k − 1) matrix which can be written as an upper triangular
matrix with the upper part filled by blocks of d× d identity matrices I, i.e.

A =


I I · · · I

0 I
. . .

...
...

. . .
. . . I

0 · · · 0 I

 ,
and we write each ζj in symplectic coordinates as (χj , υj), so that χ := (χ0, ..., χk−2)
and υ := (υ0, ..., υk−2) are vectors in (Rd)×k−1.

Now, the quadratic form Q(ζ) := 〈Aχ,υ〉 is non-degenerate, and therefore
|dQ(ζ)| → ∞ as |ζ| → ∞. On the other hand the function B has bounded C1

norm, being defined on a compact space. This proves the proposition. �

The variational principle associated with the discrete symplectic action is avail-
able in any period p ∈ N. Namely, contractible p-periodic points of φ (that is,
contractible fixed points of the p-fold composition φp = φ ◦ ... ◦ φ) correspond to
critical points of the discrete symplectic action F×p : (R2d)×kp/Z2d → R defined
by

F×p(z) :=
∑
j∈Zkp

(
〈yj , xj − xj+1〉+ fjmod k(xj+1, yj)

)
,(2.4)

where z = (z0, ..., zkp−1) and zj = (xj , yj). We define the average-action spectrum
of φ to be the union over p ∈ N of the sets of critical values of 1

pF
×p, i.e.{

1
pF
×p(z) | p ∈ N, z ∈ crit(F×p)

}
.

This set coincides with the set of average-actions of the periodic orbits of the Hamil-
tonian flow φt.

2.2. The Morse indices. Detecting contractible periodic points of φ is equivalent to
detecting critical points of the functions F×p (for all p ∈ N). However, if z is a
critical point of F , its product

z×n := (z, ...,z︸ ︷︷ ︸
×n

)

is a critical point of F×n for every n ∈ N. This is another way of saying that a
fixed point of φ is also a fixed point of any iterated composition of φ with itself. In
order to estimate the number of contractible periodic points of φ one needs some
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criteria to establish whether a given critical point z of F×p is a “genuine” one or it
is rather of the form z = w×n for some n < p and some critical point w of F×p/n.
In certain situations, this can be achieved by looking at the Morse indices.

Let z be a critical point of F×p. We denote by mor(z) and nul(z) the Morse index
and the nullity of F×p at the critical point z. We recall that these are nonnegative
integers defined respectively as the dimension of the negative eigenspace and of the
kernel of the Hessian of F×p at z. The nullity of critical points of the discrete
symplectic action admits a dynamical characterization according to the following
proposition. We recall that φ factorizes as the composition ψk−1 ◦ ψk−2 ◦ ... ◦ ψ0.

Proposition 2.2. A vector Z = (Z0, ..., Zkp−1) ∈ (R2d)×kp belongs to the kernel of
the Hessian of F×p at a critical point z = (z0, ..., zkp−1) if and only if

Zj+1 = dψjmod k(zj)Zj , ∀j ∈ Zkp.
In particular

nul(z) = dim ker(dφ(z0)p − I).(2.5)

Proof. In order to simplify the notation, let us set p = 1. If we write each ψj as
(χj , υj), then by (2.3) the differential of ψj can be written in matrix form as

dψj =

[
∂xχj ∂yχj

∂xυj ∂yυj

]
,

and

∂xχj = (I − ∂xyfj)−1,

∂yχj = (I − ∂xyfj)−1∂yyfj ,

∂xυj = −∂xxfj(I − ∂xyfj)−1,

∂yυj = I − ∂yxfj − ∂xxfj(I − ∂xyfj)−1∂yyfj .

Given Zj = (Xj , Yj) ∈ R2d, the vector Zj+1 = (Xj+1, Yj+1) := dψj(zj)Zj is given
by

Xj+1 = (I − ∂xyfj)
−1(Xj + ∂yyfjYj),

Yj+1 = −∂xxfj(I − ∂xyfj)
−1Xj + (I − ∂yxfj − ∂xxfj(I − ∂xyfj)

−1∂yyfj)Yj ,
(2.6)

where all the derivatives of fj are meant to be evaluated at the point (xj+1, yj).
On the other hand, the Hessian of F at z is given by

HessF (z)[Z,Z ′] =
∑
j∈Zk

〈Xj − (I − ∂xyfj)Xj+1 + ∂yyfjYj , Y
′
j 〉

+
∑
j∈Zk

〈∂xxfjXj+1 + Yj+1 − (I − ∂yxfj)Yj , X ′j+1〉,

for every Z = (Z0, ..., Zk−1) and Z ′ = (Z ′0, ..., Z
′
k−1), with Zj = (Xj , Yj) and

Z ′j = (X ′j , Y
′
j ). Therefore, Z belongs to the kernel of the Hessian of F at z if and

only if (2.6) holds for every j ∈ Zk. Notice that, for such Z = (Z0, ..., Zk−1), we
have

dφ(z0)Z0 = dψk−1(zk−1)dψk−2(zk−2)...dψ0(z0)Z0 = Z0.

Hence, the map Z 7→ Z0 is a linear isomorphism from the kernel of HessF (z) to
the kernel of (dφ(z0)− I), and (2.5) follows. �
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In order to employ the Morse indices for distinguishing among critical points,
it is useful to know how the sequences {mor(z×n) |n ∈ N} and {nul(z×n) |n ∈
N} behave. All we need to know about the nullity is described by the following
proposition. We recall that the Floquet multipliers of φp at a fixed point z0 are
defined as the eigenvalues of dφ(z0)p.

Proposition 2.3. Let z be a critical point of F×p : (R2d)×kp/Z2d → R. For every
integer n > 1, we have that nul(z) = nul(z×n) if and only if none of the Floquet
multipliers of φp at z0 other than 1 are n-th complex roots of 1. �

Proof. By applying Long’s version of Bott’s formulas for the geometric multiplicity
of eigenvectors of symplectic matrices, we infer

dim ker(dφ(z0)pn − I) =
∑
λ∈ n√1

dimC kerC(dφ(z0)p − λI),

see [Lon02, Theorem 9.2.1]. Hence, no Floquet multiplier of φp at z0 other than 1
is an n-th complex root of 1 if and only if the above equation reduces to

dim ker(dφ(z0)pn − I) = dimC kerC(dφ(z0)p − I) = dim ker(dφ(z0)p − I).

By Proposition 2.2 our statement follows. �

As for the Morse index, one may directly develop an analog of Bott’s iteration
theory [Bot56]. However, we prefer to proceed indirectly by relying on the relation
between the Morse index of the discrete symplectic action and the Maslov index of
the periodic points of φ, and then by using Long’s extensions of Bott’s theory for
the Maslov index.

2.3. The Maslov index. The symplectic group Sp(2d) has an infinite cyclic funda-
mental group. The Maslov index is an integer mas(Γ) which is assigned to elements

Γ of the universal cover S̃p(2d). Here, we regard an element of S̃p(2d) covering
A ∈ Sp(2d) as a homotopy class of continuous paths Γ : [0, 1] → Sp(2d) joining
the identity I with A. The integer mas(Γ) is roughly the number of half-windings
made by the path Γ in the symplectic group. In the following we briefly recall
its precise definition, and we refer the reader to the books [Abb01, Lon02] for a
detailed account.

Let r : Sp(2d) → U(d) be the retraction that sends any A ∈ Sp(2d) to the
unitary complex matrix obtained from (AAT )−1/2A after identifying R2d with Cd.
By composing this retraction with the determinant we obtain the so-called rotation
function

ρ := det ◦ r : Sp(2d)→ S1 ⊂ C.
Given Γ ∈ S̃p(2d), let θ : [0, 1] → R be a continuous function such that ei2πθ(t) =
ρ(Γ(t)) for all t ∈ [0, 1]. We define the average Maslov index mas(Γ) by

mas(Γ) := 2(θ(1)− θ(0)).

The reason for this terminology lies in the property described later in (2.8). Notice
that the average Maslov index is not necessarily an integer.

We denote by Sp∗(2d) ⊂ Sp(2d) the subset of those symplectic matrices that
do not have 1 as an eigenvalue. Its complement Sp0(2d) := Sp(2d) \ Sp∗(2d) is
a singular hypersurface in the symplectic group that separates Sp∗(2d) in two
connected components. Now, consider the 2d × 2d symplectic diagonal matrices
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W ′ := diag(2, 1/2,−1,−1, ...,−1) and W ′′ := −I = diag(−1,−1, ...,−1). These
two matrices belong to different connected components of Sp∗(2d), and we have

ρ(W ′) = (−1)d−1 = −ρ(W ′′). Given Γ ∈ S̃p(2d) with Γ(1) ∈ Sp∗(2d), let us choose
an arbitrary continuous path Γ′ : [0, 1] → Sp∗(2d) joining Γ(1) with either W ′ or

W ′′. We denote by Γ ∗ Γ′ ∈ S̃p(2d) the path obtained by concatenating Γ and Γ′.
Then, the Maslov index of Γ is defined as

mas(Γ) := mas(Γ ∗ Γ′).

The function mas : S̃p(2d) → Z is locally constant on the set of those Γ ∈ S̃p(2d)

with Γ(1) ∈ Sp∗(2d), and it cannot be continuously extended to the whole S̃p(2d).
We extend it as a lower semi-continuous function by setting2

mas(Γ) := lim inf
Ψ→ Γ

Ψ(1)∈Sp∗(2d)

mas(Ψ).(2.7)

Now, for each n ∈ N, we denote by Γ×n ∈ S̃p(2d) the n-fold product of Γ in the

universal cover group S̃p(2d), i.e.

Γ×n( j+tn ) = Γ(t) Γ(1)...Γ(1)︸ ︷︷ ︸
×j

, ∀j ∈ {0, ..., n− 1}, t ∈ [0, 1].

The Maslov index mas(Γ×n) grows according to the following iteration formula
established by Liu and Long [LL98, LL00].

nmas(Γ)− d ≤ mas(Γ×n) ≤ nmas(Γ) + d− dim ker(Γ×n(1)− I).(2.8)

Moreover, if these inequalities are not both strict, then 1 is the only eigenvalue
of Γ×n(1). If 1 is the only eigenvalue of Γ(1) and mas(Γ) = 0, then mas(Γ) =
mas(Γ×n) for all n ∈ N. We refer the reader to [Lon02, chapters 9,10] for a proof
of these (and many others) iteration properties.

Now, let us consider again the Hamiltonian diffeomorphism φ : T2d → T2d and
a contractible p-periodic point z0 of it. Let φt be a Hamiltonian flow whose time-1
map is φ and that is generated by a Hamiltonian that is 1-periodic in time. Consider
the path Z : [0,∞)→ Sp(2d) given by Z(t) = dφt(z0). Let z be the critical point of
F×p corresponding to the contractible fixed point z0. We define the average Maslov
index of z and, for every period n ∈ N, the Maslov index of z×n as the integers

mas(z) := mas(Z|[0,p]),
mas(z×n) := mas(Z|[0,pn]),

where the restrictions Z|[0,p] and Z|[0,pn] are seen as elements of S̃p(2d). It turns out
that the Maslov index of z depends only on z0 and φ, and not on the specific choice
of the Hamiltonian flow (this is indeed true for all closed symplectically aspherical
manifolds, see [Sch00, page 440]). By equation (2.1), we have that Z(t + 1) =
Z(t)Z(1). The following proposition summarizes the above-mentioned iteration
properties of the Maslov index.

Proposition 2.4. Let z = (z0, ..., zkp−1) be a critical point of F×p.

2For other applications, different extensions may be more suitable. For instance, Robbin and
Salamon consider in [RS93a] the average between the maximal lower semi-continuous and the
minimal upper semi-continuous extensions.
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(i) For all n ∈ N we have

nmas(z)− d ≤ mas(z×n) ≤ nmas(z) + d− nul(z×n).

Moreover, if these inequalities are not both strict, then 1 is the only Floquet
multiplier of φpn at z0.

(ii) If 1 is the only Floquet multiplier of φp at z0 and mas(z) = 0, then mas(z) =
mas(z×n) for all n ∈ N. �

The Maslov index is related to the Morse index of the discrete symplectic action
according to the following statement, which may be regarded as a symplectic analog
of the Morse index Theorem.

Proposition 2.5 (Symplectic Morse index Theorem). For every critical point z of
F×p we have

mor(z) = mas(z) + 1
2 dim(domain(F×p))︸ ︷︷ ︸

=dkp

.(2.9)

Proof. Assume first that the critical point z of F×p is non-degenerate. By Propo-
sition 2.2 this is equivalent to the fact that z0 is a non-degenerate fixed point of
the p-fold composition φ ◦ ... ◦φ. In this case, equation (2.9) was proved by Robbin
and Salamon in [RS93b, Theorem 4.1].

Now, consider the Morse index as a locally constant function on the space of non-
degenerate symmetric bilinear forms. Its extension to the whole space of symmetric
bilinear forms is the maximal lower semi-continuous one. In the same way, in

equation (2.7) we defined the Maslov index on the whole S̃p(2d) as the maximal
lower semi-continuous extension of the Maslov index for paths with final endpoint
in Sp∗(2d) (i.e. the “non-degenerate” paths). Hence equation (2.9) still holds when
z is a degenerate critical point of F×p. �

2.4. Local homology. Let M be a smooth manifold, and p an isolated critical
point of a smooth function f : M → R. If p is non-degenerate, by the Morse
Lemma [Mil63, page 6] we know that on a neighborhood of p the function f looks
like a non-degenerate quadratic form whose negative eigenspace has dimension equal
to the Morse index mor(p). If p is degenerate, i.e. its nullity nul(p) is non-zero, then
the behavior of f around p can be wilder, as described by the Generalized Morse
Lemma [GM69, Lemma 1]. Some properties of the critical point p are captured by
its local homology, which is defined as the graded group

C∗(p) := H∗({f < c} ∪ {p}, {f < c}),

where c = f(p) and H∗ denotes the singular homology functor. For our purpose,
it is enough to consider homology with coefficients in the field Z2. We refer the
reader to [Cha93, Chapter 1] for the main properties of local homology groups.
Here, we wish to recall that Cj(p) is always trivial in degrees j < mor(p) and
j > mor(p)+nul(p). Moreover, if a strip {c1 ≤ f ≤ c2} is “sufficiently compact” (for
instance if the Palais-Smale condition holds with respect to a complete Riemannian
metric) and contains only isolated critical points of f , then we have the generalized
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Morse inequality

rank Hj({f < c2}, {f < c1}) ≤
∑
p

rank Cj(p),(2.10)

where the above sum runs over all the critical points p of f with c1 ≤ f(p) < c2.
In the next section, we will need the following properties of local homology

groups. We divide them into two statements: the first one is local whereas the
second one is global.

Proposition 2.6. Assume that an isolated critical point p of a smooth function
f : M → R has non-trivial local homology (with coefficients in Z2) in maximal
degree k = mor(p) + nul(p). Then the following properties hold.

(i) The local homology of p is concentrated in degree k and it is isomorphic to
the coefficient field, i.e. C∗(p) = Ck(p) ∼= Z2.

(ii) For every smoothly embedded k-dimensional disc D ⊂ M containing p in
its interior and such that f |D\{p} < f(p), the group C∗(p) is generated by
[D].

(iii) Let θt be the anti-gradient flow of f with respect to any Riemannian metric.
There exist arbitrarily small open neighborhoods U ⊂M of p such that
• U has the mean-value property: if θt1(p′) and θt2(p′) belong to U for

some p′ ∈ RN and t1 < t2, then θt(p
′) belongs to U for all t ∈ [t1, t2];

• ∂U is the union of three smooth compact manifolds with boundary:
the entry set

Uin = {p′ ∈ U | θt(p′) 6∈ U ∀t < 0}

that is contained in a superlevel set {f ≥ f(p) + δ} for some δ > 0,
the exit set

Uout = {p′ ∈ U | θt(p′) 6∈ U ∀t > 0}

that is contained in the sublevel set {f < f(p)}, and Utan that is
tangent to the anti-gradient flow θt;
• the inclusion induces a homology isomorphism

C∗(p)
∼=−→H∗({f < f(p)} ∪ U, {f < f(p)}).

Proof. Since the statement is local we can assume that M = RN and p is the origin.
Let m := mor(p) and n := nul(p), so that k = m + n. By the Generalized Morse
Lemma we can assume that the function f has the form

f(x0, x−, x+) = f0(x0)− |x−|2 + |x+|2, ∀x0 ∈ Rn, x− ∈ Rm, x+ ∈ RN−k,
where f0 : Rn → R is a function whose Hessian vanishes at the origin. Let us denote
by C0

∗(p) the local homology of f0 at the origin. By Gromoll-Meyer’s Shifting
Theorem (see [GM69] or [Cha93, page 50]) we have that C∗(p) ∼= C0

∗−m(p). In
particular C0

n(p) ∼= Ck(p) is non-trivial, which in turn implies that the origin is
an isolated local maximum for the function f0. However, the local homology of
isolated local maxima is concentrated in maximal degree n, where it is isomorphic
to the coefficient field Z2 (see [Cha93, page 51]). This proves (i).

Now, consider a disc D as in the statement of the lemma, and set

E+ :=
{

(x0, x−, x+) ∈ RN
∣∣ x0 = 0, x− = 0

}
.
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We claim that D is transverse to E+ at the origin p. Indeed, assume that there
is a non-zero v ∈ TpD ∩ E+. Consider a smooth curve γ : (−ε, ε) → D such that
γ̇(0) = v. Then, we have

d2

dt2

∣∣∣∣
t=0

f ◦ γ(t) =
d

dt

∣∣∣∣
t=0

df(γ(t))γ̇(t) = Hess f(p)[v, v]︸ ︷︷ ︸
>0

+ df(p)γ̈(0)︸ ︷︷ ︸
=0

> 0,

which contradicts the fact that f < 0 on D \ {p}.
We set

B∗(r) :=
{

(x0, x−) ∈ Rk
∣∣ |x0|2 + |x−|2 ≤ r2

}
.

By the Implicit Function Theorem, there exist a radius r > 0 and a smooth map
ψ : B∗(r)→ RN−k such that the disc

D′ := {(x0, x−, ψ(x0, x−)) | (x0, x−) ∈ B∗(r)}

is a compact neighborhood of the origin p in D. Notice that [D′] = [D] in Ck(p).
Let ht : B∗(r) ↪→ RN (for 0 ≤ t ≤ 1) be the isotopy given by

ht(x0, x−) = (x0, x−, (1− t)ψ(x0, x−)).

Notice that D′ := h0(B∗(r)), and D′′ := h1(D′) is a generator of the local homology
Ck(p). Moreover, f is a Lyapunov function for ht, i.e. d

dtf ◦ ht ≤ 0. Hence [D′′] =
[D′] in Ck(p). This proves point (ii).

As for point (iii), for the sake of simplicity let us choose the Euclidean Riemann-
ian metric on the Euclidean space M = RN (the general case being analogous),
and let θt be the corresponding anti-gradient flow of f . We consider the function
f∗ : Rk → R given by

f∗(x0, x−) = f0(x0)− |x−|2, ∀(x0, x−) ∈ Rk.

Choose an arbitrarily small ε > 0 so that the origin is a global maximum and
the only critical point of the function f∗ restricted to the closed ball B∗(ε). Set
c := f∗(0) = f(p). We can find δ1 ∈ (0, ε2) arbitrarily small so that the space

K := B∗(ε) ∩ {f∗ ≥ c− δ1}

is a compact neighborhood of the origin contained in the interior of the closed ball
B∗(ε), with smooth boundary ∂K = B∗(ε) ∩ {f∗ = c − δ1}. Let θ∗t be the anti-
gradient flow of f∗. Fix τ > 0 small enough so that θ∗t (∂K) is contained in the
interior of B∗(ε) for all t ∈ [0, τ ]. Since the origin is the only rest point of the flow
θ∗t , there exists δ2 ∈ (δ1, ε

2) such that

θ∗τ (∂K) ⊂ {f∗ < c− δ2}.

For r > 0, we denote by B+(r) the closed ball of radius r in RN−k, i.e.

B+(r) :=
{
x+ ∈ RN−k

∣∣ |x+|2 ≤ r2
}
.

We define the closed set

Uin := K × ∂B+(
√
δ2).

Notice that

f(x0, x−, x+) = f∗(x0, x−) + δ2 ≥ c− δ1 + δ2 = c+ δ, ∀(x0, x−, x+) ∈ Uin,

where δ := δ2 − δ1 > 0. The anti-gradient flow θt has the form

θt(x0, x−, x+) = (θ∗t (x0, x−), θ+
t (x+)),
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where θ+
t is the anti-gradient flow of the quadratic form f − f∗. Thus, there exist

a unique δ3 ∈ (0, δ2) such that θτ
(
∂K × ∂B+(

√
δ2)
)

= θ∗τ (∂K) × ∂B+(
√
δ3). We

define the closed sets

Uout := θ∗τ (∂K)×B+(
√
δ3),

Utan :=
⋃

t∈[0,τ ]

θt
(
∂K × ∂B+(

√
δ2)
)
.

Notice that Uin, Uout, and Utan are smooth compact manifolds with boundary. The
first two are transverse to the anti-gradient of f , while the third one is tangent to
it. The piecewise smooth hypersurface V := Uin ∪ Uout ∪ Utan separates RN . We
define U to be the (relatively compact) connected component of the complement of
V containing the origin p. The set U is contained in the interior of B∗(ε)×B+(ε),
has clearly the mean-value property, and its closure U has entry set Uin and exit
set Uout. Moreover

f(x0, x−, x+) = f∗(x0, x−) + δ3 < c− δ2 + δ3 < c, ∀(x0, x−, x+) ∈ Uout.

Let ρ : RN → [0, 1] be a smooth function supported inside B∗(ε)×B+(ε) and such
that ρ|U ≡ 1. For t ∈ [0, 1], we define a smooth homotopy

kt : ({f < c} ∪ U, {f < c})→ ({f < c} ∪ U, {f < c})

by kt(x0, x−, x+) = (x0, x−, (1− tρ(x0, x−, x+))x+). Notice that k0 is the identity,
the function f is non-increasing along the homotopy kt, and we have

f ◦ k1(x0, x−, x+) = f(x0, x−, 0) = f∗(x0, x−), ∀(x0, x−, x+) ∈ U.

In particular, k1(U) ⊂ {f < c} ∪ {p}. Therefore, the map k1 is a homotopy
equivalence

k1 : ({f < c} ∪ U, {f < c})→ ({f < c} ∪ {p}, {f < c})

whose homotopy inverse is given by the inclusion. This implies that the inclusion
induces a homology isomorphism between C∗(p) and H∗({f < c}∪U, {f < c}). �

Proposition 2.7. Let (M, g) be a complete Riemannian manifold, and f : M → R

a smooth function satisfying the Palais-Smale condition. Assume that f has an
isolated critical point p with non-trivial local homology (with coefficients in Z2) in
maximal degree mor(p) + nul(p). Set c := f(p). If, for some b > c, the interval
(c, b] does not contain critical values of f , then the inclusion induces a homology
monomorphism

C∗(p) ↪→ H∗({f < b}, {f < c}).

Remark 2.1. If the level set {f = c} contains only finitely many critical points of
f , the statement follows from [Cha93, Theorem 3.2] even without any assumption
on the local homology of p. �

Proof of Proposition 2.7. Notice that the critical point p satisfies the assumptions
of Proposition 2.6. Choose a suitable sufficiently small open neighborhood U of the
critical point p satisfying the properties stated in Proposition 2.6(iii). Thus, there
exists δ ∈ (0, b − c) such that the entry set Uin is contained in the superlevel set
{f ≥ c+δ}. Now, let C be the compact set of critical points of f with critical value
c, and set C ′ := C \ {p}. Choose an open neighborhood V ′ of C ′ that is relatively
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compact in the sublevel set {f < c+ δ
2} and such that V ′ ∩ U = ∅. We denote by

θt the anti-gradient flow of f , and we define the open set

V :=
⋃

t∈[0,+∞)

θt(V
′).

By construction, V is positively invariant under the anti-gradient flow θt. We claim
that V ∩ U = ∅. Otherwise there exists q ∈ V ′ and t > 0 such that θt(q) ∈ Uin,
but this is impossible since f(θt(q)) ≤ f(q) < c+ δ

2 whereas Uin ⊂ {f ≥ c+ δ}. By
replacing U with a smaller open neighborhood of p still satisfying the properties of
Proposition 2.6(iii), we can actually achieve V ∩ U = ∅.

By the properties of the neighborhoods U (see Proposition 2.6(iii)) and V , the
open set {f < c} ∪ V ∪ U is positively invariant under the anti-gradient flow θt.
The closed set {f ≤ b} \

(
{f < c}∪V ∪U

)
does not contain critical points of F×n.

Therefore, we can use the anti-gradient flow θt to deform the pair ({f < b}, {f < c})
into ({f < c}∪V ∪U, {f < c}), which implies that the inclusion induces a homology
isomorphism

ι′∗ : H∗({f < c} ∪ V ∪ U, {f < c})
∼=−→H∗({f < b}, {f < c}).

Since U ∩ V = ∅, by excision we have the isomorphism

H∗({f < c} ∪ V ∪ U, {f < c}) ∼= H∗({f < c} ∪ V, {f < c})⊕H∗({f < c} ∪ U, {f < c}).

By Proposition 2.6(iii), the inclusion induces a homology isomorphism

C∗(p)
∼=−→H∗({f < c} ∪ U, {f < c}),

and thus it induces a monomorphism

ι′′∗ : C∗(p) ↪→ H∗({f < c} ∪ V ∪ U, {f < c}).

By the functoriality of singular homology, ι′∗ ◦ ι′′∗ = (ι′ ◦ ι′′)∗, and therefore the
inclusion induces a homology monomorphism as claimed. �

3. Symplectically degenerate maxima

3.1. Definition and basic properties. Let us adopt the notation of Section 2 con-
cerning the Hamiltonian diffeomorphism φ = ψk−1 ◦ ... ◦ ψ0. Given a contractible
fixed point z0 of φ, it is well known that one can choose the factorization ψk−1◦...◦ψ0

in such a way that z0 is a fixed point of all the ψj ’s (see [SZ92, section 9] or [Gin10,
section 5.1]). Indeed one can choose a Hamiltonian flow φt such that φ0 = id,
φ1 = φ and φt(z0) = z0 for all t ∈ [0, 1] in the following way. Let θt be a Hamil-
tonian flow satisfying θ0 = id, θ1 = φ and θt+1 = θt ◦ θ1 for all t ∈ R. Since
the 1-periodic orbit γ(t) := θt(z0) is contractible, there exists a smooth homotopy
γs : R/Z → T2d such that γ0 ≡ z0 = γs(0) for all s ∈ [0, 1], and γ1 = γ. For
each r ∈ (0, 1/2] and z ∈ T2d we denote by Br(z) the open ball of radius r with
respect to the flat Riemannian metric on T2d (we recall that our torus is 1-periodic,
i.e. T2d = R2d/Z2d). By a slight abuse of notation, for each z′ ∈ B1/2(z), we will

write z′ − z for the unique shortest vector v ∈ R2d such that z + v = z′. For
s, t ∈ [0, 1], we consider a smooth family of functions ρs,t : T2d → [0, 1] such that
ρs,t ≡ 1 on B1/8(γs(t)) and ρ ≡ 0 outside B1/4(γs(t)). We define a smooth family

of Hamiltonian functions Ks,t : T2d → R supported inside B1/4(γs(t)) by

Ks,t(z) := ρs,t(z) 〈J d
dsγs(t), z − γs(t)〉, ∀z ∈ B1/4(γs(t)).
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Let κs,t be the family of Hamiltonian diffeomorphisms of T2d defined by

κ0,t = id,

d
dsκs,t = −J ∇Ks,t ◦ κs,t.

A straightforward computation shows that κs,t(z0) = κs,t(γs(0)) = γs(t). More-
over Ks,0 = Ks,1 ≡ 0, which implies κs,0 = κs,1 = id. Thus, we can obtain the

Hamiltonian flow φt with the desired properties by setting φt := κ−1
1,t ◦ θt.

We say that z0 is a symplectically degenerate maximum when

(SDM1) z0 is an isolated local maximum of the generating functions f0, ..., fk−1,

(SDM2) the local homology Cdkn+d(z
×kn
0 ) is non-trivial for infinitely many n ∈ N.

We denote by Kz0 ⊂ N the infinite subset of those n for which (SDM2) holds.
Assumption (SDM2) imposes strong constraints on the Morse indices and the

local homology of symplectically degenerate maxima, according to the following
statement.

Proposition 3.1. Let z = (z0, ..., zk−1) be a critical point of F such that, for infin-
itely many n ∈ N, the point z×n is isolated in the set of critical points of F×n and
the local homology Cdkn+d(z

×n) is non-trivial. We denote by Kz ⊂ N the infinite
subset of those n for which this condition holds. Then, for all n ∈ Kz, we have

(i) mor(z×n) + nul(z×n) = dkn+ d,
(ii) 1 is the only Floquet multiplier of φn at z0,
(iii) the local homology of z×n is isomorphic to Z2 and concentrated in maximal

degree dkn+ d, i.e. C∗(z
×n) ∼= Cdkn+d(z

×n) ∼= Z2,
(iv) the multiples of n are in Kz,
(v) if m divides n and nul(z×m) = nul(z×n), then m ∈ Kz.

Moreover,

(vi) if 1 is the only Floquet multiplier of φ at z0, then Kz = N.

Proof. The assumption on the local homology implies that

mor(z×n) ≤ dkn+ d ≤ mor(z×n) + nul(z×n), ∀n ∈ Kz.

By the Symplectic Morse index Theorem (Proposition 2.5) we infer

mas(z×n) ≤ d ≤ mas(z×n) + nul(z×n), ∀n ∈ Kz.

In particular mas(z) = 0. This, together with Proposition 2.4(i), implies

mas(z×n) + nul(z×n) ≤ d, ∀n ∈ N,
and thus

mas(z×n) + nul(z×n) = d, ∀n ∈ Kz,

which is equivalent to (i). Proposition 2.4(i) further implies (ii). Point (i), together
with Proposition 2.6, implies (iii).

Now, let us assume that nul(z×m) = nul(z×n) for some positive integer m that
divides n ∈ Kz. By point (ii) and Prosposition 2.3, the only Floquet multiplier of
φm at z0 is 1. By Proposition 2.4(ii), we infer that

mas(z×m) = mas(z×n).(3.1)

Let Nm ⊂ (R2d)×km/Z2d be a central manifold of the vector field ∇F×m at z×m.
We recall that Nm is an invariant submanifold for the gradient flow of F×m such
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that Tz×mNm is the kernel of the Hessian of F×m at z×m, see [GH90, Section 3.2].
In particular dim(Nm) = nul(z×m). Consider the diagonal embedding

ψ×n/m : (R2d)×km/Z2d ↪→ (R2d)×kn/Z2d

given by ψ×n/m(w) = w×n/m. A straightforward calculation shows that

∇F×n ◦ ψ×n/m = ψ×n/m ◦ ∇F×m,
where the gradients in this equation are with respect to the standard flat met-
rics of (R2d)×km/Z2d and (R2d)×kn/Z2d. This implies that the manifold Nn :=
ψ×n/m(Nm) is invariant under the gradient flow of F×n. Moreover,

dim(Nn) = dim(Nm) = nul(z×m) = nul(z×n),

and therefore Tz×nNn is the kernel of the Hessian of F×n at z×n. This proves that
Nn is a central manifold of the vector field ∇F×n at z×n. Set c := F (z), so that
F×m(z×m) = mc and F×n(z×n) = nc. We have

Cj+mor(z×n)(z
×n) ∼= Hj({F×n|Nn

< nc} ∪ {z×n}, {F×n|Nn
< nc})

∼= Hj({F×m|Nm
< mc} ∪ {z×m}, {F×m|Nm

< mc})
∼= Cj+mor(z×m)(z

×m),

(3.2)

where the first and third isomorphisms follow from Gromoll-Meyer’s splitting The-
orem (see [GM69, Section 3]). By (3.1) and Proposition 2.5 we have that

mor(z×n) = mas(z×n) + dkn = mas(z×m) + dkn = mor(z×m) + dk(n−m).

This, together with (3.2), implies that Cdkm+d(z
×m) ∼= Cdkn+d(z

×n), and proves
point (v). The proof of (iv) is analogous: if m is now a multiple of n ∈ Kz,
then 1 is the only Floquet multiplier of φm at z0, which implies that nul(z×n) =
nul(z×m) and Cdkn+d(z

×n) ∼= Cdkm+d(z
×m). Finally, (vi) follows from (iv–v) and

Proposition 2.3. �

3.2. An example. It is easy to construct a Hamiltonian diffeomorphism of a torus
with a symplectically degenerate maximum. Consider a C2-small smooth function
f0 : T2d → R having an isolated totally degenerate local maximum at z0 with
critical value f0(z0) = 0. By totally degenerate we mean that the Hessian of f0

at z0 vanishes. Let φ be the Hamiltonian diffeomorphism of (T2d, ω) having f0 as
generating function. Notice that z0 is a contractible fixed point of φ. We claim
that z0 is a symplectically degenerate maximum. Indeed, consider the discrete
symplectic action F×n : (R2d)×n/Z2d → R given by

F×n(z) =
∑
j∈Zn

(
〈yj , xj − xj+1〉+ f0(xj+1, yj)

)
.

Since z0 is a totally degenerate maximum of f0, we have that

HessF×n(z×n0 )[Z′,Z′′] =
∑
j∈Zn

(
〈Y ′j , X ′′j −X ′′j+1〉+ 〈Y ′′j , X ′j −X ′j+1〉

)
,

for all Z′ = (Z ′0, ..., Z
′
n−1),Z′′ = (Z ′′0 , ..., Z

′′
n−1) ∈ (R2d)×n. An easy computation

shows that mor(z×n0 ) = dn− d and nul(z×n0 ) = 2d. Consider the submanifold

Nn =
{
w×n | w ∈ T2d

}
⊂ (R2d)×n/Z2d.

It is easy to see that this is a central manifold for the gradient of F×n at z×n0 .
Namely Nn is a submanifold invariant by the gradient flow of F×n, and whose
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tangent space at z×n0 is the kernel of HessF×n(z×n0 ). By Gromoll-Meyer’s splitting
Theorem (see [GM69, Section 3]) we have

Cj(z
×n
0 ) ∼= Hj−mor(z×n

0 )({F
×n|Nn < 0} ∪ {z×n0 }, {F×n|Nn < 0})

∼= Hj−dn+d({f0 < 0} ∪ {z0}, {f0 < 0})
= Cj−dn+d(z0).

In particular Cdn+d(z
×n
0 ) ∼= C2d(z0) and, since z0 is an isolated local maximum

of f0, this latter local homology group is non-trivial. This shows that z0 is a
symplectically degenerate maximum.

3.3. Average-action spectrum and symplectically degenerate maxima. In this sub-
section we prove Theorem 1.1 stated in the introduction. The result is a consequence
of the following homological vanishing property, which is inspired by an analogous
statement due to Bangert and Klingenberg [BK83, Theorem 2] in the setting of
closed geodesics.

Lemma 3.2 (Homological vanishing). Let z0 be a symplectically degenerate maxi-
mum of the Hamiltonian diffeomorphism φ = ψk−1 ◦ ... ◦ ψ0 : T2d → T2d. Assume
that z0 is isolated in the set of contractible fixed points of φn for all n ∈ Kz0 . Set

c := F (z×k0 ) and choose an arbitrary ε > 0. Then, the inclusion-induced homomor-
phism

ι∗ : C∗(z
×kn
0 )→ H∗({F×n < nc+ ε}, {F×n < nc})

is trivial, provided n ∈ Kz0 is large enough.

Proof. In order to simplify the notation, we will work inside a fundamental domain
of the universal cover of (R2d)×kn/Z2d. Hence we can assume that the domain
of F×n is simply (R2d)×kn without taking the quotient by Z2d. Moreover, let us
assume without loss of generality that z0 = 0 and c = f0(0) = ... = fk−1(0) = 0.
Let R > 0 be sufficiently small so that, for all j ∈ Zk, fj < 0 outside the origin in
a ball of radius 3R centered at 0. For n ∈ Kn, consider the (dkn+ d)-dimensional
vector subspace

En =

{
z = (x0, y0, ..., xkn−1, ykn−1)

∣∣∣∣∣ x0, ..., xkn−1, w ∈ Rd
yj = w + xj+1 − xj ∀j ∈ Zkn

}
,

and, for 0 < r < R, the polydisc

Wn = Wn(R, r) =
{
z ∈ En

∣∣∣ |x0| ≤ R, ..., |xkn−1| ≤ R, |w| ≤ r
}
.

On Wn, the discrete symplectic action F×n is given by

F×n(z) =
∑
j∈Zkn

(
− |xj − xj+1|2 + fj(xj+1, w + xj+1 − xj)

)
, ∀z ∈Wn.

By Propositions 2.6 and 3.1(iii), [Wn] is a generator of the local homology of F×n

at 0×n.
Now, fix a vector v ∈ Rd such that |v| = r, and let h : [0, 1]×Wn → (R2d)×n be

the homotopy given by

h(t, z) = z + tz′,
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where z = (x0, y0, ..., xkn−1, ykn−1), z′ = (0, y′0, 0, y
′
1, ..., 0, y

′
kn−1), and

y′j = 0, ∀j ∈ {0, ..., kn′ − 1},
y′j = v, ∀j ∈ {kn′, ..., kn− 1}.

Notice that

F×n ◦ h(t, z) =

kn′−1∑
j=0

(
− |xj − xj+1|2 + fj(xj+1, w + xj+1 − xj)

)

+

kn−1∑
j=kn′

(
− |xj − xj+1|2 + fj(xj+1, tv + w + xj+1 − xj)

)
+ t 〈v, xkn′ − x0〉.

(3.3)

Let ρ : [0, R]→ [0,∞) be a monotone increasing continuous function such that

ρ(s) ≤ min

s2, min
|z′′| = s,
j ∈ Zk

{−fj(z′′)}

 .

This function allows us to express the following estimate:

−|xj − xj+1|2 + fj(xj+1, u+ xj+1 − xj) ≤ −ρ
( |u|

2

)
, ∀u ∈ Rd with |u| ≤ R.

Now, let us apply this estimate to (3.3). Notice that, since |v| = r ≥ |w|, at least
one of the vectors w and v + w has norm larger than or equal to r/2. Hence, if we
choose r < ε/(2R), n′ > 2Rr/

(
ρ
(
r
4

)
k
)

and n > 2n′, we have

F×n ◦ h(t, z) ≤ t 〈v, xkn′ − x0〉 ≤ t |v| |xkn′ − x0| ≤ 2Rr < ε,

F×n ◦ h(1, z) ≤− kn′ρ
(
r
4

)
+ 〈v, xkn′ − x0〉︸ ︷︷ ︸
≤|v|(|xkn′ |+|x0|)

≤ −kn′ρ
(
r
4

)
+ 2Rr < 0.

This proves that the homotopy h deforms the disc Wn into the action sublevel
set {F×n < 0}, and the disc Wn remains in the action sublevel set {F×n < ε}
along the homotopy. In order to conclude the proof it is enough to show that, up to
further assuming r < ρ(R)/2R, the boundary ∂Wn of the disc remains in the action
sublevel set {F×n < 0} along the homotopy. Consider an arbitrary z ∈ ∂Wn. We
have two (non-exclusive) cases: |w| = r or |xj | = R for some j ∈ Zkn. In the former
case, |w| = r, we have

F×n ◦ h(t, z) ≤ −kn′ρ
( |w|

2

)
+ t 〈v, xkn′ − x0〉

≤ −kn′ρ
(
r
2

)
+ 2Rr

≤ −kn′ρ
(
r
4

)
+ 2Rr

< 0.

In the latter case, |xj | = R for some j ∈ Zkn, we have

F×n ◦ h(t, z) ≤ fj−1(xj , yj−1 + ty′j−1)︸ ︷︷ ︸
≤−ρ(R)

+t 〈v, xkn′ − x0〉︸ ︷︷ ︸
≤2Rr

≤ −ρ(R) + 2Rr < 0. �
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Lemma 3.2 implies abundance of periodic points “localized” around the average-
action of symplectically degenerate maxima in the average-action spectrum of φ.
More precisely, we have the following theorem, from which Theorem 1.1 directly
follows.

Theorem 3.3. Let z0 be a symplectically degenerate maximum of a Hamiltonian
diffeomorphism φ = ψk−1◦...◦ψ0 of the standard symplectic torus (T2d, ω). Assume
that z0 is isolated in the set of contractible fixed points of φn for all n ∈ Kz0 . Then,
there exist nz0 ∈ Kz0 and a sequence {zn |n ∈ Kz0 , n ≥ nz0} of contractible periodic
points of φ with the following properties: zn is n-periodic and, if we denote by zn
the critical point of F×n corresponding to zn, we have F×n(zn) > F×n(z×kn0 ) and

lim
n→∞

(
F×n(zn)− F×n(z×kn0 )

)
= 0.(3.4)

Remark 3.1. Equation (3.4) implies that {zn |n ∈ Kz0 , n ≥ nz0} is an infinite
subset of contractible periodic points belonging to pairwise distinct orbits of φ.
However, each periodic point zn may have basic period that is a proper divisor of
n. Nevertheless, if Kz0 contains all but finitely many prime numbers (for instance
if 1 is the only Floquet multiplier of φ at z0, according to Proposition 3.1(vi)),
the growth rate of the contractible periodic orbits of φ having average-action in an
arbitrarily small neighborhood of F (zk0 ) is at least the one of the prime numbers.
Indeed, if F (zk0 ) is an isolated critical value of F , for every sufficiently large prime
number n contained in Kz0 , the periodic point zn has minimal period n. �

Remark 3.2. Another interesting remark is that, if F (zk0 ) is an isolated critical value
of F and Kz0 contains infinitely many powers of a prime number p, Theorem 3.3
implies the existence of infinitely many contractible periodic points belonging to
pairwise distinct orbits of φ, having basic periods in the set of powers of p and
average-action in any arbitrarily small neighborhood of F (zk0 ). �

Proof of Theorem 3.3. By contradiction, let us assume that such a sequence of
periodic points does not exist. Hence, there exists ε > 0 and an infinite subset
K ⊂ Kz0 such that, for every n ∈ K, there are no critical values of F×n in the

interval (nc, nc+ ε], where c := F (z×k0 ). Notice that the critical point z×kn0 of F×n

satisfies the assumptions of Proposition 2.7. This latter proposition implies that
the inclusion induces a monomorphism

ι∗ : C∗(z
×kn
0 ) ↪→ H∗({F×n < nc+ ε}, {F×n < nc}).

This gives us a contradiction. Indeed, the local homology C∗(z
×kn
0 ) is non-trivial

for all n ∈ K, and the homological vanishing property of Lemma 3.2 implies that
ι∗ must be trivial provided n is large enough. �

3.4. Symplectically degenerate minima. The reader may wonder if there is a notion
of symplectically degenerate minimum. Such a notion exists and is analogous to
the one of symplectically degenerate maximum, see Hein [Hei11]. Briefly, we can
say that symplectically degenerate minima arise when working with superlevel sets
instead of sublevel sets. In this section, we give a definition using generating func-
tions, and we state the main properties corresponding to the statements proved in
the previous subsections for symplectically degenerate maxima. The proofs, mutatis
mutandis, are entirely analogous and are left to the reader.
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Let z be a critical point of the discrete symplectic action F×n, with c := F×n(z).
We denote by mor+(z) := 2dkn −mor(z) − nul(z) the Morse co-index of F×n at
z, and we define the inverted local homology by

C+
∗ (z) := H∗({F×n > c} ∪ {z}, {F×n > c}).

We say that z0 ∈ T2d is a symplectically degenerate minimum when

(SDm1) z0 is an isolated local minimum of the generating functions f0, ..., fk−1,

(SDm2) the inverted local homology C+
dkn+d(z

×kn
0 ) is non-trivial for infinitely

many n ∈ N.

We denote by Kz0 ⊂ N the infinite subset of those n for which (SDm2) holds. The
easiest example of symplectically degenerate minimum z0 is when k = 1 and z0 is an
totally degenerate local minimum of the generating function f0. The homological
vanishing property of Lemma 3.2 holds for symplectically degenerate minima after
replacing the local homology with the inverted local homology, and all the sublevel
sets with superlevel sets. Theorem 3.3 can be modified as follows.

Theorem 3.4. Let z0 be a symplectically degenerate minimum of a Hamiltonian
diffeomorphism φ = ψk−1◦...◦ψ0 of the standard symplectic torus (T2d, ω). Assume
that z0 is isolated in the set of contractible fixed points of φn for all n ∈ Kz0 . Then,
there exist nz0 ∈ Kz0 and a sequence {zn |n ∈ Kz0 , n ≥ nz0} of contractible periodic
points of φ with the following properties: zn is n-periodic and, if we denote by zn
the critical point of F×n corresponding to zn, we have F×n(zn) < F×n(z×kn0 ) and

lim
n→∞

(
F×n(z×kn0 )− F×n(zn)

)
= 0. �

4. The Conley conjecture

Theorem 3.3 allows us to provide an easy proof of the Conley conjecture for the
special case of Hamiltonian diffeomorphisms of standard symplectic tori that can be
described by a single generating function (this latter condition being always satisfied
for Hamiltonian diffeomorphisms that are sufficiently C1-close to the identity).

Theorem 4.1. Let φ be a Hamiltonian diffeomorphism of the standard symplectic
torus (T2d, ω) that is described by a single generating function. If the set of con-
tractible fixed points of φ is finite, then φ has a contractible periodic point of basic
period p for all prime numbers p large enough.

Proof. Let φ be a Hamiltonian diffeomorphism satisfying the assumptions of the
theorem. In particular, adopting the notation of section 2, we can take k = 1 in
the factorization (2.2). Let us assume that the theorem does not hold for φ: thus φ
must have only finitely many contractible fixed points and, for all p belonging to an
infinite set K of prime numbers, all the contractible p-periodic points of φ must be
fixed points. In order to get a contradiction and complete the proof, it is enough to
show that φ admits a symplectically degenerate maximum z0 with Kz0 = N, and
then apply Theorem 3.3 and Remark 3.1.

Let F ⊂ C be the (finite) subset of the Floquet multipliers of the contractible
fixed points of φ, and F′ := {q ∈ Q | ei2πq ∈ F}. We denote by p0 the maximum
among the denominators of the rational numbers in F′, and we setK′ := K∩(p0,∞).
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By Proposition 2.3, for every contractible fixed point z0 of φ, we have

nul(z0) = nul(z×n0 ), ∀n ∈ K′.(4.1)

Consider an arbitrary n ∈ K′. By our assumptions on φ, the discrete symplectic
action F×p : (R2d)×n/Z2d → R has only finitely many critical points. Fix c > 0
large enough so that all the critical values of F×n are contained in the interval
(−c, c). Following McDuff and Salamon as in the proof of Proposition 2.1, after a
suitable change of coordinates we can assume that the domain of the function F×n

is T2d × (R2d)×n−1, and

F×n(z0, ζ) = Q(ζ) +B(z0, ζ), ∀z0 ∈ T2d, ζ ∈ (R2d)×n−1.

Here Q(ζ) = 〈Q′ζ, ζ〉 is a non-degenerate quadratic form with Morse index dn− d,
while B is a function of the form B : (T2d)×n → R. Let us consider the orthogonal
spectral decomposition associated with the symmetric matrix Q′, i.e.

(R2d)×n−1 = E+ ⊕ E−,
where E+ [resp. E−] is the positive [resp. negative] eigenspace of Q′. Since the
Morse index of Q is dn− d, we have

dim(E+) = dim(E−) = dn− d.
For every r > 0 we define

N(r) :=
{

(z0, ζ) ∈ T2d × (R2d)×n−1
∣∣ Q(ζ) ≤ r

}
,

L(r) :=
{

(z0, ζ) ∈ N(r)
∣∣ Q(ζ) ≤ −r

}
.

By the Künneth formula and excision, we have

Hj(N(r), L(r)) ∼=
⊕
i∈Z

Hj−i(T
2d)⊗Hi({Q ≤ r}, {Q ≤ −r})

∼=
⊕
i∈Z

Hj−i(T
2d)⊗Hi(D

dn−d, ∂Ddn−d)

∼= Hj−(dn−d)(T
2d),

where Ddn−d is the unit disc in E−. In particular

Hdn+d(N(r), L(r)) ∼= H2d(T
2d) 6= 0.(4.2)

For r > 0 large enough, the set N(r) contains all the critical points of F×n, L(r)
contains no critical points of F×n, and the gradient of F×n is transverse to the
boundaries of N(r) and L(r). Hence, we can use the gradient flow of F×n to deform
N(r) onto the sublevel set {F×n ≤ c} and L(r) onto the sublevel set {F×n ≤ −c}
respectively. This, together with (4.2), implies

Hdn+d({F×n < c}, {F×n < −c}) ∼= Hdn+d(N(r), L(r)) 6= 0.

By the Morse inequality (see (2.10)) we infer that there exists a critical point z(n)
of F×n such that

Cdn+d(z(n)) 6= 0.(4.3)

By the assumptions on φ that we made in the first paragraph of the proof,
for every n ∈ K′, the periodic point of φ corresponding to z(n) is a fixed point.
Since φ has only finitely many contractible fixed points, one of them, say z0, must
correspond to infinitely many critical points in the sequence {z(n) | n ∈ K′}.
Namely, we can find an infinite subset K′′ ⊂ K′ such that z(n) = z×n0 for all
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n ∈ K′′. Thus, we have found a contractible fixed point z0 satisfying assumption
(SDM2) in the definition of symplectically degenerate maximum (see section 3.1).

Now, fix an arbitrary n ∈ K′′. By Proposition 3.1(ii), the only Floquet multiplier
of φn at z0 is 1. Thus the Floquet multipliers of φ at z0 are all complex nth roots of
1. By (4.1) and Proposition 2.3, the only Floquet multiplier of φ at z0 is 1 as well.
This, together with Proposition 3.1(vi), implies that the local homology C2d(z0) is
non-trivial, which is equivalent to the fact that z0 is an isolated local maximum of
the generating function F×1 = f0 : T2d → R. Therefore z0 satisfies (SDM1), and
it is a symplectically degenerate maximum with Kz0 = N. �

Remark 4.1. Theorem 4.1 implies that the growth rate of the periodic orbits of
φ is at least like the one of prime numbers. Namely, if N(p) is the number of
contractible periodic orbits of φ of basic period less than or equal to p, we have

lim inf
p→∞

N(p)
log p

p
≥ 1. �

If we relax the assumption that φ is described by a single generating function,
the proof of Theorem 4.1 goes through almost entirely, except for the last para-
graph. There, the proof would still allow to conclude that the fixed point z0 has an
associated critical point z = (z0, ..., zk−1) of F×1 with non-trivial local homology
Cdk+d(z). However, since k is now larger than 1, the discrete symplectic action in
period 1 is not merely the generating function f0, it is rather a function of the form
F×1 : (R2d)×k/Z2d → R. Thus, in order to conclude, one must apply an argument
due to Hingston [Hin09, section 4] (see also [Gin10, section 5]) showing that, in this
situation, one can replace the factorization of φ with another equivalent one having
the property that z0 is an isolated local maximum of all the generating functions
of the new factors.

As it was already noticed by Conley and Zehnder in one of their celebrated
papers [CZ84], the situation is significantly simpler if one considers Hamiltonian
diffeomorphisms whose periodic points are all non-degenerate. Indeed, under this
assumption, none of the periodic points satisfies condition (SDM2). We conclude
the paper by providing a proof of Conley-Zehnder’s Theorem under the slightly
weaker assumption that the contractible fixed points are non-degenerate.

Theorem 4.2. Let φ be a Hamiltonian diffeomorphism of the standard symplectic
torus (T2d, ω) all of whose contractible fixed points are non-degenerate (i.e. none of
their Floquet multipliers is equal to 1). Then, for all prime numbers p large enough,
φ has at least two contractible periodic points of basic period p and belonging to
different orbits.

Proof. Let us adopt the notation of section 2.1: in particular we consider a suitable
factorization of φ as in (2.2) and, for every period n ∈ N, we consider the associated
discrete symplectic action F×n : (R2d)×kn/Z2d → R defined in (2.4). By our
assumption and Proposition 2.2, all the critical points of F×1 are non-degenerate.
In particular, they are all isolated critical points, and since they are contained in a
compact subset of the domain of (R2d)×k/Z2d (see Proposition 2.1) they are finitely
many.

Let F ⊂ C be the (finite) subset of the Floquet multipliers of the contractible
fixed points of φ, and F′ := {q ∈ Q | ei2πq ∈ F}. We denote by p0 the maximum
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among the denominators of the rational numbers in F′, and by K′ the set of all
prime numbers larger than p0. By Proposition 2.3, for any critical point z of F×1,
we have

nul(z×n) = nul(z) = 0, ∀n ∈ K′.(4.4)

By Propositions 2.4(i) and 2.5, if mas(z) = 0 we have that −d < mas(z×n) < d and
thus dkn − d < mor(z×n) < dkn + d for all n ∈ K′. If mas(z) 6= 0, for all n ∈ K′
larger than some nz we have that |mas(z×n)| > d, and either mor(z×n) < dkn− d
or mor(z×n) > dkn + d. We denote by n0 the maximum among the nz (for all
critical points z of F×1), and by K the set K′ ∩ [n0,∞) of all prime numbers larger
than p0 and n0. Summing up, for all critical points z of F×1 we have

mor(z×n) 6= dkn− d and mor(z×n) 6= dkn+ d, ∀n ∈ K.(4.5)

Now, fix an arbitrary n ∈ K and choose c > 0 large enough so that all the critical
values of F×n are contained in the interval (−c, c). With the exact same argument
as in the proof of Theorem 4.1, we have

H∗({F×n < c}, {F×n < −c}) ∼= H∗−(dkn−d)(T
2d).

In particular Hj({F×n < c}, {F×n < −c}) is non-trivial for j = dkn − d and
j = dkn+d. Let us assume that the discrete symplectic action F×n has only finitely
many critical points (otherwise φ has infinitely many contractible periodic points
with basic period n, and we are done). By the generalized Morse inequality (2.10),
F×n has critical points z′ and z′′ such that Cdkn−d(z

′) and Cdkn+d(z
′′) are non-

trivial.
Notice that the contractible periodic points corresponding to z′ and z′′ are not

fixed points, and thus have basic period n. Indeed, by (4.5), every critical point
of F×n of the form z×n has Morse index different than dkn ± d. By (4.4), z×n is
a non-degenerate critical point, and thus its local homology is non-trivial only in
degree mor(z×n).

If we write z′ = (z′0, ..., z
′
kn−1), we have that z′k(j+1) = φ(z′kj) for all j ∈ Zn.

Notice that there is an action of Zn on the domain of F×n generated by the shift

(z0, z1, ..., zkn−1) 7→ (zk, zk+1, ..., zkn−1, z0, z1, ..., zk−1).

The discrete symplectic action is invariant by this action. Moreover the set of
critical points of F×n corresponding to the periodic points in the φ-orbit of z′0 is
precisely the Zn-orbit of z′. All these critical points share the same Morse index,
nullity and local homology.

In order to conclude the proof, we will show that z′′ does not belong to the
Zn-orbit of z′. We proceed by contradiction assuming that this is not true. In
particular, z′ and z′′ have the same local homology, and thus Cj(z

′′) is non-trivial
in both degrees j = dkn − d and j = dkn + d. This implies mor(z′′) ≤ dkn − d
and dkn + d ≤ mor(z′′) + nul(z′′). Since nul(z′′) ≤ 2d, these two inequalities are
actually equalities, i.e.

mor(z′′) = dkn− d,
nul(z′′) = 2d.

Therefore, the local homology Cj(z
′′) is non-trivial in maximal degree j = dkn+d =

mor(z′′) + nul(z′′), and according to Proposition 2.6(i) it must be trivial in all
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the other degrees. This is in contradiction with the fact that Cdkn−d(z
′′) is non-

trivial. �

References

[Abb01] A. Abbondandolo, Morse theory for Hamiltonian systems, Chapman & Hall/CRC Re-

search Notes in Mathematics, vol. 425, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[BK83] V. Bangert and W. Klingenberg, Homology generated by iterated closed geodesics, Topol-
ogy 22 (1983), no. 4, 379–388.

[Bot56] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm.

Pure Appl. Math. 9 (1956), 171–206.
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