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The closed geodesics conjectures

(M, g)

I Every closed Riemannian manifold (M, g) of dim(M) ≥ 2 has
infinitely many closed geodesics.

I Every closed Finsler manifold (M,F ) has at least dim(M)
many closed geodesics.

Widely open for M = Sn (except S2)

Subconjecture: Every closed (M, g) or (M,F ) with dim(M) > 2
has at least two closed geodesics.

Open for M = Sn (except 1 ≤ n ≤ 4).
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Zoll Riemannian manifolds

I A closed Riemannian manifold (M, g) is Zoll if all its
geodesics are closed and have the same length `.

I Prime length spectrum of (M, g):
σp(M, g) =

{
length(γ)

∣∣ γ prime closed geodesic of (M, g)
}

Example:
(S2, ground)

σp(S2, ground) = {2π}.
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I Prime length spectrum of (M, g):
σp(M, g) =

{
length(γ)

∣∣ γ closed geodesic of (M, g)
}

Conjecture: If σp(M, g) = {`}, then (M, g) is Zoll.

Remark: The conjecture implies that every (M, g) admits at least
two closed geodesics.

Theorem (Mazzucchelli, Suhr, 2017; claimed by Lusternik, 1960s)
The conjecture is true for (S2, g).

Indeed, slightly more is true: if every simply closed geodesic of
(S2, g) has length `, then every geodesic of (S2, g) is simply closed
and has length `.
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Reeb flows on contact manifolds

I (Y 2n+1, λ) closed contact manifold, φt : Y → Y Reeb flow

λ 1-form on Y , λ ∧ dλn volume form
R Reeb vector field on Y , λ(R) ≡ 1, dλ(R, ·) ≡ 0
φt flow of R

I Closed Reeb orbit:
γ(t) = φt(z) such that γ(t) = γ(t + τ)
τγ := minimal period of γ

z = φτ (z)

φt(z)

I Action spectra:
σp(Y , λ) =

{
τγ
∣∣ γ periodic Reeb orbit

}
σ(Y , λ) =

{
n τγ

∣∣ n ∈ N, γ periodic Reeb orbit
}
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Reeb flows on contact manifolds

I (Y 2n+1, λ) closed contact manifold, φt : Y → Y Reeb flow

I Closed Reeb orbit:
γ(t) = φt(z) such that γ(t) = γ(t + τ)
τγ := minimal period of γ

I Action spectra:
σp(Y , λ) =

{
τγ
∣∣ γ periodic Reeb orbit

}
σ(Y , λ) =

{
n τγ

∣∣ n ∈ N, γ periodic Reeb orbit
}

Example: Y = S∗M unit cotangent bundle of (M,F ) or (M, g),
λ Liouville form,
φt geodesic flow



Besse and Zoll Reeb flows
(Y , λ) closed, X Reeb vector field, φt : Y → Y Reeb flow

I (Y , λ) is Besse when every Reeb orbit is periodic.

Wadsley’s thm: If (Y , λ) Besse, then φτ = id for some τ > 0.

xy z

xy z

I (Y , λ) is Zoll when every Reeb orbit is periodic with the same
minimal period τ ,

i.e. φτ = id, fix(φt) = ∅ ∀t ∈ (0, τ).

xy z

xy z
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Besse and Zoll Reeb flows

(Y , λ), X Reeb vector field, φt : Y → Y Reeb flow

I (Y , λ) is Besse when every Reeb orbit is periodic.

I (Y , λ) is Zoll when every Reeb orbit is periodic with the same
minimal period τ

Example: ellipsoid

Y = E (a, b) =
{

(z1, z2) ∈ C2
∣∣∣ |z1|2a + |z1|2

b = 1
π

}
a, b > 0

λ =
i

4

∑
j=1,2

(
zj dz j − z j dzj

)
φt(z1, z2) = (e i2πt/az1, e

i2πt/bz2)

I If b/a ∈ Q then (Y , λ) is Besse

I If a = b then (Y , λ) is Zoll



Besse and Zoll Reeb flows

(Y , λ), X Reeb vector field, φt : Y → Y Reeb flow

I (Y , λ) is Besse when every Reeb orbit is periodic.

I (Y , λ) is Zoll when every Reeb orbit is periodic with the same
minimal period τ

Example: ellipsoid

Y = E (a, b) =
{

(z1, z2) ∈ C2
∣∣∣ |z1|2a + |z1|2

b = 1
π

}
a, b > 0

λ =
i

4

∑
j=1,2

(
zj dz j − z j dzj

)
φt(z1, z2) = (e i2πt/az1, e

i2πt/bz2)

I If b/a ∈ Q then (Y , λ) is Besse

I If a = b then (Y , λ) is Zoll



Besse and Zoll Reeb flows

(Y , λ), X Reeb vector field, φt : Y → Y Reeb flow

I (Y , λ) is Besse when every Reeb orbit is periodic.

I (Y , λ) is Zoll when every Reeb orbit is periodic with the same
minimal period τ

Example: ellipsoid

Y = E (a, b) =
{

(z1, z2) ∈ C2
∣∣∣ |z1|2a + |z1|2

b = 1
π

}
a, b > 0

λ =
i

4

∑
j=1,2

(
zj dz j − z j dzj

)
φt(z1, z2) = (e i2πt/az1, e

i2πt/bz2)

I If b/a ∈ Q then (Y , λ) is Besse

I If a = b then (Y , λ) is Zoll



Besse and Zoll Reeb flows in dimension 3

(Y 3, λ) closed, X Reeb vector field, φt : Y → Y Reeb flow

Theorem (Cristofaro-Gardiner, Hutchings, 2016)
Every (Y 3, λ) has at least two closed Reeb orbits.

Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)

I (Y 3, λ) is Besse if and only if σ(Y , λ) ⊂ rN for some r > 0

I (Y 3, λ) is Zoll if and only if σp(Y , λ) = {τ}
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Riemannian and Finsler surfaces

(M2,F ) closed Finsler surface

0x

TxM

{F = 1}

Corollary. σ(M2,F ) ⊂ rZ for some r > 0 if and only if F is Besse
and M = S2 or RP2.

(M, g) closed Riemannian surface.

Corollary.

I If M is orientable, then σ(M, g) ⊂ rZ for some r > 0 if and
only if M = S2 and g Zoll.

I If M is non-orientable, then σ(M, g) ⊂ rZ for some r > 0 if
and only if M = RP2 and g has constant curvature.
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(Hard) open questions

(Y 2n+1, λ) closed contact manifold of dimension 2n + 1 > 3
σp(Y , λ) = prime action spectrum
σ(Y , λ) = action spectrum

I (Weinstein’s conjecture) Does (Y , λ) have closed Reeb orbits?

I If yes, does it have more than one?

I If yes, does σp(Y , λ) = {τ} implies that (Y , λ) is Zoll?

I If yes, does σ(Y , λ) ⊂ rN for some r > 0 implies that (Y , λ)
is Besse?
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Besse and Zoll Reeb flows in higher dimension

(Y 2n+1, λ) convex contact sphere

Y ⊂ Cn+1 convex hypersurface enclosing 0

λ = i
4

∑n+1
j=1

(
zj dz j + z j dzj

)
contact form on Y

Y

0

Cn+1
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Besse and Zoll Reeb flows in higher dimension

(Y 2n+1, λ) convex contact sphere

Ekeland-Hofer action selectors ck = ck(Y ) ∈ σ(Y , λ)

minσ(Y , λ) = c1 ≤ c2 ≤ c3 ≤ ...

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

I ck = ck+n for some k if and only if (Y , λ) is Besse.

I c1 = cn+1 if and only if (Y , λ) is Zoll.

I Assume Y is δ-pinched for some δ ∈ (1,
√

2].
Then σ(Y , λ) ∩ (c1, δ

2c1) = ∅ if and only if (Y , λ) is Zoll.

Y

r
R

R

r
< δ
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Proof that ck = ck+n implies Besse

I a ∈ (1, 2)
H : Cn+1 → R such that H|Y ≡ 1 and H(λ · ) = λaH.

Y

0

H−1(h)

γ τ -periodic Reeb orbit on Y

Γ(t) = h1/aγ(τ t) Hamiltonian

1-periodic orbit on H−1(h), for

some unique h = h(τ)

I H∗ : Cn+1 → R dual function to H

H(w) = max
z

(
〈w , z〉 − H(z)

)
I Clarke action functional

Ψ : Lb
0(S1,Cn+1)→ R, Ψ(Γ̇) =

∫
S1

(
〈i Γ̇, Γ〉 − H∗(−i Γ̇)

)
dt, b = a

a−1

I Crit(Ψ) \ {0} =
{

Γ̇
∣∣ Γ 1-periodic Hamiltonian orbits

}
Ψ(Γ̇) = f (τ) := a

2

(
a−2
2 τ
)(2−a)/a
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Besse and Zoll Reeb flows in higher dimension

(Y 2n+1, λ) restricted contact type hypersurface of Cn+1

Y Cn+1

Ekeland-Hofer capacities ck = ck(Y ) = ck(fill(Y )) ∈ σ(Y , λ)

c1 ≤ c2 ≤ c3 ≤ ...

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019) If σ(Y , λ) is
discrete and ck(Y ) = ck+n(Y ) =: c for some k ≥ 1, then (Y , λ) is
Besse and c is a common period for its closed Reeb orbits.
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Geodesic flows in higher dimension

I (M, g) closed Riemannian manifold

I Energy functional

E : ΛM = W 1,2(S1,M)→ [0,∞), E (γ) =

∫
S1

‖γ̇(t)‖2gdt

I Action selector associated to κ ∈ H∗S1(ΛM,M), κ 6= 0

c(κ) := inf
{√

b
∣∣ κ 6= 0 in H∗S1({E < b},M)

}
∈ σ(M, g)

I Assume M is a simply connected, spin, CROSS:

M = Sn, CPn/2, HPn/4, or CaP2 (n = 16)
except CPn/2 with n/2 even

I αm, βm generators of H im
S1(ΛM,M) and H im+2n−2

S1 (ΛM,M)

im = m i(M) + (m − 1)(n − 1)
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except CPn/2 with n/2 even

I αm, βm generators of H im
S1(ΛM,M) and H im+2n−2

S1 (ΛM,M)

im = m i(M) + (m − 1)(n − 1)



Geodesic flows in higher dimension

M closed, simply connected, spin, CROSS

αm, βm generators of H im
S1(ΛM,M) and H im+2n−2

S1 (ΛM,M)

im = m i(M) + (m − 1)(n − 1)

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)
The following conditions are equivalent:

(i) c(α1) = c(β1)

(ii) c(αm) = c(βm) for all m ≥ 1

(iii) (M, g) is Zoll

If M = Sn with n 6= 3, then (i) can be replaced by:

(i’) c(αm) = c(βm) for some m ≥ 1
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Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)
The following conditions are equivalent:

(i) c(α1) = c(β1)

(ii) c(αm) = c(βm) for all m ≥ 1

(iii) (M, g) is Zoll

If M = Sn with n 6= 3, then (i) can be replaced by:

(i’) c(αm) = c(βm) for some m ≥ 1



Geodesic flows in higher dimension

M closed, simply connected, spin, CROSS

αm, βm generators of H im
S1(ΛM,M) and H im+2n−2

S1 (ΛM,M)

im = m i(M) + (m − 1)(n − 1)
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Thank you for your attention!


