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Abstract. We study the periodic orbits problem on energy levels of Tonelli

Lagrangian systems over configuration spaces of arbitrary dimension. We show

that, when the fundamental group is finite and the Lagrangian has no station-
ary orbit at the Mañé critical energy level, there is a waist on every energy

level just above the Mañé critical value. With a suitable perturbation with

a potential, we show that there are infinitely many periodic orbits on every
energy level just above the Mañé critical value, and on almost every energy

level just below. Finally, we prove the Tonelli analogue of a closed geodesics

result due to Ballmann-Thorbergsson-Ziller.

1. Introduction

Over the last few years there have been significant advances in the study of the
multiplicity of periodic orbits with low energy of Tonelli Lagrangian systems over 2-
dimensional closed configuration spaces [Tai92, CMP04, AMP15, AMMP17, AB15,
AB17, AAB+17, ABM17]. So far, there are essentially no analogous results for
higher dimensional configuration spaces; at best, we know the existence of at least
one periodic orbit for almost all low energy levels, thanks to the work of Contreras
[Con06].

We recall that a Tonelli Lagrangian is a smooth function L : TM → R defined
over the tangent bundle of a closed manifold M (the configuration space) that
is fiberwise superlinear with positive-definite fiberwise Hessian, see, e.g., [CI99b,
Fat08]. The phase space TM is laminated into the level sets of the energy function
E : TM → R, E(q, v) = ∂vL(q, v)v − L(q, v). The Lagrangian defines a flow
φtL : TM → TM that preserves each compact energy level E−1(e). The flow lines
have the form φt(γ(0), γ̇(0)) = (γ(t), γ̇(t)), where γ : R → M is a solution of the
Euler-Lagrange equation of L. A periodic curve γ : R/pZ → M lifts to a periodic
orbit of the Euler-Lagrange flow on the energy level E−1(e) if and only if it is a
critical point of the free-period action functional

Se(γ) =

∫ p

0

L(γ(t), γ̇(t)) dt+ pe.

Here, Se is defined on the space of periodic curves of any possible positive period.
This space is formally given by M := W 1,2(R/Z,M) × (0,∞), so that a pair
(Γ, p) ∈ M defines the p-periodic curve γ(t) = Γ(t/p). Among the critical points
of Se, the local minimizers, which are figuratively called waists, force important
consequences on the Euler-Lagrange dynamics, at least when M is a surface.
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The variational properties of the free-period action functional Se are similar to
the ones of the geodesic energy from Finsler geometry when e is large, whereas
several difficulties arise when e is low. What mark the boundary between the high
and low energies are the so-called Mañé critical value

c(L) := min
{
e ∈ R

∣∣ Se(γ) ≥ 0 ∀γ ∈M
}
,

and the analogous critical values cu(L) and c0(L) of the lifts of the Tonelli La-
grangian L to the tangent bundle of the universal cover and of the universal abelian
cover of M respectively. Another relevant energy value is e0(L) := maxE(·, 0),
above which every energy level covers the whole configuration space M . These
energy values are ordered as e0(L) ≤ cu(L) ≤ c0(L) ≤ c(L). The inequality
e0(L) ≤ cu(L) is strict for a suitably generic Tonelli Lagrangian L (see [ABM17,
Prop. 4.2]), whereas the inequalities cu(L) ≤ c0(L) ≤ c(L) become equalities in par-
ticular when M has finite fundamental group. We refer the reader to [CI99b, Abb13]
for the background on the Mañé critical values.

On every energy level e > c0(L), the Euler-Lagrange dynamics is conjugated to
a Finsler geodesic flow on the unit tangent bundle of M . The problem of periodic
orbits in this energy range is reduced to the famous closed geodesic problem for
closed Finsler manifolds. Even more so, a waist with energy e > c0(L) of the
Lagrangian system correspond to a waist of the associated Finsler metric, that is,
a closed geodesic that locally minimizes the Finsler length among nearby periodic
curves. If the manifold M is simply connected, a Finsler metric on M does not
necessarily have waists. If M has non-trivial (and possibly even finite) fundamental
group, a Finsler metric on M always has waists in non-trivial homotopy classes, but
it does not necessarily have contractible ones; nevertheless, when M is a 2-sphere,
a recent results of the authors together with Benedetti [ABM17, Theorem 1.3]
guarantees that a contractible simple waist always exists on every energy level
just above the Mañé critical value c(L). Our first theorem extends the validity of
[ABM17, Theorem 1.3], except for the simplicity of the waists, to higher dimensional
closed configuration spaces. This will later allow us to apply some techniques from
2-dimensional Tonelli dynamics to study the multiplicity of periodic orbits in generic
Tonelli Lagrangian systems on arbitrary configuration spaces.

Theorem 1.1. Let M be a closed manifold with finite fundamental group, and L :
TM → R a Tonelli Lagrangian such that e0(L) < c(L). There exists cw(L) > c(L)
such that, for every e ∈ (c(L), cw(L)), L possesses at least a contractible waist with
energy e.

On orientable surfaces, the existence of a contractible waist has strong conse-
quences: it often forces the existence of infinitely many other contractible periodic
orbits on the same energy level, or on arbitrarily close energy levels. In higher
dimension this phenomenon still exists, but requires stronger assumptions on the
waist, for instance the hyperbolicity. This latter property is not generic. However, a
theorem of Carballo-Miranda [CM13], which extends a result of Klingenberg-Takens
[KT72] for geodesic flows, implies that, by perturbing a Tonelli Lagrangian with a
C∞ generic potential, each periodic orbit in a given energy level is either hyperbolic
or of twist type. In the twist case, the celebrated Birkhoff-Lewis Theorem [Kli78,
Theorem 3.3.A.1] guarantees that the periodic orbit is an accumulation of periodic



WAIST THEOREMS FOR TONELLI SYSTEMS IN HIGHER DIMENSIONS 3

orbits on the same energy level. Arguing along this line, we obtain the following re-
sult, which we state as a corollary of Theorem 1.1 since the infinitely many periodic
orbits found are forced to exist by the waist provided by Theorem 1.1.

Corollary 1.2. Let M be a closed manifold with finite fundamental group, and
L : TM → R a Tonelli Lagrangian. There exists a residual subset U ⊂ C∞(M)
such that, for all U ∈ U satisfying e0(L − U) < c(L − U), the Lagrangian L − U
possesses infinitely many periodic orbits on every energy level e in an open dense
subset of (c(L− U), cw(L− U)).

We wish to stress that, according to the already mentioned [ABM17, Prop. 4.2],
the space of Tonelli Lagrangians L : TM → R satisfying the strict inequality
e0(L) < c(L), or even the stronger one e0(L) < cu(L), is C0-open and C1-dense in
the whole space of Tonelli Lagrangians. In particular, if L satisfies e0(L) < c(L),
the same inequality holds for L− U provided the potential U is C0-small.

An analogous statement also allows us to deal with almost all energy levels just
below the Mañé critical value and with all energy levels just above.

Theorem 1.3. Let M be a closed manifold with finite fundamental group, and L :
TM → R a Tonelli Lagrangian such that e0(L) < c(L). There exist an arbitrarily
C1-small U ∈ C∞(M) and ε > 0 such that c(L) = c(L − U), and L − U possesses
infinitely many periodic orbits on almost every energy level e ∈ (c(L)− ε, c(L)) and
on every energy level e ∈ (c(L), c(L) + ε).

The proof of Theorem 1.3 combines the 2-dimensional techniques in [AMMP17]
with a closing lemma in Aubry-Mather theory established by Figalli-Rifford [FR15].
More specifically, the perturbation of the Lagrangian provides a hyperbolic periodic
orbit that is the whole Aubry set, and in particular is a waist.

In his last paper [Mañ96] Mañé conjectured that the Aubry set of a Tonelli
Lagrangian perturbed with a Cr generic potential, for some r ≥ 2, consists of a
(possibly stationary) hyperbolic periodic orbit. If the Mañé conjecture were true,
Theorem 1.3 could be strengthen by allowing to perturb L with a C∞ generic
potential U such that e0(L−U) < c(L−U); in particular, the obtained statement
would improve Corollary 1.2. Recently, Mañé’s conjecture was proved by Contreras
[Con14] in the case where r = 2 and M is a closed surface. However, when M is a
closed surface, much stronger statements than Theorem 1.3 hold: there are infinitely
many periodic orbits on almost all energy levels in (e0(L), cu(L)), and when M is
a sphere and (e0(L), c(L)) 6= ∅, there are infinitely many periodic orbits on every
energy level just above c(L), see [AMMP17, AM19, ABM17].

Our last perturbative result is the Tonelli generalization of a closed geodesics
theorem due to Ballmann-Thorbergsson-Ziller [BTZ81]. Our extension encompasses
the Finsler case, but also includes the possibly non-empty energy range between the
Mañé critical value of the universal cover and of the universal abelian cover, where
the dynamics is not conjugate to a Finsler geodesic flow. We denote by [α] the
conjugacy class of an element α ∈ π1(M). We recall that the conjugacy classes of
the fundamental group π1(M) are in one-to-one correspondence with the connected
components of the free loop space of M , see, e.g., [Maz12, Prop. 3.2.2].
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Theorem 1.4. Let M be a closed manifold having a non-trivial α ∈ π1(M) satis-
fying [αn] = [αm] for some distinct non-negative integers n,m. For each Tonelli
Lagrangian L : TM → R there exists a residual subset U ⊂ C∞(M) such that, for
all U ∈ U , the Lagrangian L−U possesses infinitely many periodic orbits on every
energy level e in an open dense subset of (cu(L − U),∞). Moreover, for each infi-
nite subset K ⊆ N, such periodic orbits can be found within the homotopy classes{

[αkn]
∣∣ k ∈ K}.

Notice that, if α ∈ π1(M) is a non-trivial element of finite order n − 1, and
thus αn = α, we can choose K :=

{
nh
∣∣ h ∈ N}. Since αkn = α for all k ∈ K,

Theorem 1.4 implies that L − U possesses infinitely many periodic orbits in the
homotopy class [α] on every energy level e in an open dense subset of (cu(L−U),∞).

The integers n,m were not required to be non-negative in the original statement
for Riemannian geodesic flows in [BTZ81]. In our proof, such an assumption is
needed due to the possible non-reversibility of the Tonelli Lagrangian L. We discuss
this further in Remark 4.1.

Organization of the paper. In Section 2 we prove Theorem 1.1. In Section 3 we
give the needed background on generic Hamiltonian dynamics, and in particular
recall some properties of hyperbolic periodic orbits and of periodic orbits of twist
type. In Section 4, we prove the remaining statements.

Acknowledgments. Marco Mazzucchelli is grateful to Alessio Figalli and Ludovic
Rifford for pointing out the argument in [CI99a, page 935] in order to obtain the
hyperbolicity of the periodic orbit in their result [FR15, Theorem 1.2]. Both authors
are grateful to the anonymous referee for her/his careful reading of the paper, and
for spotting a few inaccuracies in the first draft. Luca Asselle is partially supported
by the DFG-grants AB 360/2-1 “Periodic orbits of conservative systems below
the Mañé critical energy value” and AS 546/1-1 “Morse theoretical methods in
Hamiltonian dynamics”.

2. Supercritical waists

We begin by recalling some results on Aubry-Mather theory from Mañé’s per-
spective. We refer the reader to [Mañ97, CDI97] for the proofs. Let M be a closed
manifold, and L : TM → R a Tonelli Lagrangian with associated energy function
E : TM → R, E(q, v) = ∂vL(q, v)v − L(q, v). Given two points q0, q1 ∈ M , we
denote by AC(q0, q1) the space of all absolutely continuous curves γ : [0, τ ] → M
defined on any compact interval of the form [0, τ ] and such that γ(0) = q0 and
γ(τ) = q1. We stress that the parameter τ ≥ 0 is not fixed, and thus different
curves in AC(q0, q1) are defined on possibly different intervals. The action at en-
ergy e ∈ R of an absolutely continuous curve γ : [0, τ ]→M is the quantity

Se(γ) =

∫ τ

0

L(γ(t), γ̇(t)) dt+ τe ∈ R ∪ {+∞}.

The action potential at energy e is the function

Φe : M ×M → R ∪ {−∞}, Φe(q0, q1) = inf
{
Se(γ)

∣∣ γ ∈ AC(q0, q1)
}
.
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The Mañé critical energy value c(L) is precisely the minimum e ∈ R such that Φe
is uniformly bounded from below. In particular

Φc(L)(q0, q1) + Φc(L)(q1, q0) ≥ Φc(L)(q0, q0) = 0, ∀q0, q1 ∈M,

and therefore Sc(L)(γ) ≥ −Φc(L)(q1, q0) for all γ ∈ AC(q0, q1). The Aubry set A(L)
is defined as the set of those (q, v) ∈ TM with the following property: if γ : R→M
is a solution of the Euler-Lagrange equation of L with γ(0) = q and γ̇(0) = v, then
for each τ ≥ 0 we have Sc(L)(γ|[0,τ ]) = −Φc(L)(γ(τ), γ(0)). It turns out that the

Aubry set A(L) is always non-empty and contained in the energy level E−1(c(L)).
Now, consider the free-period action functional at energy e, which is simply the

restriction of the action Se over the space of W 1,2 periodic curves of any positive
period. Formally, such a space is given by the product

M := W 1,2(R/Z,M)× (0,∞),

and a pair (Γ, p) ∈ M will be identified with the p-periodic curve γ : R/pZ→ M ,
γ(t) = Γ(t/p). As customary in the literature, we will write γ = (Γ, p). The
free-period action functional is then Se : M → R ∪ {∞}, Se(Γ, p) = Se(γ). Its
critical points are precisely those γ = (Γ, p) that are periodic solutions of the
Euler-Lagrange equation of L with energy E(γ, γ̇) ≡ e. Throughout the paper,
we can always assume without loss of generality that our Tonelli Lagrangian L is
fiberwise quadratic outside a large compact subset of TM containing the energy
levels that we consider (see [ABM17, Appendix A]). In this way, the free-period
action functional is everywhere finite, C1,1, and twice Gateaux differentiable. For
each [p1, p2] ⊂ (0,∞), its restriction Se|W 1,2(R/Z,M)×[p1,p2] satisfies the Palais-Smale
condition with a suitable choice of complete Riemannian metric onM. If e > cu(L),
also the unrestricted functional Se satisfies the Palais-Smale condition. We refer
the reader to [Abb13] for the proof of these properties.

Theorem 1.1 will be a consequence of the following lemma.

Lemma 2.1. If the Aubry set A(L) does not contain τ -periodic orbits for some
τ > 0, then there exists cw(L, τ) > c(L) such that, for every e ∈ (c(L), cw(L, τ)), L
possesses at least a waist with energy e and period larger than τ .

Remark 2.2. The waist with period larger than τ provided by Lemma 2.1 may well
be the iterate of another periodic orbit (which must also be a waist) whose period
is less than τ . Nevertheless, the lower bound τ for the period of the waist is a
significant information when M is not a closed orientable surface, because in such
a case it is possible that certain iterates of a waist are not themselves waists.

Proof of Lemma 2.1. If τ > 0 is such that there are no τ -periodic orbits in the
Aubry set A(L), we claim that

δ := inf Sc(L)|W 1,2(R/Z,M)×{τ} > 0.

Indeed, since the restriction of Sc(L) to W 1,2(R/Z,M) × {τ} satisfies the Palais-

Smale condition, there exists γ = (Γ, τ) ∈W 1,2(R/Z,M)×{τ} such that Sc(L)(γ) =
δ. If δ = 0, since Sc(L) is a non-negative function, we would have Sc(L)(γ) =
inf Sc(L) = 0. Therefore, γ would be a τ -periodic orbit of L with energy c(L),
which is impossible by our choice of τ .

Now, fix a point (q, v) ∈ A(L), and consider the solution γ : [0, τ ] → M of the
Euler-Lagrange equation of L such that γ(0) = q and γ̇(0) = v. Since Sc(L)(γ) +
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Φc(L)(γ(τ), γ(0)) = 0, we can extend γ to a W 1,2 periodic curve γ : R/pZ→M , for

some p > τ , such that Sc(L)(γ) < δ/2. For each energy value e ∈ (c(L), c(L) + δ
2p ),

we have

Se(γ) = Sc(L)(γ) + (e− c(L))p < δ < δ + (e− c(L))τ = inf Se|W 1,2(R/Z,M)×{τ},

and therefore

δ0 := inf Se|W 1,2(R/Z,M)×(τ,∞) < inf Se|W 1,2(R/Z,M)×{τ}.

Since e > c(L), Se satisfies the Palais-Smale condition. Therefore, any sequence
γn = (Γn, pn) ∈ W 1,2(R/Z,M) × (τ,∞) such that Se(γn) < δ0 + 1/n admits a
subsequence converging to a local minimizer γ = (Γ, p) ∈ W 1,2(R/Z,M) × (τ,∞)
of Se, which is a waist. �

Proof of Theorem 1.1. Since M has finite fundamental group, its universal cover M̃

has finite degree over M , and in particular is compact. We denote by L̃ : TM̃ → R

the lift of L. By [CP02, Lemma 2.2], the Mañé critical value does not change when

a Lagrangian system is lifted to a finite cover, and therefore c(L) = c(L̃). Notice

that a periodic curve γ : R/pZ→ M̃ is a local minimizer of the free-period action

functional associated to L̃ if and only if its projection π ◦ γ is a local minimizer of

Sc(L). Therefore, it is enough to prove the theorem for the Lagrangian L̃, that is,
from now on we can assume without loss of generality that M is simply connected.

Since c(L) > e0(L), for all τ > 0 small enough, each solution γ : [0, τ ] → M
of the Euler-Lagrange equation of L with energy E(γ(0), γ̇(0)) = c(L) satisfies
γ(0) 6= γ(τ), see [AM19, Lemma 2.3(i)]. In particular, for such τ > 0, the Aubry
set A(L) does not contain τ -periodic orbits. Therefore, by Lemma 2.1, L possesses
at least a (contractible) waist with energy e and period larger than τ . �

3. Periodic orbits of hyperbolic or twist type

3.1. The cylinder of a non-degenerate periodic orbit. Let (W,ω) be a symplectic
manifold of dimension 2d, and H : W → R a smooth Hamiltonian with associ-
ated Hamiltonian vector field XH , given by ω(XH , ·) = dH, and Hamiltonian flow
φtH . Consider a periodic orbit γ : R/p̃Z → H−1(ẽ), γ(t) = φtH(z̃) on a regular
energy hypersurface H−1(ẽ). Any sufficiently small hypersurface Σ ⊂ H−1(ẽ) that
intersects γ transversely at z̃ is a symplectic submanifold of (W,ω), and has a well
defined associated first return-time function

τ : Σ→ (p̃− ε, p̃+ ε), τ(z) = min{t > 0 | ΦtH(z) ∈ Σ}.
The first return map

Φ : (Σ, ω)→ (Σ, ω), Φ(z) = φ
τ(z)
H (z),

is a symplectomorphism. Its differential at the fixed point z̃ is the so-called Poincaré
map P := dΦ(z̃) : Tz̃Σ → Tz̃Σ. The periodic orbit γ is non-degenerate when 1
is not an eigenvalue of P . In such a case, γ belongs to a so-called orbit cylinder:
there exist smooth maps e 7→ z(e) ∈W and e 7→ p(e) ∈ (0,∞), for e ∈ (ẽ−δ, ẽ+δ),
such that z(ẽ) = z̃, p(ẽ) = p̃, H(z(e)) = e, and each orbit γe(t) := φtH(z(e)) is
p(e)-periodic (see, e.g., [HZ94, Prop. 2 on page 110] for a proof of this fact). The
periodic orbit γ is hyperbolic if no eigenvalue of P lies in the unit circle S1 ⊂ C.
Notice that, if γ is hyperbolic, the same is true for the periodic orbits in a small
orbit cylinder around γ.
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3.2. Periodic orbits of twist type. Assume now that γ is not hyperbolic. The
tangent space at z̃ splits as the direct sum of P -invariant symplectic subspaces
Tz̃Σ = T±z̃ Σ ⊕ T0

z̃Σ in such a way that P |T±z̃ Σ has only eigenvalues outside the

unit circle S1 ⊂ C, whereas P |T0
z̃Σ has only eigenvalues on the unit circle. By

our assumption, dim T0
z̃Σ > 0. The first return map Φ admits a so-called central

manifold W c ⊂ Σ at z̃, which is an embedded submanifold of Σ that passes through
z̃ with tangent space Tz̃W

c = T0
z̃Σ and is invariant under Φ near z̃, see [Kli78,

Theorem 3.3.5]. We denote by S1 ⊂ C the unit circle in the complex plane, and by
σ(P ) the set of eigenvalues of the P . The Poincaré map P is called 4-elementary
when for all quadruples of (not necessarily distinct) eigenvalues eiθ1 , eiθ2 , eiθ3 , eiθ4 ∈
σ(P )∩S1 we have ei(θ1+...+θ4) 6= 1. In this case, the restriction Φ|W c can by written
in a so-called Birkhoff normal form near z̃: up to shrinking W c around z̃, we can
find symplectic coordinates (z1, ..., zq) = (x1, y1, ..., xq, yq) on W c such that, in these
coordinates, z̃ = 0 and

Φ|U = (Φ1, ...,Φq) : U →W c,

Φj(z1, ..., zq) = zj exp

(
aj + 2πi

q∑
l=1

bjlzlzl

)
+ wj(z1, ..., zq).

Here, U ⊂W c is a sufficiently small open neighborhood of z̃, the aj ’s and the bjl’s
are real numbers, and the maps wj : U → C vanish up to order 3 at z̃. The fixed
point z̃ is of twist type (or the periodic orbit γ is of twist type) when the real
q × q matrix B := (bjl) is non-singular. The celebrated Birkhoff-Lewis fixed point
theorem [Kli78, Theorem 3.3.A.1] states that, if the fixed point z̃ of Φ is of twist
type, then there exists a sequence zα → z̃ as α→∞ such that zα is a periodic point
of Φ with minimal period pα, and pα → ∞ as α → ∞. In terms of the original
Hamiltonian system, the statement can be rephrased as follows.

Theorem 3.1 (Hamiltonian Birkhoff-Lewis Theorem). Let (W,ω) be a symplectic
manifold, H : W → R a Hamiltonian, e a regular value of H, and γ : R/pZ →
H−1(e) a periodic orbit of H of twist type. Then, for any p′ > 0 there exists an
arbitrarily small neighborhood U ⊂ H−1(e) of the support of γ and a periodic orbit
of H contained in U with minimal period larger than p′. In particular, the energy
level H−1(e) contains infinitely many periodic orbits. �

Remark 3.2. Since the Poincaré map of a periodic orbit γ : R/p̃Z → H−1(ẽ) of
twist type is 4-elementary, all its eigenvalues on the unit circle have multiplicity 1
and are not real. In particular, 1 is not an eigenvalue of the Poincaré map, and
therefore γ belongs to an orbit cylinder γe : R/peZ → H−1(e), e ∈ (ẽ − δ, ẽ + δ).
The condition of being 4-elementary for a symplectic linear map is open, and the
condition of being twist type is also open in the C∞ topology. Therefore, up to
lowering δ > 0, all the periodic orbits γe in the orbit cylinder are of twist type, and
the Hamiltonian Birkhoff-Lewis Theorem apply to them. �

In view of the Birkhoff-Lewis fixed point theorem, in the quest for periodic orbits
of a given Tonelli energy hypersurface one may assume that there is no periodic
orbit of twist type. In such a case, generically, all the periodic orbits (if there are
any) must be hyperbolic. This is guaranteed by the following result due to Carballo
and Miranda [CM13], which extends a result of Klingenberg and Takens [KT72] for
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geodesic flows. The notions of hyperbolicity or of twist type for the periodic orbits
of a Tonelli Lagrangian are those inherited from the corresponding periodic orbits
of the dual Tonelli Hamiltonian.

Theorem 3.3 ([CM13], Corollary 5). Let M be a closed manifold, L : TM → R a
Tonelli Lagrangian, and e ∈ R. Then there exists a residual subset U ⊂ C∞(M)
such that, for each U ∈ U , each periodic orbit of the Tonelli Lagrangian L−U with
energy e is either hyperbolic or of twist type1. �

3.3. Hyperbolic periodic orbits of Tonelli Lagrangians. Let L : TM → R be a
Tonelli Lagrangian, with associated free period action functionals Se : W 1,2(R/Z)×
(0,∞) → R ∪ {+∞}. We denote by ind(γ) and nul(γ) + 1 the Morse index and
the nullity of Se at a critical point γ = (Γ, p), and by indp(γ) and nulp(γ) + 1 the
Morse index and the nullity of the restricted functional Se(·, p) at the critical point
Γ. Notice that indp(γ) ≤ ind(γ) ≤ indp(γ) + 1. If P denotes the Poincaré map
associated to the periodic orbit γ, then

nul(γ) = dim ker(P − I),

see [AMP15, Proposition A.3]. For each m ∈ N, we denote by γm = (Γm,mp),
where Γm(t) = Γ(mt), the m-th iterate of γ. Namely, γm is γ seen as an mp-
periodic curve. If γ is hyperbolic, Bott’s iteration theory [Bot56, Lon02] implies
that

indmp(γ
m) = m indp(γ), nul(γm) = 0, ∀m ∈ N. (3.1)

In particular, the critical circle Cγ :=
{

(Γ(s + ·), p)
∣∣ s ∈ R/Z} is isolated in the

set of critical points crit(Se). Notice that a hyperbolic periodic orbit γ is a waist
(that is, Cγ is a circle of local minimizers of Se) if and only if ind(γ) = 0, and in
this case Cγ has an arbitrarily small open neighborhood W ⊂W 1,2(R/Z)× (0,∞)
such that

inf
∂W
Se > Se(γ). (3.2)

Lemma 3.4. If γ is a hyperbolic waist, the same is true for the periodic orbits in a
small orbit cylinder around γ.

Proof. Let γẽ be a hyperbolic waist with energy ẽ, which belongs to a hyperbolic
cylinder γe, e ∈ (ẽ − δ, ẽ + δ). We already remarked that, up to lowering δ > 0,
all the periodic orbits γe are hyperbolic. In particular, nul(γe) = 0 for all energy
values e ∈ (ẽ − δ, ẽ + δ). This readily implies that e 7→ ind(γe) is constant, and
therefore ind(γe) = ind(γẽ) = 0. �

4. Generic multiplicity results

We begin by proving Corollary 1.2 and Theorem 1.4, for which we have already
introduced all the needed ingredients.

Proof of Corollary 1.2. By Carballo-Miranda’s Theorem 3.3, for each e ∈ R there
exists a residual subset Ue ⊂ C∞(M) such that, for each U ∈ Ue, each periodic orbit

1In [CM13], the authors call “weakly monotonous quasi elliptic” a periodic orbit of twist type.
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of the Tonelli Lagrangian L−U with energy e (if there is any) is either hyperbolic
or of twist type. The countable intersection

U :=
⋂
e∈Q
Ue

is still a residual subset of C∞(M). Let U ∈ U be such that the Tonelli Lagrangian
L′ := L−U satisfies e0(L′) < c(L′). From now on, all the arguments will be referred
to the Lagrangian L′, which can be assumed to be fiberwise quadratic outside a
large compact set without loss or generality (see Section 2), and whose free-period
action functional at energy e will be denoted by S ′e :M→ R.

We choose an arbitrary energy value

ẽ ∈ (c(L′), cw(L′)) ∩Q,
where cw(L′) is the constant given by Theorem 1.1. In order to complete the proof,
we have to show that all the energy levels sufficiently close to ẽ possess infinitely
many periodic orbits. If there exists a periodic orbit of twist type in the energy level
ẽ, the same is true on all energy levels close to ẽ (Remark 3.2), and we conclude
by means of the Hamiltonian Birkhoff-Lewis Theorem (Theorem 3.1). It remains
to consider the case in which all the periodic orbits with energy ẽ are hyperbolic.
By Theorem 1.1, there exists a contractible hyperbolic waist γẽ with energy ẽ. By
Lemma 3.4, γẽ belongs to an orbit cylinder γe, e ∈ (ẽ− δ, ẽ+ δ), such that each γe
is a hyperbolic waist. Let us fix an energy value e ∈ (ẽ− δ, ẽ+ δ), and simply call
γ := γe in order to simplify the notation. Notice that S ′e(γe) > 0, since e > c(L′),
and therefore S ′e(γk) → ∞ as k → ∞. Moreover, by (3.1), ind(γk) = nul(γk) = 0
for all k ∈ N, and therefore every iterate γk is still a hyperbolic waist. We consider
the minmax values

s(k) := inf
u

max
s∈[0,1]

S ′e(u(s)), (4.1)

where the infimum ranges over the continuous maps u : [0, 1] → M such that
u(0) = γ and u(1) = γk. By (3.2), we have the strict inequality s(k) > S ′e(γk), and
in particular

lim
k→∞

s(k) = +∞. (4.2)

Since e > c(L′), S ′e satisfies the Palais-Smale condition, and therefore s(k) is a
critical value of S ′e corresponding to at least a contractible periodic orbit. We
denote by Pk the intersection of the critical set crit(S ′e) ∩ S ′−1

e (s(k)) with the
connected component of M of the contractible periodic curves.

Now, the end of the argument is a typical application of [AMMP17, Theorem 2.6],
whose validity was extended to general Tonelli systems in [AM19, Section 4.1]. This
theorem asserts that highly iterated periodic orbits are not mountain passes. More
precisely, for each periodic orbit ζ with energy e, there exists m(ζ) ∈ N and, for
each integer m ≥ m(ζ), an open neighborhood U(ζm) ⊂M of the critical circle of
ζm such that the inclusion is an injective map of connected components

π0({S ′e < S ′e(ζm)}) ↪→ π0({S ′e < S ′e(ζm)} ∪ U(ζm)). (4.3)

Assume by contradiction that there are finitely many geometrically distinct con-
tractible periodic orbits ζ1, ..., ζh such that, for every k ∈ N, every periodic orbit
in Pk is an iterate of one of them. We set

m := max{m(ζ1), ...,m(ζh)}.
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By (4.2), if k ∈ K is large enough, every critical circle in Pk is the critical circle
of some iterated periodic orbit ζmi with m ≥ m. Let Uk be the union of the open
neighborhoods U(ζmi ), for all ζmi ∈ Pk. By means of gradient flow deformations,
we can find a continuous map u : [0, 1] → M such that u(0) = γnk, u(1) = γmk,
and u([0, 1]) ⊂ {S ′e < s(k)} ∪ Uk. By (4.3), we can modify u into a continuous
map w : [0, 1] → M such that w(0) = γ, w(1) = γk, and w([0, 1]) ⊂ {S ′e < s(k)}.
The strict inequality maxS ′e ◦ w < s(k) contradicts the definition of the minmax
value (4.1). �

Proof of Theorem 1.4. As in the proof of Corollary 1.2, by applying Carballo-
Miranda’s Theorem 3.3 countably many times we obtain a residual subset of U ⊂
C∞(M) such that, for all U ∈ U , each periodic orbit of the Tonelli Lagrangian
L′ := L − U with any energy e ∈ Q is either hyperbolic or of twist type. We
consider such an L′, which we will assume without loss of generality to be fiber-
wise quadratic outside a compact set (see Section 2), and its free-period action
functionals S ′e :M→ R.

Let α ∈ π1(M) be a homotopy class as in the statement, so that α is non-
trivial and αn = βαmβ−1 for some distinct non-negative integers n,m and for
some β ∈ π1(M). Without loss of generality, we can assume that n and m are
both strictly positive (indeed, if m = 0, then n > 0 and αn+1 = α). For each
k ∈ N := {1, 2, 3, ...}, we denote by Ck ⊂ M the connected component of those
periodic curves freely homotopic to a representative of αk. Notice that the condition
on α means precisely that

Cnk = Cmk, ∀k ∈ N.

Let K ⊆ N be an arbitrary infinite subset. We set

C :=
⋃
k∈K

Cnk =
⋃
k∈K

Cmk.

We choose an energy value ẽ ∈ (cu(L′),∞) ∩ Q. If there exists a periodic orbit
of twist type in C with energy ẽ, the Hamiltonian Birkhoff-Lewis Theorem (Theo-
rem 3.1) implies that there are infinitely many periodic orbits in C on any energy
level close to ẽ. Therefore, we are left to consider the case in which all periodic
orbits in C with energy ẽ are hyperbolic.

Since ẽ > cu(L′), the free-period action functional S ′ẽ is bounded from below
on every connected component of M, and satisfies the Palais-Smale condition.
Therefore, S ′ẽ|C1 admits a global minimizer γẽ ∈ C1. Since γẽ is a hyperbolic waist,
by Lemma 3.4 it belongs to a orbit cylinder of hyperbolic waists γe ∈ C1, for
e ∈ (ẽ− δ, ẽ+ δ) ⊂ (cu(L),∞). We fix an arbitrary energy value e ∈ (ẽ− δ, ẽ+ δ),
and we set γ := γe. In order to complete the proof, we have to show that there are
infinitely many periodic orbits with energy e contained in C.

By (3.1), all iterates γk are hyperbolic waists. Moreover, γnk and γmk are
distinct points belonging to the same connected component Cnk = Cmk. For each
k ∈ K, we consider the minmax value

s(k) := inf
u

max
s∈[0,1]

S ′e(u(s)), (4.4)

where the infimum ranges over the continuous maps u : [0, 1] → M such that
u(0) = γnk and u(1) = γmk. Since e > cu(L′), S ′e satisfies the Palais-Smale
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condition, and therefore s(k) > max{S ′e(γnk),S ′e(γmk)} is a critical value of S ′e
corresponding to mountain pass critical points of S ′e. We set

Pk := crit(S ′e) ∩ S ′−1
e (s(k)) ∩ Cnk,

and claim that the family P := ∪k∈KPk contains infinitely many geometrically
distinct periodic orbits.

In order to prove this claim, we first show that, for each ζ ∈ P, there are at most
finitely many k ∈ K such that ζ ∈ Pk. Indeed, assume by contradiction that

ζ ∈
⋂
i∈N
Pki (4.5)

for some infinite sequence k1 < k2 < k3 < ... in K. If we set s := S ′e(ζ), we have

s > S ′e(γnki) = kiS ′e(γn), ∀i ∈ N,

which implies that S ′e(γn) ≤ 0. If γ has the form γ = (Γ, p) ∈M, we thus have

S ′e′(γn) = S ′e(γn) + (e′ − e)p < S ′e(γn) ≤ 0, ∀e′ ∈ (cu(L), e). (4.6)

However, (4.5) implies that all the γnki belong to the same connected component
C′ := Cnk1 = Cnk2 = Cnk3 = ..., and therefore the inequality (4.6) implies

inf
C′
S ′e′ ≤ lim

i→∞
S ′e′(γnki) = lim

i→∞
kiS ′e′(γn) = −∞,

contradicting the fact that S ′e′ is bounded from below on each connected component
of its domain.

Now, assume by contradiction that there are only finitely many geometrically
distinct periodic orbits ζ1, ..., ζh with energy e in C. The claim proved in the previous
paragraph implies that, for all integers m > 0 there exists k > 0 such that, if k ∈ K
is larger than k, every critical circle in Pk is the critical circle of some iterated
periodic orbit ζmi with m ≥ m. However, as in the proof of Corollary 1.2, this is
prevented by [AMMP17, Theorem 2.6]. �

Remark 4.1. If the Tonelli Lagrangian L is reversible, meaning that L(q, v) =
L(q,−v) for all (q, v) ∈ TM , then the assumption that n,m are both non-negative
in Theorem 1.4 can be dropped. Indeed, if γ ∈ C1 is the hyperbolic waist of
the proof, the reversibility of L guarantees that the curve γ(t) := γ(−t) is still a
hyperbolic waist with the same energy as γ, and γ 6= γ. If n > 0 and m < 0,
the iterates γn and γ−m are distinct points in the same connected component Cn.
Therefore, in order for the above proof to go through, it is enough to modify the
min-max (4.4) and make the infimum range over the continuous maps u : [0, 1]→M
with u(0) = γnk and u(1) = γ−mk.

In order to prove Theorem 1.3, we first need to recall the following result, which
is a combination of Figalli-Rifford’s closing lemma [FR15, Theorem 1.2] with an
argument due to Contreras-Iturriaga [CI99a, page 935] that makes a periodic orbit
in the Aubry set hyperbolic.

Theorem 4.2. Let L : TM → R be a Tonelli Lagrangian with e0(L) < c(L). Then,
there exists an arbitrarily C1-small U ∈ C∞(M) such that c(L) = c(L − U) and
the Aubry set of L− U consists of exactly one hyperbolic periodic orbit. �
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Proof of Theorem 1.3. By means of Theorem 4.2, we choose an arbitrarily C1-small
U ∈ C∞(M) such that c(L) = c(L− U) and the Aubry set of L′ := L− U consists
of exactly one hyperbolic periodic orbit γ. We denote by S ′e :M→ R ∪ {∞} and
Φ′e : M ×M → R ∪ {−∞} respectively the free-period action functional and the
action potential of L′ at energy e. Since γ is the Aubry set A(L′), we have

S ′c(L′)(γ) = Φ′c(L′)(γ(0), γ(0)) = 0,

see Section 2. Therefore, since Sc(L′) is a non-negative functional, γ is a hyperbolic
waist. By Lemma 3.4, γ belongs to an orbit cylinder of hyperbolic waists γe =
(Γe, pe), e ∈ (c(L′)− ε, c(L′) + ε), with γ = γc(L′). Notice that

d
deS

′
e(γe) = (∂eS ′e)(γe) = pe > 0,

and therefore

S ′e(γe) < 0, ∀e ∈ (c(L′)− ε, c(L′)),
S ′e(γe) > 0, ∀e ∈ (c(L′), c(L′) + ε).

Since the iterates of each γe have indices ind(γme ) = nul(γme ) = 0, they are all
hyperbolic waists, and their actions satisfy

lim
m→∞

S ′e(γme ) =

{
−∞, if e ∈ (c(L′)− ε, c(L′)),
+∞, if e ∈ (c(L′), c(L′) + ε).

Therefore, we can complete the proof along the line of [AMMP17, Section 3.3]. We
sketch the argument for the reader convenience.

As we already did in the previous proofs, we can assume without loss of generality
that our Lagrangian L′ is fiberwise quadratic outside a large compact subset of
TM containing in particular the energy sublevel set E−1(−∞, c(L′) + ε]. For each
e < cu(L′) = c(L′), the free-period action functional S ′e is unbounded from below in
each connected component. Therefore, for each e ∈ (c(L′)− ε, c(L′)) we can define
the minmax values

se(m) := inf
u

max
s∈[0,1]

S ′e(u(s)),

where the infimum ranges over the family of all continuous maps u : [0, 1]→M such
that u(0) = γme and S ′e(u(0)) < S ′e(γme ). One can show that e 7→ se(m) is monotone
increasing, and therefore, even if Se may not satisfy the Palais-Smale condition, a
trick due to Struwe [Str90] implies that se(m) is a critical value of Se for all energy
values e belonging to the full measure subset Im ⊂ (c(L′) − ε, c(L′)) where the
function e 7→ se(m) is differentiable. The countable intersection I := ∩m∈NIm is
still a full measure subset of (c(L′)− ε, c(L′)).

Fix an arbitrary energy value e ∈ I. The well known argument of “pulling one
loop at the time” due to Bangert implies that the difference se(m) − S ′e(γme ) is
uniformly bounded from above in m. Therefore,

lim
m→∞

se(m) = −∞. (4.7)

If we assume by contradiction that there are only finitely many periodic orbits with
energy e, Equation (4.7) implies that for all n ∈ N there exists m ∈ N large enough
so that, for all m ≥ m, every periodic orbit ζ with energy e such that Se(ζ) = se(m)
is the n-th iterate of some periodic orbit for some n ≥ n. Arguing as in the proof
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of Corollary 1.2, we see that this is prevented by [AMMP17, Theorem 2.6], which
asserts that highly iterated periodic orbits are not mountain passes.

This completes the proof of the theorem for the subcritical energy range (c(L′)−
ε, c(L′)). The analogous argument proves the theorem for the supercritical energy
range (c(L′), c(L′) + ε); here, since the free-period action functional S ′e satisfies the
Palais-Smale condition for all e ∈ (c(L′), c(L′) + ε), there is no need to extract a
full measure subset of (c(L′), c(L′) + ε). �
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