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Abstract. We characterize the Zoll Riemannian metrics on a given simply

connected spin closed manifold as those Riemannian metrics for which two

suitable min-max values in a finite dimensional loop space coincide. We also
show that on odd dimensional Riemannian spheres, when certain pairs of min-

max values in the loop space coincide, every point lies on a closed geodesic.

1. Introduction

On a closed manifold of dimension at least 2, a Riemannian metric is called
Besse when all of its geodesics are closed. It is called Zoll when all its unit-speed
geodesics are closed with the same minimal period, and simple Zoll when they are
also without self-intersections. As usual, by closed geodesic we mean a non-constant
periodic orbit of the geodesic flow. Riemannian metrics in these three classes are
of great interest in Riemannian geometry, see [Bes78].

The only known closed manifolds admitting Zoll Riemannian metrics are the
compact rank-one symmetric spaces, that is, Sn, RPn, CPn, HPn, or CaP2, whose
canonical Riemannian metrics are simple Zoll. Actually a result of Bott and Samel-
son [Bot54, Sam63] implies that any closed manifold admitting a simple Zoll Rie-
mannian metric has the integral cohomology ring of a compact rank-one symmetric
space. Conjecturally, on simply connected closed manifolds M , the notions of Besse
and Zoll Riemannian metrics are equivalent. This conjecture has been recently es-
tablished for M = Sn with n ≥ 4 by Radeschi and Wilking [RW17], and was earlier
established for M = S2 by Gromoll and Grove [GG81], who also showed that on
S2 the condition of being simple Zoll is equivalent to the other two ones.

The geodesic flow of a Riemannian manifold is a classical autonomous Hamilton-
ian flow in its tangent bundle. This implies that the closed geodesics parametrized
with constant speed are the non-trivial critical points of the energy functional on
the space of loops, whereas the closed geodesics with any parametrization are the
critical points of the length energy functional. A result claimed by Lusternik [Lju66]
and proved recently by the authors [MS18] implies that a Riemannian 2-sphere is
Zoll if and only if the min-max values of the length functional over three suit-
able homology classes of the space of unparametrized simple loops coincide. If
instead only two among these three values coincide, the Riemannian metric may
not be Zoll, but the geodesic dynamics is still rather special: any point of the 2-
sphere must lie on a closed geodesic. For n-spheres of arbitrary dimension n ≥ 2
with sectional curvature pinched inside [1/4, 1], analogous results were proved by
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Ballmann-Thorbergsson-Ziller [BTZ83]. The goal of this paper is to provide further
results along this line for more general closed manifolds, and in particular for higher
dimensional ones, without any assumption on the curvature.

In order to state our theorems, let us quickly recap the variational theory for
the closed geodesic problem. Let M be a closed orientable manifold of dimen-
sion n ≥ 2 admitting a simple Zoll Riemannian metric. The manifold M will be
implicitly identified with the submanifold of constant loops in the free loop space
ΛM = W 1,2(R/Z,M). For this class of manifolds, we have the explicit cohomology
computation

H∗(ΛM,M) ∼=
⊕
m≥1

H∗−mi(M)−(m−1)(n−1)(SM), (1.1)

where SM denotes the unit tangent bundle of M , and i(M) is a suitable positive
integer only depending on the integral cohomology ring of M , according to an ar-
gument due to Radeschi and Wilking [RW17, page 942]. Throughout this paper,
the singular cohomology H∗ and the singular homology H∗ will always be intended
with Z coefficients unless we explicitly state otherwise. Since M admits a simple
Zoll Riemannian metric, Bott and Samelson’s theorem [Bes78, Theorem 7.23] im-
plies that it is simply connected and with vanishing Euler characteristic if and only
if it is homeomorphic to an odd dimensional sphere Sn. In this case, the relative
cohomology group H∗(ΛM,M) has rank at most one in every degree, and for each
integer m ≥ 1 we choose two generators

αm ∈ H(2m−1)(n−1)(ΛM,M), βm ∈ H2m(n−1)+1(ΛM,M). (1.2)

For each Riemannian metric g on M , the associated energy functional is

E : ΛM → [0,∞), E(γ) =

∫ 1

0

‖γ̇(t)‖2g dt.

For each b > 0, we consider the energy sublevel set ΛM<b := {γ ∈ ΛM | E(γ) < b},
and denote by ιb : (ΛM<b,M) ↪→ (ΛM,M) the inclusion. Given a non-trivial
cohomology class µ ∈ Hd(ΛM,M), the associated min-max

cg(µ) = cg(−µ) := inf{b > 0 | ι∗bµ 6= 0}

is a critical value of E, and thus the energy of a closed geodesic. One can easily
verify that, if g is a Zoll Riemannian metric with unit-speed geodesics of minimal
period ` > 0, then cg(αm) = cg(βm) = m2`2 for all m ≥ 1. Conversely, we will
prove the following theorem.

Theorem 1.1. Let M be a manifold homeomorphic to an odd dimensional sphere
Sn, n ≥ 3, and g a Riemannian metric on M . If cg(αm) = cg(βm) for some m ≥ 1,
then for each q ∈ M there exists a (possibly iterated) closed geodesic γ ∈ crit(E)
with γ(0) = q and E(γ) = cg(αm).

Our second result provides a min-max characterization of Zoll Riemannian met-
rics on simply connected spin closed manifolds. The statement requires a new
finite dimensional reduction of the variational settings for the energy, which goes
as follows. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2, with
associated energy functional E : ΛM → [0,∞). We denote by ρ = injrad(M, g) > 0
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the injectivity radius, and by d : M ×M → [0,∞) the Riemannian distance. For
each δ ∈ (0, ρ) and k ∈ N, we consider the space

ΥM = Υδ,kM :=

q = (q0, ..., qk−1) ∈M × ...×M

∣∣∣∣∣∣∣
d(q0, q1) = δ,∑
i∈Zk\{0}

d(qi, qi+1)2 < ρ2

 .

We consider ΥM as a finite dimensional submanifold of ΛM , by identifying each
q ∈ ΥM with the unique periodic curve γq ∈ ΛM such that, for each i = 0, ..., k−1,
the restriction γq|[τi(q),τi+1(q)] is the unique shortest geodesic parametrized with
constant speed joining qi and qi+1. Here, the time values

0 = τ0(q) < τ1(q) < ... < τk(q) = 1

are chosen so that τ2(q)− τ1(q) = τ3(q)− τ2(q) = ... = τk(q)− τk−1(q), and τ1(q)
is the value that minimizes the energy of the associated piecewise broken geodesic
γq. A straightforward computation shows that such values are given by

τi(q) :=
δ

δ + σ(q)
+

(i− 1)

k − 1

σ(q)

δ + σ(q)
, ∀i = 1, ..., k, (1.3)

where

σ(q)2 := (k − 1)
∑

i∈Zk\{0}

d(qi, qi+1)2 > 0. (1.4)

A feature of ΥM that was missing in ΛM is the smooth evaluation map

Ev : ΥM → SM, Ev(q) := exp−1
q0 (q1), (1.5)

where we have denoted by SM the unit tangent bundle of (M, δ−2g). This map is
injective in cohomology (Lemma 5.1). We choose two generators

ω ∈ Ev∗(H2n−1(SM)) ∼= Z, (1.6)

α ∈ Hi(M)(ΛM,ΛM<4ρ2) ∼= Hi(M)(ΛM,M) ∼= Z, (1.7)

We will always fix a sufficiently small parameter δ ∈ (0, ρ) and a sufficiently
large k ∈ N for the space ΥM = Υδ,kM so that, according to Lemma 5.8,

ω ^ j∗α 6= 0 inHi(M)(ΥM,ΥM<4ρ2), where j : (ΥM,ΥM<4ρ2) ↪→ (ΛM,ΛM<4ρ2)
is the inclusion. For each b > 0, we set ΥM<b := ΛM<b ∩ ΥM , and denote by

jb : (ΥM<b,ΥM<4ρ2) ↪→ (ΥM,ΥM<4ρ2) the inclusion. Given a non-trivial coho-

mology class µ ∈ Hd(ΥM,ΥM<4ρ2) the associated min-max

cg(µ) = cg(−µ) := inf{b > 0 | j∗bµ 6= 0} (1.8)

is a critical value of the restricted energy E|ΥM , see Section 4. We can now state
our second main theorem.

Theorem 1.2. Let M be a simply connected spin closed manifold of dimension
n ≥ 2 admitting a simple Zoll Riemannian metric, and g a Riemannian metric on
M . Then cg(j

∗α) = cg(ω ^ j∗α) =: `2 if and only if g is Zoll and the unit-speed
geodesics of (M, g) have minimal period `.

In this theorem, if we drop the assumptions of M being simply connected and
spin, it is still true that cg(j

∗α) = cg(ω ^ j∗α) =: `2 if g is Zoll with unit-speed
geodesics of minimal period `; however, if cg(j

∗α) = cg(ω ^ j∗α) =: `2, our proof
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would only imply that g is Besse and either ` or `− 2δ is a common period of the
unit-speed closed geodesics.

Actually, the only simply connected closed manifolds that are not spin and admit
a Besse Riemannian metric have the same integral cohomology of even dimensional
complex projective spaces CP2m. Therefore, Theorem 1.2 applies to Sn, CP2m+1,
HPn, and CaP2. The theorem would also apply to all those closed manifolds
admitting a simple Zoll Riemannian metric and having the integral cohomology of
Sn, CP2m+1, HPn, or CaP2; however, as we already mentioned, there is no known
example of simply connected, spin, closed manifold different from Sn, CP2m+1,
HPn, and CaP2, and admitting a Besse Riemannian metric.

1.1. Organization of the paper. In Section 2 we provide some background on the
energy functional of Besse Riemannian manifolds. In Section 3 we prove Theo-
rem 1.1. In Section 4 we study the variational theory of the energy functional in
the finite dimensional loop space ΥM . Finally, in Section 5 we prove Theorem 1.2.
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2. Preliminaries

Let E : ΛM → [0,∞) be the energy functional of a closed Besse manifold (M, g)
of dimension n ≥ 2. By a theorem due to Wadsley [Wad75], all unit-speed geodesics
have a minimal common period ` > 0. In particular, each critical manifold

Km := crit(E) ∩ E−1(m2`2),

where m ∈ N = {1, 2, 3, ...}, is diffeomorphic to the unit tangent bundle SM . As
usual, we denote by ind(E,Km) the Morse index of E at any γ ∈ Km, which is
the number of negative eigenvalues of the symmetric operator associated to the
Hessian d2E(γ). We also denote by nul(E,Km) = dim ker d2E(γ) − 1 the Morse
nullity of E at any γ ∈ Km. Both ind(E,Km) and nul(E,Km) are independent
of the choice of γ within Km. The nullity of a closed geodesic is always bounded
from above by 2n − 2; since dim(Km) = 2n − 1 ≤ nul(E,Km) + 1, we readily
infer that nul(E,Km) = 2n− 2 = dim(Km)− 1. Therefore, each critical manifold
Km is non-degenerate, meaning that the restriction of the energy functional to the
fibers of its normal bundle has non-degenerate Hessian. This, together with Bott’s
iteration theory [Bot56], implies that

ind(E,Km) = m ind(E,K) + (m− 1)(n− 1),

nul(E,Km) = 2n− 2,
(2.1)

see [GH09, Eq. (13.1.1)]. Actually, Wilking [Wil01] showed that the energy func-
tional E is always Morse-Bott when (M, g) is Besse, meaning that the critical points
are organized in critical manifolds J ⊂ crit(E) such that nul(E, J) = dim(J) − 1.
Moreover, Radeschi and Wilking [RW17, page 941] proved that the minimal index

i(M) := min
{

ind(E, γ)
∣∣ γ ∈ crit(E) ∩ E−1(0,∞)

}
is independent of the choice of a Besse Riemannian metric on M , and indeed only
depends on the integral cohomology ring of M .
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Now, let us assume that (M, g) is an orientable Zoll Riemannian manifold. This
readily implies that i(M) = ind(E,K) and

crit(E) ∩ E−1(0,∞) =
⋃
m≥1

Km.

A result of Goresky and Hingston [GH09, Theorem 13.4(1)] implies that, if one
further assumes that g is simple Zoll, the energy functional E is perfect for the
integral singular homology, and equivalently for the integral singular cohomology.
This means that, for every integer m ≥ 1 and for all ε > 0 small enough, the
homomorphism

H∗(ΛM,ΛM<m2`2)
incl∗−−→H∗(ΛM<m2`2+ε,ΛM<m2`2)

is surjective. Moreover, by [GH09, Proposition 13.2], the negative bundle of every
critical manifold Km is oriented, which implies that

H∗(ΛM<m2`2+ε,ΛM<m2`2) ∼= H∗−ind(E,Km)(SM).

This, together with a usual gradient flow argument from Morse Theory, implies
that cohomology of the free loop space ΛM relative to the constant loops M ⊂ ΛM
is given by (1.1). Actually, for any Zoll Riemannian metric g on M , the Morse
index formula in (1.1) becomes ind(E,Km) = mi(M)+(m−1)(n−1). This readily
implies that, on any closed manifold M admitting a simple Zoll Riemannian metric,
the energy functional E : ΛM → [0,∞) of any Zoll Riemannian metric g on M is
perfect even if g is not simple Zoll.

3. A min-max condition for covering with closed geodesics

Let M be a manifold homeomorphic to an odd dimensional sphere Sn, n ≥ 3.
The inclusion M ⊂ ΛM of the constant loops admits the evaluation map

ev : ΛM →M, ev(γ) = γ(0)

as left inverse (this map should not be confused with the velocity evaluation map
defined in (1.5)). This implies that the cohomology homomorphism

ev∗ : H∗(M) ↪→ H∗(ΛM)

is injective. Ziller’s computation [Zil77] of the homology of the free loop space of
the compact rank-one symmetric spaces gives

Hd(ΛM,M) ∼=
{
Z, if d = m(n− 1) or d = m(n− 1) + n, for m ∈ N = {1, 2, ...},
0, otherwise.

In particular, we have two non-trivial generators αm ∈ H(2m−1)(n−1)(ΛM,M) and
βm ∈ H2m(n−1)+1(ΛM,M), as claimed in (1.2).

Lemma 3.1. For each m ∈ N, we have

αm ^ ev∗ν = βm

for a suitable generator ν ∈ Hn(M).
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Proof. Let g be a Zoll Riemannian metric on M , and E : ΛM → [0,∞) the asso-
ciated energy functional. If K = crit(E) ∩ E−1(`2) is the critical manifold of the
prime closed geodesics, the other critical manifolds are M = E−1(0) and

Km = {γm | γ ∈ K}, ∀m ∈ N.

Here, as usual, we have denoted by γm ∈ ΛM the m-th iterate of γ, which is defined
by γm(t) = γ(mt). The associated critical values are m2`2 = E(Km). Let G be any
complete Riemannian metric on ΛM (for instance the usual W 1,2-one induced by
g). We denote by π : Nm → Km the negative bundle of Km, which is an orientable
vector bundle of rank ind(E,Km) whose fibers π−1(γ) are the negative eigenspaces
of the self-adjoint Fredholm operator Hγ on TγΛM defined by G(Hγ ·, ·) = d2E(γ).
By means of the exponential map of (ΛM,G), we can see the total space Nm as a
submanifold of ΛM containing the critical manifold Km in its interior. Since E is a
Morse-Bott function, for all ε > 0 small enough the inclusion induces a cohomology
isomorphism

H∗(ΛM<m2`2+ε,ΛM<m2`2)
incl∗−−→∼= H∗(Nm, ∂Nm). (3.1)

The critical manifold Km is homeomorphic to SM via the map γ 7→ γ̇(0)/‖γ̇(0)‖g.
Since both the Euler characteristic χ(M) = χ(Sn) and the cohomology group
H1(M) ∼= H1(Sn) vanish, the Gysin sequence of SM implies that π∗ : Hn(M) →
Hn(SM) is an isomorphism. Therefore, the evaluation map induces a cohomology
isomorphism

ev|∗Km : Hn(M)
∼=−→Hn(Km).

Since the inclusionKm ⊂ Nm is a homotopy equivalence, we also have a cohomology
isomorphism

ev|∗Nm : Hn(M)
∼=−→Hn(Nm),

which fits into the commutative diagram

Hn(ΛM)
incl∗ // Hn(Nm)

Hn(M)

ev|∗Nm

∼=

;;

?�

ev∗

OO

We set I := {(2m− 1)(n− 1), 2m(n− 1) + 1}. The index formulas (2.1), together
with i(Sn) = n− 1, imply that

Hd(Nm, ∂Nm) ∼= Hd−ind(E,Km)(Km) ∼= Hd−(2m−1)(n−1)(SSn) ∼= Z, ∀d ∈ I.

This, together with the fact that E is a perfect functional and that the relative
cohomology groups H∗(ΛM,M) have rank at most rank 1 in each degree, implies
that the inclusion induces the cohomology isomorphism

κ∗1 : Hd(ΛM,ΛM<m2`2)
incl∗−−→∼= Hd(Nm, ∂Nm), ∀d ∈ I. (3.2)
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Let ν be a generator of Hn(M). We set

µ := ev∗ν ∈ Hn(ΛM), µ′ := ev|∗Nmν ∈ H
n(Nm).

Let α′ ∈ H(2m−1)(n−1)(Nm, ∂Nm) be the Thom class of the orientable vector bundle
Nm → Km corresponding to an arbitrary orientation. The Thom isomorphism
implies that α′ ^ µ′ is a generator of H2m(n−1)+1(Nm, ∂Nm). Once again, since E
is a perfect functional, we have an isomorphism

κ∗2 : Hd(ΛM,ΛM<m2`2)
incl∗−−→∼= Hd(ΛM,M), ∀d ∈ I,

and we infer

(κ∗2)−1βm = (−1)h(κ∗1)−1(α′ ^ ev|∗Nmν)

= (−1)h(κ∗1)−1α′ ^ ev∗ν

= (−1)h(κ∗2)−1αm ^ ev∗ν

= (−1)h(κ∗2)−1(αm ^ ev∗ν).

for some h ∈ {0, 1}. Up to replacing ν with −ν, we can assume that h = 0. �

Proof of Theorem 1.1. Let us assume by contradiction that `2 := cg(αm) = cg(βm)
for some m ∈ N, but that for some q ∈M there is no γ ∈ crit(E) of energy E(γ) =
`2 with γ(0) = q. Under this latter assumption, the open subset U := ΛM \ev−1(q)
is a neighborhood of the critical set crit(E) ∩ E−1(`2). By Lemma 3.1, βm =
αm ^ ev∗ν for some generator ν of Hn(M), and therefore the classical Lusternik-
Schnirelmann theorem (see, e.g., [Vit97, Theorem 1.1] for a modern account) implies
that (ev∗ν)|U 6= 0 in Hn(U). Now, consider the commutative diagram

Hn(M)
ev∗ //

incl∗

��

Hn(ΛM)

incl∗

��

Hn(M \ {q})
ev|∗U // Hn(U)

Since M has dimension n, the punctured manifold M \ {q} has trivial cohomology
group Hn(M \ {q}). This, together with the above commutative diagram, implies
that (ev∗ν)|U = ev∗(ν|M\{q}) = 0, contradicting Lusternik-Schnirelmann theorem.

�

4. The finite dimensional loop space ΥM

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 with associated
Riemannian distance d : M ×M → [0,∞), injectivity radius ρ = injrad(M, g) > 0,
and energy functional E : ΛM → [0,∞). For each δ ∈ (0, ρ) and k ∈ N, we consider
the space ΥM = Υδ,kM , which we identify with a subspace of ΛM as we explained
in the introduction. The restriction of the energy functional Eδ,k := E|ΥM can be



8 MARCO MAZZUCCHELLI AND STEFAN SUHR

expressed as

Eδ,k(q) =

∫ 1

0

‖γ̇q(t)‖2g dt =

k−1∑
i=0

d(qi, qi+1)2

τi+1(q)− τi(q)

=
δ2

τ1(q)
+

k − 1

1− τ1(q)

∑
i∈Zk\{0}

d(qi, qi+1)2

=

δ +

√
(k − 1)

∑
i∈Zk\{0}

d(qi, qi+1)2

2

.

Here, the times 0 = τ0(q) < ... < τk(q) = 1 are those defined in Equation (1.3).
For each i ∈ Zk, we define v±i (q) ∈ TqiM by

v±i (q) := γ̇q(τi(q)±).

The choice of τ1 that we made in (1.3) is such that, for all q ∈ crit(Eδ,k), the
corresponding curve γq has constant speed (even though γ̇q may not be smooth at
times τ0(q) = 0 and τ1(q)). More precisely, we have the following statement.

Proposition 4.1. The critical points of Eδ,k are precisely those q ∈ ΥM such that
v−0 (q) ∈ {v+

0 (q),−v+
0 (q)}, v+

1 (q) ∈ {v−1 (q),−v−1 (q)}, and v−i (q) = v+
i (q) for all

i ∈ Zk \ {0, 1}.

Proof. Consider the functional

F : M × ...×M︸ ︷︷ ︸
×k

×(0, 1)→ [0,∞),

F (q, τ) =
1

τ
d(q0, q1)2 +

k − 1

1− τ
∑

i∈Zk\{0}

d(qi, qi+1)2,

which is smooth on the subset U ⊂ M×k × (0, 1) of all those points (q, τ) such
that d(qi, qi+1) < ρ for all i ∈ Zk. Notice that, for all q ∈ ΥM , we have E(γq) =
F (q, τ1(q)), and one can easily verify that τ1(q) is the unique critical point and the
global minimizer of the function τ 7→ F (q, τ). In the following, for each τ ∈ (0, 1)
we set

Fτ := F (·, τ).

We denote by SM the unit tangent bundle of (M, δ−2g), that is,

SM =
{

(q, v) ∈ TM
∣∣ ‖v‖g = δ

}
.

The space ΥM is diffeomorphic to the space Υ′M of those

q′ = (q0, v0, q2, ..., qk−2, qk−1) ∈ SM ×M × ...×M︸ ︷︷ ︸
×k−2

,

such that, if we set q1 := expq0(v0), we have∑
i∈Zk\{0}

d(qi, qi+1)2 < ρ2.
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The explicit diffeomorphism is

ι : Υ′M
∼=−→ΥM, ι(q0, v0, q2, ..., qk−1) = q = (q0, q1, q2, ..., qk−1),

and we have
v0

‖v0‖g
=

γ̇q(0+)

‖γ̇q(0+)‖g
.

We consider the submersion Q : SM →M , Q(q, v) = expq(v). The differential of ι
is given by

dι(q′)(z,w) = (dπ(q0, v0)z,dQ(q0, v0)z,w),

where w = (w2, ..., wk−2) ∈ Tq2M × ...× Tqk−1
M , and z ∈ T(q0,v0)SM . We set

q = (q0, q1, q2, ..., qk−1) := ι(q′), τi := τi(q), v±i := γ̇q(τ±i ),

so that

d(Fτ1 ◦ ι)(q′)(w, z) =
∑

i∈Zk\{0,1}

2g(v−i − v
+
i , wi)

+ 2g(v−1 − v
+
1 ,dQ(q0, v0)z)

+ 2g(v−0 − v
+
0 ,dπ(q0, v0)z).

(4.1)

By Equation (4.1), d(Fτ1 ◦ ι)(q′)(0,w) = 0 for all w if and only if v−i = v+
i for all

i ∈ Zk \ {0, 1}.
Notice that

dQ(q0, v0)
(

ker dπ(q0, v0)
)

= span{v−1 }⊥.
Therefore, by Equation (4.1), d(Fτ1 ◦ ι)(q′)(z, 0) = 0 for all z ∈ ker dπ(q0, v0) if and
only if v−1 − v

+
1 ⊥span{v−1 }⊥, that is, v+

1 ∈ span{v−1 }.
Now, fix an arbitrary tangent vector

v ∈ span{v0}⊥ = span{v+
0 }⊥,

and choose any smooth curve ζ : (−ε, ε) → M such that ζ(0) = q0, ζ̇(0) = v, and
d(ζ(t), q1) = δ for all t ∈ (−ε, ε). We set ξ(t) := exp−1

ζ(t)(q1), and

z := d
dt |t=0(ζ(t), ξ(t)).

Notice that

dπ(q0, v0)z = v, dQ(q0, v0)z = 0.

Therefore, by Equation (4.1), d(Fτ1 ◦ ι)(q′)(z, 0) = 0 for all z of this form if and
only if v−0 − v

+
0 ⊥span{v+

0 }⊥, that is, v−0 ∈ span{v+
0 }.

It remains one last case in order to cover all the possible choices of tangent
vectors z ∈ T(q0,v0)SM , namely when z is the value of the geodesic vector field at
(q0, v0). In this case,

dπ(q0, v0)z = v0 =
δ

‖v−0 ‖g
v+

0 , dQ(q0, v0)z =
δ

‖v−1 ‖g
v−1 =

δ

‖v−0 ‖g
v−1 .

Therefore, by Equation (4.1), d(Fτ1 ◦ ι)(q′)(z, 0) = 0 if and only if

g(v−1 − v
+
1 , v

−
1 )− g(v−0 − v

+
0 , v

+
0 ) = 0.

Since ‖v−1 ‖g = ‖v+
0 ‖g, this latter equation is verified if and only if

g(v+
1 , v

−
1 ) = g(v−0 , v

+
0 ). (4.2)
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(a) (b) (c)

Figure 1. (a) A global minimizer of Eδ,k. (b) A critical point of Eδ,k corre-
sponding to a closed geodesic. (c) The “zig-zag” critical point of Eδ,k corre-

sponding to the same closed geodesic.

Notice however that condition (4.2) for the critical points of Eδ,k is redundant:
indeed, any point q ∈ ΥM such that v−0 ∈ span{v+

0 }, v
+
1 ∈ span{v−1 }, v

−
i = v+

i for
all i ∈ Zk \ {0, 1}, and g(v+

1 , v
−
1 ) 6= g(v−0 , v

+
0 ) would define a geodesic cusp γq and

thus violate the uniqueness of the solution to the geodesic equation.
Summing up, we have proved that q ∈ crit(Eδ,k) if and only if v−0 ∈ span{v+

0 },
v+

1 ∈ span{v−1 }, v
−
i = v+

i for all i ∈ Zk \ {0, 1}. In this case, we have

σ = σ(q) =

∫ 1

τ1

‖γ̇q‖g dt,

and therefore

‖v+
0 ‖g =

δ

τ1
= δ + σ =

∫ 1

0

‖γ̇q‖g dt = τ1‖v+
0 ‖g + (1− τ1)‖v+

1 ‖g,

which implies that ‖v+
0 ‖g = ‖v+

1 ‖g. �

Proposition 4.1 shows that, beside the global minimizers E−1
δ,k (4δ2) (Figure 1(a))

there are two other kinds of critical points of Eδ,k: the closed geodesics smoothly
parametrized with constant speed (Figure 1(b)), and the closed geodesics param-
etrized with constant speed but non-smoothly with a zig-zag at times τ0 = 0 and
τ1 (Figure 1(c)). If q′ ∈ crit(Eδ,k) corresponds to a smoothly parametrized closed
geodesic γq′ ∈ crit(E) and q′′ ∈ crit(Eδ,k) corresponds to the same closed geodesic
parametrized with a zig-zag, their energies are related by

Eδ,k(q′′)1/2 = Eδ,k(q′)1/2 + 2δ. (4.3)

We partition the critical point set crit(Eδ,k) as the disjoint union

crit(Eδ,k) = E−1
δ,k (4δ2) ∪K ′ ∪K ′′,

where K ′ = crit(E) ∩ E−1(0,∞), while K ′′ contains zig-zag closed geodesics.
The functional setting of the energy Eδ,k : ΥM → [4δ2,∞) is suitable for Morse

theory. Indeed, Eδ,k can be continuously extended to the boundary ∂ΥM ⊂ M ×
...×M , and we have

Eδ,k|∂ΥM ≡ supEδ,k =
(
δ +

√
(k − 1)ρ

)2
. (4.4)

In particular, every sublevel set ΥM≤b, for b <
(
δ +

√
(k − 1)ρ

)2
, is a compact

subset of ΥM . Therefore, the classical min-max theorem is available in this setting:

for each non-trivial cohomology class µ ∈ H∗(ΥM,ΥM<4ρ2), the min-max value
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cg(µ) defined in (1.8) is a critical value of Eδ,k. Actually, each closed geodesic
γ ∈ crit(E) ∩ E−1(`2), with ` > 0, is contained in ΥM = Υδ,kM if and only if

k > k(`, δ) := 1 +
(`− δ)2

ρ2

Indeed, if we define

τ0 := 0,

τi :=
δ

`
+ (i− 1)

`− δ
(k − 1)`

, i = 1, ..., k − 1,

we readily verify that q = (γ(τ0), ..., γ(τk−1)) belongs to ΥM , and γq = γ.
The following two lemmas compare the Morse indices in the settings ΛM and

ΥM . The reader may skip their rather technical proofs on a first reading.

Lemma 4.2. Let γ ∈ crit(E) ∩ E−1(0,∞) be a closed geodesic. For each δ ∈ (0, ρ)
and k > k(E(γ)1/2, δ), if q ∈ crit(Eδ,k) is such that γq = γ, then

ind(E, γ) = ind(Eδ,k, q), nul(E, γ) = nul(Eδ,k, q).

Proof. We set θ0 := 0, θk := 1, and, for each i = 1, ..., k− 1, we choose a time value
θi ∈ (τi(q), τi+1(q)) sufficiently close to τi(q) so that d(γ(θi), γ(θi+1)) < ρ for all
i ∈ Zk. Notice that

0 = τ0(q) = θ0 < τ1(q) < θ1 < τ2(q) < θ2 < ... < τk(q) = θk = 1.

We set q′i := γ(θi) and q′ := (q′0, ..., q
′
k−1). We consider the function

F : M×k → [0,∞), F (p′) =

k−1∑
i=0

d(p′i, p
′
i+1)2

θi+1 − θi
,

which is smooth on an open neighborhood of q′. Since q′ is obtained by sampling the
closed geodesic γ at times θi, it is a critical point of F . Since d(γ(θi), γ(θi+1)) < ρ
and for all i ∈ Zk, it is well known that

ind(E, γ) = ind(F, q′), nul(E, γ) = nul(F, q′),

see, e.g., [Mil63, Theorem 16.2]. For each i ∈ Zk, we denote by Σi ⊂ Tq′iM the

hyperplane orthogonal to γ̇(θi). By the definition of the Morse indices, there exist
vector subspaces V,W ⊂ Σ0 × ...× Σk−1 of dimensions ind(E, γ) and ind(E, γ) +
nul(E, γ) respectively such that

d2F (q′)[v′,v′] < 0, ∀v′ ∈ V \ {0},
d2F (q′)[v′,v′] ≤ 0, ∀v′ ∈W.

(4.5)

Now, we choose an open neighborhood U ⊂ M×k of q′ that is small enough so
that, for all p′ = (p′0, ..., p

′
k−1) ∈ U , we have

δ < d(p′0, p
′
1) < ρ,

d(p′i, p
′
i+1) < ρ, ∀i ∈ Zk \ {0}.

We define ζp′ ∈ ΛM to be the piecewise broken geodesic such that each restriction
ζp′ |[θi,θi+1] is the shortest geodesic joining p′i and p′i+1. Notice that ζq′ = γq = γ.
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We set

ν0(p′) := 0,

ν1(p′) :=
θ1δ

d(p′0, p
′
1)
,

νi(p
′) := ν1(p′) + (i− 1)

1− ν1(p′)

k − 1
, ∀i = 2, ..., k.

Notice that νi(q
′) = τi(q). Therefore, up to replacing U with a smaller neighbor-

hood of q′, for each p′ ∈ U , the curve ζp′ is smooth at each time νi(p
′). This

implies that the map

ψ : U → ΥM = Υδ,kM, ψ(p′) = (ζp′(ν0(p′)), ..., ζp′(νk−1(p′))).

is smooth. Notice that ψ(q′) = q and

Eδ,k(ψ(p′)) ≤ F (p′), ∀p′ ∈ U,

with equality if p′ = q′. This, together with (4.5), implies that

d2Eδ,k(q)[dψ(q′)v′,dψ(q′)v′] ≤ d2F (q′)[v′,v′] < 0, ∀v′ ∈ V \ {0},
d2Eδ,k(q)[dψ(q′)v′,dψ(q′)v′] ≤ d2F (q′)[v′,v′] ≤ 0, ∀v′ ∈W.

(4.6)

Each v′ = (v′0, ..., v
′
k−1) ∈ Tq′M

×k defines a unique continuous and piecewise
smooth vector field ξv′ along γ such that, for all i = 0, ..., k − 1, ξv′(θi) = v′i and
the restriction ξv′ |[θi,θi+1] is a Jacobi vector field. Since d(qi, qi+1) < ρ, the geodesic
γ|[τi(q),τi+1(q)] is the shortest one joining qi and qi+1. This readily implies that the
map

Ψ : Tq′M
×k → TqM

×k, Ψ(v′) = (ξv′(τ0(q)), ..., ξv′(τk−1(q)))

is injective on V and on W. The differential of ψ at q′ is given by

dψ(q′)v′ = Ψ(v′) +
(
γ̇(τ0(q))dν0(q′)v′, ..., γ̇(τk−1(q))dνk−1(q′)v′

)
Consider a non-zero v′ ∈ V ∪W, and set v = (v0, ..., vk−1) := Ψ(v′). By the
injectivity of Ψ, at least one component of v, say vi, is non-zero. Since both
tangent vectors v′i−1 and v′i are orthogonal to γ̇, the whole Jacobi field ξv′ |[θi−1,θi] is
pointwise orthogonal to γ̇, and so is vi = ξv′(τi(q)). Therefore, vi+γ̇(τi(q))dνi(q

′)v′

is non-zero, which shows that the differential dψ(q′) is injective on both V and W.
This, together with (4.6), implies that

ind(Eδ,k, q) ≥ ind(E, γ),

ind(Eδ,k, q) + nul(Eδ,k, q) ≥ ind(E, γ) + nul(E, γ).

Since ΥM is a subspace of ΛM , the opposite inequalities hold as well. �

Lemma 4.3. Let γ ∈ crit(E) ∩ E−1(0,∞) be a closed geodesic. For each δ ∈ (0, ρ)
and integer k > k(E(γ)1/2 + 2δ, δ), let q′ ∈ crit(Eδ,k) be such that γq′ = γ, and
q′′ ∈ crit(Eδ,k) be the associated zig-zag critical point, i.e. q′′0 = q′0, q

′′
1 = q′1, and

Eδ,k(q′′)1/2 = Eδ,k(q′′)1/2 + 2δ. Then

ind(Eδ,k, q
′) ≤ ind(Eδ,k, q

′′),

ind(Eδ,k, q
′) + nul(Eδ,k, q

′) ≤ ind(Eδ,k, q
′′) + nul(Eδ,k, q

′′).
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Proof. The proof is somewhat analogous to the one of Lemma 4.2, but requires some
extra ingredients. We consider the time values 1+τ1(q′) =: σ1 > σ2 > ... > σk := 0
such that

γq′′(tτi+1(q′′) + (1− t)τi(q′′)) = γ(tσi+1 + (1− t)σi), ∀t ∈ [0, 1].

We choose arbitrary values 0 =: θ0 < θ1 < ... < θk := 1 such that

{θ1, ..., θk−1} ∩ {σ1 mod 1, ..., σk−1 mod 1} = ∅,
d(γq′(θ0), γq′(θ1)) > δ,

d(γq′(θi), γq′(θi+1)) < ρ, ∀i = 0, ..., k − 1.

The function

F : M×k → [0,∞), F (p) =

k−1∑
i=0

d(pi, pi+1)2

θi+1 − θi
,

is smooth on an open neighborhood of q := (γq′(θ0), ..., θq′(θk−1)). Since q is
obtained by sampling the closed geodesic γ at times θi, it is a critical point of F .
By Lemma 4.2 and [Mil63, Theorem 16.2], we have

ind(Eδ,k, q
′) = ind(E, γ) = ind(F, q).

Therefore, if we denote by Σi ⊂ TqiM the hyperplane orthogonal to γ̇(θi), we
can find vector subspaces V,W ⊂ Σ1 × ... × Σk−1 of dimensions ind(E, γ) and
ind(E, γ) + nul(E, γ) respectively such that

d2F (q)[v,v] < 0, ∀v ∈ V \ {0},
d2F (q)[v,v] ≤ 0, ∀v ∈W.

(4.7)

We choose an open neighborhood U ⊂ M×k of q that is small enough so that
d(p0, p1) > δ and d(pi, pi+1) < ρ for all p = (p0, ..., pk−1) ∈ U and i ∈ Zk \ {0}.
We define βp ∈ ΛM to be the piecewise broken geodesic such that each restriction

βp|[θi,θi+1] is the shortest geodesic joining pi and pi+1. Notice that F (p) = E(βp).

Moreover, βq = γq′ = γ, which implies

F (q) = E(βq) = Eδ,k(q′).

We set ν(p) := δθ1d(p0, p1)−1 ∈ (0, θ1) and notice that, since the restriction βp|[0,θ1]

is a geodesic, we have
d
(
βp(0), βp(ν(p))

)
= δ.

We set

ν(p) :=
δ

δ +
√

(1− ν(p))
∫ 1

ν(p)
‖β̇p(t)‖2g dt

.

We define βp ∈ ΛM so that the restrictions βp|[0,ν(p)] and βp|[ν(p),1] are affine

reparametrizations of βp|[0,ν(p)] and βp|[ν(p),1] respectively; namely,

βp(t) :=

 βp

(
t ν(p)
ν(p)

)
, t ∈ [0, ν(p)],

βp

(
ν(p) + (t− ν(p)) 1−ν(p)

1−ν(p)

)
, t ∈ [ν(p), 1].

The choice of this reparametrization guarantees that

E(βp) ≤ E(βp) = F (p).
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Moreover, ν(q) = ν(q) = τ1(q′) and βq = βq = γq′ = γ, and therefore

E(βq) = F (q).

We define αp : R/(1 + 2ν(p))Z→M by suitably adding a zig-zag to βq as follows

αp(t) :=


βp(t), t ∈ [0, ν(p)],

βp(2ν(p)− t), t ∈ [ν(p), 2ν(p)],

βp(t− 2ν(p)), t ∈ [2ν(p), 1 + 2ν(p)],

and we define αp ∈ ΛM by αp(t) = αp(t (1 + 2ν(p))). The energies of αp and βp
are related by

E(αp) = (2δ + E(βp)1/2)2.

Moreover, αq = γq′′ . We set

ηi(p) :=
k − i
k − 1

(1 + ν(p)) , ∀i = 1, ..., k,

and notice that ηi(q) = σi. Up to replacing U with a smaller neighborhood of q,
for each p ∈ U the curve βp is smooth at each time ηi(p). Therefore, the map

ψ : U → ΥM = Υδ,kM, ψ(p) = (βp(0), βp(η1(p)), βp(η2(p)), ..., βp(ηk−1(p)))

is smooth, and satisfies

ψ(q) = q′′ ∈ crit(Eδ,k).

Notice that Eδ,k(ψ(p)) ≤ E(αp) with equality if p = q. This, together with the
other energy inequalities pointed out so far, provides

Eδ,k(ψ(p)) ≤ (2δ + F (p)1/2)2, ∀p ∈ U,

Eδ,k(ψ(q)) = Eδ,k(q′′) = (2δ + F (q)1/2)2.

This, together with the fact that ψ(q) = q′′ and q are critical points of Eδ,k and F
respectively, implies

d2Eδ,k(q′′)[dψ(q)v,dψ(q)v] ≤ 2δ + F (q)1/2

F (q)1/2
d2F (q)[v, v].

Therefore, by (4.7), we infer

d2Eδ,k(q′′)[dψ(q)v,dψ(q)v] < 0, ∀v ∈ V \ {0},
d2Eδ,k(q′′)[dψ(q)v,dψ(q)v] ≤ 0, ∀v ∈W,

which provides the following lower bounds for the Morse indices

ind(Eδ,k, q
′′) ≥ dim(dψ(q)V), ind(Eδ,k, q

′′) + nul(Eδ,k, q
′′) ≥ dim(dψ(q)W).

Finally, the same argument as in the proof of Lemma 4.2 implies that dψ(q) is
injective on both V and W, i.e.

dim(dψ(q)V) = dim(V) = ind(Eδ,k, q
′),

dim(dψ(q)W) = dim(W) = ind(Eδ,k, q
′) + nul(Eδ,k, q

′). �
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5. Zoll Riemannian metrics

5.1. The evaluation map on ΥM . Let us quickly prove the following property of
the evaluation map Ev : ΥM → SM defined in (1.5). Here, as before, we denote
by SM the unit tangent bundle of (M, δ−2g).

Lemma 5.1. For each b ≥ 4δ2, the cohomology homomorphism

Ev∗ : H∗(SM) ↪→ H∗(ΥM≤b)

is injective.

Proof. We define the homeomorphism

ι : SM → E−1
δ,k (4δ2) ⊂ ΥM, ι(q0, v0) = q,

where q = (q0, ..., qk−1) is the unique element in E−1
δ,k (4δ2) such that expq0(v0) =

q1. Namely, γq is the periodic curve such that τ1(q) = 1/2, γ̇q(0+) = 2v0, and
γq(t) = γq(1− t) for all t ∈ [0, 1/2], as in Figure 1(a). Since the composition Ev ◦ ι
is the identity, the lemma follows for b = 4δ2. The lemma readily follows also for
any b > 4δ2, since E−1

δ,k (4δ2) ⊂ ΥM≤b. �

As in (1.6), we denote by ω the generator of Ev∗(H2n−1(SM)). The following
lemma is the main ingredient for the proof of Theorem 1.2.

Lemma 5.2. Assume that there exists a cohomology class µ ∈ Hd(ΥM,ΥM≤4ρ2)

such that ω ^ µ 6= 0 in Hd+2n−1(ΥM,ΥM≤4ρ2). If

cg(µ) = cg(ω ^ µ) =: `2,

then g is a Besse manifold, and either ` or ` − 2δ is a common multiple of the
periods of the unit-speed closed geodesics of (M, g). Moreover, the critical set

K := crit(E) ∩ (E−1(`2) ∪ E−1((`− 2δ)2)),

has Morse index ind(E,K) ≤ d.

Proof. Assume by contradiction that cg(µ) = cg(ω ^ µ) =: `2, but there exists
(q, v) ∈ SM such that the unit-speed geodesic

γ(t) = expq(tv/‖v‖g)

is either not periodic, or it is periodic but neither ` nor ` − 2δ are multiples of its
minimal period. By (4.3), the condition on `− 2δ implies that none of the zig-zag
critical points q ∈ K ′′∩E−1(`2) satisfies Ev(q) = (q, v). Therefore, the open subset

U :=
{
q = (q0, q1, ..., qk−1) ∈ ΥM

∣∣ (q0, exp−1
q0 (q1)) 6= (q, v)

}
contains the set of critical points crit(Eδ,k) ∩E−1(`2), and the classical Lusternik-
Schnirelmann’s theorem [Vit97, Theorem 1.1] implies that the cohomology class
ω|U ∈ H2n−1(U) is non-zero. Consider the commutative diagram

U
� � incl //

Ev|U ''

ΥM

Ev
��

SM
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Since ω is the generator of the image Ev∗(H2n−1(SM)), ω|U is the generator of the
image Ev|∗U (H2n−1(SM)). However, the homomorphism Ev|∗U : H2n−1(SM) →
H2n−1(U) is zero, since the map Ev|U is not surjective. This implies that ω|U = 0
in H2n−1(U), which is a contradiction.

So far, we have proved that g is Besse, and ` or `− 2δ is a common multiple of
the periods of the unit-speed geodesics. Now, consider the critical sets

K := crit(E) ∩
(
E−1(`2) ∪ E−1((`− 2δ)2)

)
,

Kδ,k := crit(Eδ,k) ∩ E−1
δ,k (`2)

Let ε > 0 be small enough so that (`2, `2 + ε) does not contain critical values of
Eδ,k. Since cg(µ) = `, the relative cohomology group

Hd(ΥM<`2+ε,ΥM<`2) ∼= Hd−ind(Eδ,k,Kδ,k)(Kδ,k)

is nontrivial. In particular

ind(Eδ,k,Kδ,k) ≤ d. (5.1)

Since δ < ρ, 2δ is smaller than the minimal period of the unit-speed geodesics of
(M, g). This readily implies that the values ` and ` − δ cannot both be common
periods for the unit-speed geodesics of (M, g), and we have two possible cases:

• If ` is a common period for the unit-speed geodesics of (M, g), then Kδ,k

does not contain zig-zag closed geodesics, and indeed K = Kδ,k.
• If ` − 2δ is a common period for the unit-speed geodesics of (M, g), then
Kδ,k contains only zig-zag closed geodesics, and more precisely of those
closed geodesics contained in K.

In both cases, Lemmas 4.2 and 4.3, together with the inequality (5.1), imply

ind(E,K) ≤ ind(Eδ,k,Kδ,k) ≤ d. �

5.2. Two subordinated homology classes in the Zoll case. In this subsection, we
will consider a Zoll Riemannian manifold, and prove the “if” claim in Theorem 1.2.

Lemma 5.3. Let M be a closed manifold of dimension n ≥ 2 admitting a simple
Zoll Riemannian metric, and g a Zoll Riemannian metric on M whose unit-speed
closed geodesics have minimal period ` > 0. For each δ ∈ (0, ρ) and for each integer
k > k(`, δ), we consider the space ΥM = Υδ,kM . For each ε ∈ (4δ2, `2), there exists
a relative homology class

h ∈ Hi(M)+2n−1(ΥM≤`
2

,ΥM<ε)

such that h and h _ ω|ΥM≤`2 are not in the kernel of the homomorphism

H∗(ΥM
≤`2 ,ΥM<ε)

incl∗−−→H∗(ΛM,ΛM<ε).

Proof. Let K := crit(E) ∩ E−1(`2) be the critical manifold of the non-iterated
closed geodesics. By Lemma 4.2, for each δ ∈ (0, ρ) and integer k > k(`, δ), we have
K ⊂ ΥM := Υδ,kM and, for each γq ∈ K,

ind(E, γq) = ind(Eδ,k, q) = i(M),

nul(E, γq) = nul(Eδ,k, q) = 2n− 2.
(5.2)
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We denote by G the Riemannian metric on ΥM induced by g, i.e.

G(v,w) =
∑
i∈Zk

g(vi, wi), ∀v,w ∈ TqΥM.

Let π : N → K be the negative bundle of Eδ,k at K. Namely, for each q ∈ K,
the fiber π−1(q) ⊂ TqΥM is the negative eigenspace of the symmetric linear map
Hq : TqΥM → TqΥM defined by G(Hq ·, ·) = d2Eδ,k(q). The rank of this vector
bundle is i(M), according to (5.2). For each r > 0, we set Nr ⊂ N to be the
r-neighborhood of the 0-section, measured with respect to G. With a slight abuse
of notation, we still denote by exp the exponential map of (ΥM,G). We choose
r > 0 to be small enough so that exp |Nr is a well defined diffeomorphism onto a
neighborhood of K in ΥM , and Eδ,k(expq(v)) < Eδ,k(q) for all (q,v) ∈ Nr with

v 6= 0. Since E has no critical values in the interval (`2, (`+ δ)2), the arrows in the
following commutative diagram are isomorphisms

H∗(Nr, ∂Nr)
exp∗
∼=

//

exp∗

∼=

''

H∗(ΥM
≤`2 ,ΥM<`2)

incl∗∼=

��

H∗(ΛM
<(`+δ)2 ,ΛM<`2)

see [GH09, Theorem D.2]. Since E is a perfect functional, the exponential map also
induces an injective homomorphism

exp∗ : H∗(Nr, ∂Nr) ↪→ H∗(ΛM,ΛM<`2)

Since `2 is the smallest positive critical value of E, the restriction Eδ,k has no
critical values in the interval (4δ2, `2). For each ε ∈ (4δ2, `2), if we denote by φt the
anti-gradient flow of Eδ,k, we can fix t > 0 large enough so that

φt ◦ exp(∂Nr) ⊂ ΥM<ε.

If we set ι := φt ◦exp, the induced homomorphisms ι∗ and incl∗ ◦ ι∗ in the following
commutative diagram must be injective

H∗(Nr, ∂Nr)
� � exp∗ //

� _

ι∗

��

H∗(ΛM,ΛM<`2)

H∗(ΥM
≤`2 ,ΥM<ε)

incl∗ // H∗(ΛM,ΛM<ε)

incl∗∼=

OO

Since the closed geodesics in K are not iterated, the negative bundle N → K is
orientable. If τ ∈ Hi(M)(Nr, ∂Nr) denotes its Thom class with respect to any
orientation, we have a Thom isomorphism

H∗(Nr)→ H∗+i(M)(Nr, ∂Nr), µ 7→ τ ^ µ.

If we denote by ω′ the generator of H2n−1(Nr) ∼= H2n−1(SM), and by h′ the gen-
erator of Hi(M)+2n−1(Nr, ∂Nr), then h′ _ ω′ is the generator of Hi(M)(Nr, ∂Nr).
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Consider the evaluation map Ev : ΥM≤`
2 → SM of Equation (1.5), which is injec-

tive in cohomology according to Lemma 5.1. If we denote by 0N ⊂ N the 0-section
of N , the composition Ev◦ι|0N : 0N → SM is clearly a homeomorphism. Therefore,
up to changing the sign of ω′,

ω′ = ι∗(ω|ΥM≤`2 ).

We set

h := ι∗h
′ ∈ Hi(M)+2n−1(ΥM≤`

2

,ΥM<ε),

and notice that

h _ ω|ΥM≤`2 = (ι∗h
′) _ ω|ΥM≤`2 = ι∗(h

′ _ ι∗(ω|ΥM≤`2 )) = ι∗(h
′ _ ω′) 6= 0

in Hi(M)(ΥM
≤`2 ,ΥM<ε). �

In the following lemma, we will employ the notation of the introduction, and
consider the cohomology classes α and ω ^ j∗α from Equations (1.6) and (1.7).

Lemma 5.4. LetM be a closed manifold of dimension n ≥ 2 admitting a simple Zoll
Riemannian metric, and g a Zoll Riemannian metric on M whose unit-speed closed
geodesics have minimal period ` > 0. For each δ ∈ (0, ρ) and integer k > k(`, ρ/

√
2),

consider the space ΥM = Υδ,kM . Then cg(j
∗α) = cg(ω ^ j∗α) = `2.

Proof. By Lemma 5.3, there exists a homology class

h ∈ Hi(M)+2n−1(ΥM≤`
2

,ΥM<ε)

such that both h and h _ ω|ΥM≤`2 are mapped to non-zero homology classes under
the homomorphism

(j`2)∗ = incl∗ : H∗(ΥM
≤`2 ,ΥM<ε)→ H∗(ΛM,ΛM<ε).

Equation (1.1) implies that

Hi(M)(ΛM,ΛM<4ρ2) ∼= Hi(M)(ΛM,M) ∼= Z,

Hi(M)−1(ΛM,ΛM<4ρ2) ∼= Hi(M)−1(ΛM,M) = 0.

Therefore, by the universal coefficient theorem,

Hi(M)(ΛM,ΛM<4ρ2) ∼= Hom
(
Hi(M)(ΛM,ΛM<4ρ2),Z

)
,

and the generator α ∈ Hi(M)(ΛM,ΛM<4ρ2) must satisfy

(ω ^ j∗`2α)h = (j∗`2α)(h _ ω) = α((j`2)∗(h _ ω)) 6= 0.

This implies that cg(j
∗α) ≤ cg(ω ^ j∗α) ≤ `2. On the other hand, ` is the smallest

critical value of the energy E|ΥM above the global minimum 4ρ2, and therefore we
have the opposite inequality cg(j

∗α) ≥ `2. �
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5.3. Two subordinated homology classes for arbitrary metrics. Let M be a closed
Riemannian manifold of dimension n ≥ 2 equipped with a Zoll Riemannian metric
g0 and with an arbitrary Riemannian metric g1. Their convex combinations

gs := (1− s)g0 + sg1, s ∈ [0, 1],

give a path of Riemannian metrics. We will denote with a subscript or superscript
s the usual Riemannian objects associated with the Riemannian metric gs: the
exponential map exp(s) : TM →M , the Riemannian distance ds : M×M → [0,∞),
the injectivity radius ρs = injrad(M, gs), and the energy Es : ΛM → [0,∞). We
set

dmax(q0, q1) := max
s∈[0,1]

ds(q0, q1), ∀q0, q1 ∈M,

ρmin := min{ρs | s ∈ [0, 1]} > 0,

c := min
{
‖v‖g0‖v‖−1

gs

∣∣ v ∈ TM \ 0-section, s ∈ [0, 1]
}
∈ (0, 1],

δmax :=
c ρmin

2
.

We fix δ0 ∈ (0, δmax) small enough, ε0 := 8δ2
0 , and ε1 := 4ρ2

1 so that we have the
inclusion of sublevel sets

{E0 < ε0} ⊆ {E1 < ε1} ⊂ ΛM.

Since both these sublevel sets can be deformed onto the space of constant loops
M ⊂ ΛM , the inclusion induces a homology isomorphism

H∗(ΛM, {E0 < ε0})
incl∗−−→∼= H∗(ΛM, {E1 < ε1}).

We denote by `0 > 0 the minimal period of the unit-speed geodesics of the Zoll
metric g0. By Lemma 5.3, for each integer k0 > k0(`0, δ0), if we set

Υ(0)M = Υ
(0)
δ0,k0

M,

there exists a relative homology class h ∈ Hi(M)+2n−1(Υ(0)M,Υ(0)M<ε0) such that
h and h _ ω0 are not in the kernel of the homomorphism

H∗(Υ
(0)M,Υ(0)M<ε0)

incl∗−−→H∗(ΛM, {E0 < ε0}). (5.3)

Here, ω0 ∈ H2n−1(Υ(0)M) is the cohomology class (1.6) for the Riemannian metric
g0. Let σ be a relative cycle representing h, which we can see as a continuous map
of the form

σ : (Σ, ∂Σ)→ (Υ(0)M,Υ(0)M<ε0) ⊂ (ΛM, {E0 < ε0})

for a suitable simplicial complex Σ with simplicial boundary ∂Σ. Hereafter, we will
treat the points σ(z) as elements of the loop space ΛM .

Lemma 5.5. For each δ1 > 0 small enough, there exists a continuous function
T : Σ→ (0, 1) such that

d1(σ(z)(0), σ(z)(T (z))) = δ1, ∀z ∈ Σ.
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Proof. We will denote by τ1 : Υ(0)M → (0, 1) the function as defined in (1.3)
associated to g0, and by SM the unit tangent bundle of (M, g0). If τ ′′ ∈ (0, δ0) is
sufficiently small, the function

F : SM × [0, τ ′′)→ [0,∞),

F (q, v, t) = d1(q, exp(0)
q (tv))2 = ‖(exp(1)

q )−1 ◦ exp(0)
q (tv)‖2g1

is smooth. For each (q, v) ∈ SM , the function F (q, v, ·) has a unique global mini-
mizer at t = 0, and F (q, v, 0) = 0. Since

(exp(1)
x )−1 ◦ exp(0)

x (tv) = tv + o(t),

we readily see that there exists τ ′ ∈ (0, τ ′′) such that

d
dtF (q, v, t) > 0, ∀(q, v) ∈ SM, t ∈ (0, τ ′).

By the implicit function theorem, for each δ1 > 0 small enough there exists a
smooth function T ′ : SM → (0, τ ′) such that

F (q, v, T ′(q, v)) = δ1, ∀(q, v) ∈ SM.

Now, for each z ∈ Σ, the curve γz := σ(z)|[0,τ1(σ(z))] is a geodesic of (M, g0) with

speed ‖γ̇(0+)‖g0 = δ0/τ1(σ(z)). If we set qz := γz(0) and vz := γ̇z(0
+)/‖γ̇z(0+)‖g0 ,

we have

F (qz, vz, t) = d1

(
γz(0), γz(t τ1(σ(z))/δ0)

)2
.

The desired continuous function is given by T (z) := T ′(qz, vz) τ1(σ(z))/δ0. �

For each τ ∈ (0, 1), we introduce the subspace

Uτ :=

γ ∈ ΛM

∣∣∣∣∣∣
γ(0) 6= γ(t) ∀t ∈ [0, τ ]

max
t∈(0,τ ]

dmax(γ(0), γ(t)) < ρmin

 .

We fix τ ∈ (0, 1) small enough to that the support of our cycle σ(Σ) is contained
in Uτ .

Lemma 5.6. For each δ1 ∈ (0, ρmin) small enough, integer k1 ∈ N large enough, and
τ > 0 small enough, if we set

Υ(1)M := Υ
(1)
δ1,k1

M,

there exists a homotopy σs : Σ → Uτ , with s ∈ [0, 1], such that σ0 = σ, σ1(Σ) ⊂
Uτ ∩Υ(1)M , and s 7→ E1(σs(z)) is monotonically decreasing for all z ∈ Σ.

Proof. We fix a small enough δ1 ∈ (0, ρmin) so that Lemma 5.5 holds with an
associated function T : Σ → (0, 1). We also fix τ ∈ (0,minT ), and a large enough
k1 ∈ N so that, if we set

Υ(1)M := Υ
(1)
δ1,k1

M,

we have

maxE1 ◦ σ < sup
Υ(1)M

E1,
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see (4.4). We fix z ∈ Σ and γ0 := σ(z), and define its deformation γs = σs(z) ∈ Uτ ,
for s ∈ [0, 1], as follows. We set

ti = ti(z) := T (z) +
1− T (z)

k − 1
(i− 1), i = 1, ..., k,

so that 0 =: t0 < t1 < ... < tk = 1. The first half of the deformation, for
s ∈ [0, 1/2], is the usual Morse shortening process: we set ri,s := (1− 2s)ti + 2sti+1

for i = 0, ..., k − 1; we define γs|[ti,ri,s] the be the shortest g1-geodesic such that
γs(ti) = γ0(ti) and γs(ri,s) = γ0(ri,s), and we set γs|[ri,s,ti+1] = γ0|[ri,s,ti+1].

The curve γ1/2 is a broken geodesic whose first portion γ1/2|[t0,t1] has g1-length δ1.
The second half of the deformation, for s ∈ [1/2, 1], is just a time reparametrization
of γ1/2 that will make it belong to Υ(1)M . We set

q = (q0, ..., qk1−1) := (γ1/2(t0), γ1/2(t1), ..., γ1/2(tk−1)).

We will denote by τi := τi(σ(z)) the times values 0 = τ0 < τ1 < ... < τk = 1 defined
in (1.3) associated to g1. For each s ∈ [1/2, 1], i = 0, ..., k− 1, and r ∈ [0, 1], we set

γs
(
(2s− 1)((1− r)τi + rτi+1) + (2− 2s)((1− r)ti + rti+1)

)
:= γ1/2

(
(1− r)ti + rti+1

)
. �

For each s ∈ [0, 1] and t ∈ (0, τ ], we have the evaluation map

Evs,t : Uτ → TM \ 0-section, Evs,t(γ) = (exp
(s)
γ(0))

−1(γ(t)).

Since Evs,t depends continuously on the pair (s, t), the cohomology homomorphism
Ev∗s,t : H2n−1(TM \ 0-section) → H2n−1(Uτ ) is actually independent of (s, t). We
denote a generator of its image by

Ωτ ∈ Ev∗s,t(H
2n−1(TM \ 0-section)) ⊂ H2n−1(Uτ ).

Lemma 5.7. Up to changing the sign of ω0 and ω1, we have

Ωτ |Uτ∩Υ(s)M = ωs|Uτ∩Υ(s)M , ∀s ∈ {0, 1}.

Proof. We fix s ∈ {0, 1}, and denote by τ1 : Υ(s)M → (0, 1) the function as
defined in (1.3) and by Ev : Υ(s)M → TM \ 0-section the evaluation map (1.5)
associated to gs. Notice that the codomain of Ev in (1.5) is the unit tangent
bundle SM of (M, δ−2

s gs). However, since the the inclusion SM ↪→ TM \ 0-section
is a homotopy equivalence, the cohomology class ωs will also be the generator of
Ev∗(H∗(TM \ 0-section)). Since

Ev(γq) = Evs,τ1(q)(γq), ∀γq ∈ Uτ ∩Υ(s)M,

we readily see that Ev|Uτ∩Υ(s)M and Evs,t|Uτ∩Υ(s)M , for all t ∈ (0, τ ], are homotopic
maps. Therefore, both the restrictions Ωτ |Uτ∩Υ(s)M and ωs|Uτ∩Υ(s)M are generators
of the image Ev|∗

Uτ∩Υ(s)M
(TM \0-section), and, up to changing the sign of ωs, they

coincide. �

Since h and h _ ω0 are mapped to non-zero classes in H∗(ΛM, {E0 < ε0}) by
the homomorphism (5.3), Lemmas 5.6 and 5.7 imply that, for each s ∈ {0, 1}, [σs]
and [σs] ∩ ωs are non-trivial relative homology classes in

H∗(Uτ ∩Υ(s)M,Uτ ∩Υ(s)M<εs).
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If we consider the homomorphism induced by the inclusion

ι
(s)
∗ : H∗(Uτ ∩Υ(s)M,Uτ ∩Υ(s)M<εs)

incl∗−−→H∗(Uτ , Uτ ∩ {E1 < ε1}),
we have

ι
(0)
∗ [σ0] = ι

(1)
∗ [σ1] = [σ], ι

(0)
∗ ([σ0] _ ω0) = ι

(1)
∗ ([σ1] _ ω1) = [σ] _ Ωτ .

In particular, if we see σs and σs _ ωs as relative cycles in (ΛM, {E1 < ε1}), we
have [σ0] = [σ1] and [σ0 _ ω0] = [σ1 _ ω1] in H∗(ΛM, {E1 < ε1}).

Now, consider the generator α ∈ Hi(M)(ΛM, {E1 < ε1}) ∼= Z, and the inclusion

j1 : (Υ(1)M,Υ(1)M<ε1) ↪→ (ΛM, {E1 < ε1}).

Lemma 5.8. For each δ1 ∈ (0, ρ1) small enough and k1 ∈ N large enough, if we set

Υ(1)M := Υ
(1)
δ1,k1

M,

we have ω1 ^ j∗1α 6= 0 in Hi(M)(Υ(1)M,Υ(1)M<ε1).

Proof. Let δ1 ∈ (0, ρ1) be small enough and k1 ∈ N large enough so that Lemma 5.6
holds. Since Hi(M)−1(ΛM, {E1 < ε1}) is trivial, the universal coefficient theorem
implies that

Hi(M)(ΛM, {E1 < ε1}) ∼= Hom
(
Hi(M)(ΛM, {E1 < ε1}),Z

)
.

This, together with the facts that α is the generator of Hi(M)(ΛM, {E1 < ε1}) and
that (j0)∗([σ0] _ ω0) is non-zero in Hi(M)(ΛM, {E1 < ε1}), implies that

α((j0)∗([σ0] _ ω0)) 6= 0.

Therefore, we conclude

(ω1 ^ j∗1α)[σ1] = (j∗1α)([σ1] _ ω1) = α((j1)∗([σ1] _ ω1))

= α((j0)∗([σ0] _ ω0)) 6= 0. �

Proof of Theorem 1.2. Let M be a closed manifold of dimension n ≥ 2 admitting
a simple Zoll Riemannian metric, and g a Riemannian metric on M . Lemma 5.8

implies that ω ^ j∗α 6= 0 in the relative homology group Hi(M)(ΥM,ΥM<4ρ2).
If g is a Zoll Riemannian metric whose unit-speed geodesics have minimal period

`, then Lemma 5.4 implies that cg(j
∗α) = cg(ω ^ j∗α) = `2. Conversely, assume

that cg(j
∗α) = cg(ω ^ j∗α) =: `2. We can apply Lemma 5.2 with d = i(M) and

µ = j∗α, and infer that g is a Besse Riemannian metric, and either ` or ` − 2δ is
a common multiple of the periods of the unit-speed geodesics of (M, g). Moreover,
the critical set

K := crit(E) ∩
(
E−1(`2) ∪ E−1((`− δ)2)

) ∼= SM,

has Morse index ind(E,K) ≤ i(M). Since i(M) is the minimal Morse index of a
closed geodesic, we have

ind(E,K) = i(M). (5.4)

Now, let us further require M to be simply connected and spin, and assume by
contradiction that g is not a Zoll Riemannian metric. We are now going to employ
two results due to Radeschi and Wilking. Since (M, g) is a simply connected Besse
manifold, by [RW17, Theorem D] the energy functional E : ΛM → [0,∞) is per-
fect for the S1-equivariant singular cohomology with rational coefficients H∗S1(· ;Q).
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Moreover, since (M, g) is an orientable and spin Besse manifold, by [RW17, Corol-
lary C] the negative bundles of all the critical manifolds of E are orientable. This,
in turn, implies that all critical manifolds of E are homologically visible, and, if we
set

Ki(M) :=
{
γ ∈ crit(E)

∣∣ ind(E) = i(M)
}
,

we have

H
i(M)
S1 (ΛM,M ;Q) ∼= H0

S1(Ki(M);Q).

Namely, the rank ofH
i(M)
S1 (ΛM,M ;Q) is the number of path-connected components

of Ki(M). Clearly, K is a path-connected component of Ki(M). Since g is Besse but
not Zoll, Equation (5.4) implies that Ki(M) \K is not empty, and therefore

rank
(
H
i(M)
S1 (ΛM,M ;Q)

)
≥ 2. (5.5)

On the other hand, if we repeat the whole argument with a Zoll Riemannian metric
g0 instead of g, the critical set Ki(M) becomes diffeomorphic to the unit tangent
bundle SM , which is path-connected. This implies that

rank
(
H
i(M)
S1 (ΛM,M ;Q)

)
= 1,

and contradicts (5.5). �
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