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Abstract. We prove that the systole of the smooth boundary of a strictly

convex ball in R3 is monotone with respect to the inclusion.

Throughout this note, the notion of convexity must be understood in the dif-
ferentiable sense: A compact three-ball B ⊂ R3 with smooth boundary is strictly
convex when there exists a smooth function F : R3 → [0,∞) with positive definite
Hessian at every point and such that ∂B = F−1(1). Equivalently, the boundary
sphere M = ∂B, which will always be equipped with the Riemannian metric g that
is the restriction of the ambient Euclidean metric, has strictly positive Gaussian
curvature. The systole sys(M) > 0 is the length of the shortest closed geodesic of
(M, g). Our main result answers in dimension 3 a question that was posed to us
by Yaron Ostrover:

Theorem 0.1. Let B1 ⊆ B2 be two compact strictly convex three-balls in R3 with
smooth boundary. Then sys(∂B1) ≤ sys(∂B2).

The main ingredient of the proof is the observation that the systole of positively
curved Riemannian two-spheres coincides with the classical Birkhoff min-max, as
we will now prove. Let (M, g) be a Riemannian two-sphere. We denote the energy
functional on the W 1,2 free loop space by

E : ΛM = W 1,2(S1,M)→ [0,∞), E(ζ) =

∫
S1

‖ζ̇(t)‖2gdt.

Here and in the following, we denote by S1 = R/Z the 1-periodic circle. We
consider the unit sphere S2 ⊂ R3. For each z ∈ [−1, 1], we denote by γz : S1 → S2

the parallel at latitude z, parametrized as

γz(t) =
(√

1− z2 cos(2πt),
√

1− z2 sin(2πt), z
)
.

For each continuous map u : [−1, 1]→ ΛM such that E(u(0)) = E(u(1)) = 0 there
exists a unique continuous map ũ : S2 → M such that u(z) = ũ ◦ γz for each
z ∈ [−1, 1]. We denote by U the space of such maps u whose associated ũ has
degree 1. The Birkhoff min-max value

bir(M, g) = inf
u∈U

max
z∈[−1,1]

E(u(z))1/2

is the length of some closed geodesic of (M, g).
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Lemma 0.2. On every positively curved closed Riemannian two-sphere (M, g), we
have bir(M, g) = sys(M, g).

Proof. Let γ : S1 → M be a shortest closed geodesic of (M, g) parametrized with
constant speed, so that E(γ) = L(γ)2 = sys(M, g)2. A theorem of Calabi–Cao
[CC92] implies that γ is simple, that is, an embedding γ : S1 ↪→ M . We fix an
orientation on M , and consider the corresponding complex structure of (M, g).
Namely, for every non-zero v ∈ TxM , the tangent vector Jv ∈ TxM is obtained by
rotating v in the positive direction of an angle π/2. We consider the vector field
ν(t) = Jγ̇(t) orthogonal to γ̇(t). Notice that ν is a parallel vector field, since the
complex structure J is parallel. If Kg denotes the Gaussian curvature of (M, g),
we have

d2E(γ)[ν, ν] =

∫
S1

(
‖∇tν‖2g −Kg‖γ̇‖2g‖ν‖2g

)
dt = −

∫
S1

Kg‖γ̇‖4gdt < 0. (0.1)

We now consider Morse’s finite dimensional approximation of the free loop
space (see, e.g., [Mil63]). We fix a positive integer k that is large enough so that
d(ζ(t0), ζ(t1)) < injrad(M, g) for all ζ ∈ ΛM with E(ζ) ≤ E(γ) = sys(M, g)2 and
for all t0, t1 ∈ R with |t1 − t0| < 1/k. Here, d denotes the Riemannian distance on
(M, g). We consider the open finite dimensional manifold

ΛkM =
{
x = (x0, ..., xk−1) ∈M × ...×M

∣∣ d(xi, xi+1) < injrad(M, g) ∀i ∈ Zk
}
.

Such a manifold admits an embedding

ι : ΛkM ↪→ ΛM, ι(x) = γx,

where each restriction γx|[i/k,(i+1)/k] is the shortest geodesic parametrized with
constant speed joining xi and xi+1. We denote the restricted energy functional by

Ek = E ◦ ι : ΛkM → [0,∞), Ek(x) = k
∑
i∈Zk

d(xi, xi+1)2.

Let x := ι−1(γ). We consider the tangent vector v := (v0, ..., vk−1) ∈ Tx(ΛkM)
such that vi = ν(i/k) for all i ∈ Zk. Inequality (0.1) readily implies that dι(x)v
lies in the negative cone of the Hessian d2E(γ), since

d2Ek(x)[v,v] = d2

dz2

∣∣
z=0

E(ι(expx(zv))

≤ d2

dz2

∣∣
z=0

E(expγ(·)(zν(·)))
= d2E(γ)[ν, ν]

< 0.

(0.2)

Here, the exponential map in ΛkM is the one associated with the natural Riemann-
ian metric g ⊕ ...⊕ g.

The complement M \ γ has two connected components B+ and B−, each one
diffeomorphic to a two-ball. The vector field ν points into one of them, say B+.
We define the continuous map

w : [−1/3, 1/3]→ ΛkM, w(z) = expx(zεv).

Notice that w(0) = x. We fix ε > 0 small enough so that, for all z ∈ (0, 1/3], the
loop ι(w(±z)) is entirely contained in the open ball B±, and by Equation (0.2) we
have

Ek(w(z)) < Ek(w(0)) = sys(M, g)2, ∀z ∈ [−1/3, 1/3] \ {0}.



THE MONOTONICITY OF THE SYSTOLE OF CONVEX RIEMANNIAN TWO-SPHERES 3

We now consider the open subspaces U+, U− ⊂ ΛkM given by

U± = ΛkM ∩ (B± × ...×B±).

We have w(±1/3) ∈ U±. The flow φs of the anti-gradient −∇Ek is complete in
positive time s in the sublevel set E−1k ([0, sys(M, g)2]). We claim that

φs(w(±1/3)) ∈ U±, ∀s ≥ 0.

Indeed, assume by contradiction that there exists s0 > 0 such that φs0(w(±1/3)) ∈
∂U±, and take s0 to be the minimal such time. If y := φs0(w(±1/3)), the compo-
nents of the anti-gradient vector z := −∇Ek(y) are given by

zi = 2(γ̇y( ik
+

)− γ̇y( ik
−

)), ∀i ∈ Zk.
Since y ∈ ∂U±, at least one of its components yi must belong to ∂B±. Assume
that all the yi’s belong to ∂B±, and therefore they are of the form yi = γ(ti) for
some ti ∈ S1. In this case, we have zi = λiγ̇(ti) for some λi ∈ R; but this is
impossible, since it would imply that all the components of φs(w(±1/3)) belong
to ∂B± for all s ∈ R, and thus that φs(w(±1/3)) belong to ∂U± for all s ∈ R.
Therefore at least one component yi ∈ ∂B± is adjacent to a component in the
interior yi−1 ∈ B±. However, this implies that the vector zi points inside B±,
and therefore φs0−δ(w(±1/3)) 6∈ U± for all δ > 0 small enough, contradicting the
minimality of s0.

We set δ := min{injrad(M, g), sys(M)/(4k)}. Since Ek(φs(w(±1/3))) < sys(M, g)2

for all s ≥ 0, and since sys(M, g)2 is the smallest positive critical value of Ek, we
can fix a large enough s > 0 such that Ek(φs(w(±1/3))) < δ2. We extend w to a
map w : [−2/3, 2/3]→ ΛkM by setting

w(±z) = φ(3z−1)s(w(±1/3)), ∀z ∈ [1/3, 2/3].

Notice that w(±z) ∈ U± for all z ∈ (0, 2/3], and Ek(w(±2/3)) < δ2. We set

y± = (y±0 , ..., y
±
k−1) := w(±2/3).

For each r ∈ [0, 1], we define y±(r) = (y±0 (r), ..., y±k−1(r)) by

y±i (r) := expy±0
((1− r) exp−1

y±0
(y±i )).

Notice that y±(0) = y±, y±(r) ∈ U±, and

Ek(y±(r)) = k
∑
i∈Zk

d(y±i (r), y±i+1(r))2 < 4k2δ2 ≤ sys(M, g)2, ∀r ∈ [0, 1],

Ek(y±(1)) = 0.

We extend w to a continuous map w : [−1, 1]→ ΛkM by setting

w(±z) = y±(3z − 2), ∀z ∈ [2/3, 1].

Finally, we define u := ι ◦w : [−1, 1]→ ΛM . Notice that the associated continuous
map ũ : S2 → M has degree 1; indeed, the preimage u−1(γ(t)) is a singleton for
every t ∈ S1, and the restriction of u to a neighborhood of u−1(γ) is a homeomor-
phism onto its image. Therefore u ∈ U , and

bir(M, g) ≤ max
z∈[−1,1]

E(u(z))1/2 = E(u(0))1/2 = sys(M, g).

On the other hand, bir(M, g)2 is a positive critical value of E, and therefore

bir(M, g) ≥ sys(M, g). �
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Proof of Theorem 0.1. We set Mi := ∂Bi, i = 1, 2. Since the regions B1 ⊂ B2 are
strictly convex, for each x ∈M2 there exists a unique π(x) ∈M1 such that

‖x− π(x)‖ = min
y∈M1

‖x− y‖.

The map π : M2 → M1 is a 1-Lipschitz homeomorphism with respect to the Rie-
mannian metrics gi on Mi that are restriction of the ambient Euclidean metric. In
particular, for every W 1,2 curve γ2 : S1 → M2, if we denote by γ1 := π ◦ γ2 its
image in M1, we have ∫

S1

‖γ̇2(t)‖2dt ≥
∫
S1

‖γ̇1(t)‖2dt

We denote by U1 and U2 the family of maps involved in the definition of the Birkhoff
min-max values of M1 and M2 respectively. Notice that π ◦ u ∈ U1 for all u ∈ U2.
Therefore, if we denote the energy of W 1,2 loops γ : S1 → R3 by

E(γ) =

∫
S1

‖γ̇(t)‖2 dt,

we have

bir(M2) = inf
u∈U2

max
z∈[−1,1]

E(u(z))1/2 ≥ inf
u∈U2

max
z∈[−1,1]

E(π ◦ u(z))1/2 ≥ bir(M1).

This, together with Lemma 0.2, implies that sys(M2) ≥ sys(M1). �
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