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o

» Every closed Riemannian manifold (M, g) of dim(M) > 2 has
infinitely many closed geodesics.

» Every closed Finsler manifold (M, F) has at least dim(M)
many closed geodesics.

Widely open for M = S (except S?)
Subconjecture: Every closed (M, g) or (M, F) with dim(M) > 2
has at least two closed geodesics.

Open for M = S" (except 1 < n < 4).
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Zoll Riemannian manifolds

» A closed Riemannian manifold (M, g) is Zoll if all its
geodesics are closed and have the same length /.

» Prime length spectrum of (M, g):
op(M, g) = {length(7) | v closed geodesic of (M, g)}

Conjecture: If o, (M, g) = {£}, then (M, g) is Zoll.

Remark: The conjecture implies that every (M, g) admits at least
two closed geodesics.

Theorem (Mazzucchelli, Suhr, 2017; claimed by Lusternik, 1960s)
The conjecture is true for (S2, g).

Indeed, slightly more is true: if every simply closed geodesic of
(52, g) has length ¢, then every geodesic of (52, g) is simply closed
and has length .
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A 1-form on Y, A A d\" volume form
R Reeb vector field on Y, A(R) =1, d\(R,) =0
¢t flow of R

» Closed Reeb orbit:
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Reeb flows on contact manifolds

» (Y271 )\) closed contact manifold, ¢; : Y — Y Reeb flow

» Closed Reeb orbit:
v(t) = ¢¢(2) such that y(t) = v(t + 1)
7y := minimal period of

» Action spectra:
op(Y,A) = {7, | 7 periodic Reeb orbit }
o(Y,A)={nm, | n € N, ~ periodic Reeb orbit }

Example: Y = S*M unit cotangent bundle of (M, F) or (M, g),
A Liouville form,
¢+ geodesic flow
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(Y, ) closed, X Reeb vector field, ¢::Y — Y Reeb flow

» (Y,)\) is Besse when every Reeb orbit is periodic.
Wadsley's thm: If (Y, \) Besse, then ¢, =id for some T > 0.
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» (Y,A)is Zoll when every Reeb orbit is periodic with the same
minimal period T,

ie. ¢r=id, fix(¢:) =2 Vte (0,7).
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Besse and Zoll Reeb flows
(Y,)A), X Reeb vector field, ¢::Y — Y Reeb flow

» (Y, )) is Besse when every Reeb orbit is periodic.
» (Y,\)is Zoll when every Reeb orbit is periodic with the same
minimal period 7
Example: ellipsoid

Y = E(a, b) = {(21,22) € C?

i _
A= 2 (592 -7 dz)
j=1.2

¢t(21722) — (ei27rt/azl, ei27rt/bz2)

» If b/a € Q then (Y, ) is Besse
» If a= b then (Y, ) is Zoll
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Besse and Zoll Reeb flows in dimension 3

(Y3,)) closed, X Reeb vector field, ¢:: Y — Y Reeb flow

Theorem (Cristofaro-Gardiner, Hutchings, 2016)
Every (Y3, ) has at least two closed Reeb orbits.

Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)
» (Y3, ) is Besse if and only if 5(Y,\) C rN for some r > 0
» (Y3,)) is Zoll if and only if o,(Y,\) = {7}
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Riemannian and Finsler surfaces

(M2, F) closed Finsler surface

{F

TM:

Corollary. o(M?, F) C rZ for some r > 0 if and only if F is Besse
and M = 52 or RP?.

(M, g) closed Riemannian surface.

Corollary.
» If M is orientable, then o(M, g) C rZ for some r > 0 if and
only if M = S? and g Zoll.

» If M is non-orientable, then o(M, g) C rZ for some r > 0 if
and only if M = RP? and g has constant curvature.
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(Hard) open questions

(Y2n+1 )\) closed contact manifold of dimension 2n+ 1 > 3
op(Y,A) = prime action spectrum
o(Y,\) = action spectrum

» (Weinstein's conjecture) Does (Y, A) have closed Reeb orbits?
> If yes, does it have more than one?
> If yes, does o,(Y, ) = {7} implies that (Y, \) is Zoll?

> If yes, does o(Y,A) C rN for some r > 0 implies that (Y, \)
is Besse?
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Besse and Zoll Reeb flows in higher dimension

(Y271 )\) convex contact sphere

Y C C™1! convex hypersurface enclosing 0

)\_,' n+1

=Y (zj dz; +z; dzj) contact form on Y

(Cn+1
Y




Besse and Zoll Reeb flows in higher dimension

(Y21 X\) convex contact sphere



Besse and Zoll Reeb flows in higher dimension

(Y21 X\) convex contact sphere

Ekeland-Hofer action selectors ¢, = cx(Y) € a(Y, \)



Besse and Zoll Reeb flows in higher dimension

(Y21 X\) convex contact sphere
Ekeland-Hofer action selectors ¢, = cx(Y) € a(Y, \)

mino(Y,N)=a <o <g<..



Besse and Zoll Reeb flows in higher dimension

(Y271 )\) convex contact sphere
Ekeland-Hofer action selectors ¢, = cx(Y) € a(Y, \)
mino(Y,N)=a <o <g<..

Theorem (Ginzburg, Giirel, Mazzucchelli, 2019)
» cx = Ck4n for some k if and only if (Y, \) is Besse.



Besse and Zoll Reeb flows in higher dimension

(Y271 )\) convex contact sphere

Ekeland-Hofer action selectors ¢, = cx(Y) € a(Y, \)
mino(Y,N)=a <o <g<..

Theorem (Ginzburg, Giirel, Mazzucchelli, 2019)

» cx = Ck4n for some k if and only if (Y, \) is Besse.
> 1 = coy1 if and only if (Y, \) is Zoll.



Besse and Zoll Reeb flows in higher dimension

(Y271 )\) convex contact sphere
Ekeland-Hofer action selectors ¢, = cx(Y) € a(Y, \)

mino(Y,N)=a <o <g<..

Theorem (Ginzburg, Giirel, Mazzucchelli, 2019)
» cx = Ck4n for some k if and only if (Y, \) is Besse.
» c1 = cpt1 if and only if (Y, \) is Zoll.
> Assume Y is 0-pinched for some § € (1,/2].
Then (Y, \) N (c1,0%ct) = @ if and only if (Y, \) is Zoll.

<9

S|
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Proof that cx = ¢k, implies Besse
> ac(1,2)
H:CrM = R such that H|y =1 and H(\-) = A\?H.

~ T-periodic Reeb orbit on Y

[(t) = h*/?~(rt) Hamiltonian
1-periodic orbit on H=*(h), for

X some unique h = h(7)

H=L(h)

» H*: C"*! = R dual function to H
H(w) = max ((w, z) — H(z))
» Clarke action functional
VLS, e = R, w(l) :/ ((if,T) — H*(=il))dt, b= %
st
> Crit(¥) \ {0} = {I

W(r) = f(r) := %(a%%)@—a)/a

" 1-periodic Hamiltonian orbits}
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Proof that cx = ¢k, implies Besse

> Clarke action functional W : L5(St,C"1) - R
Crit(W) \ {0} = 1-periodic Hamiltonian orbits

() = £(r) = 3(3520) 0

» W is Slinvariant

s-T=r(s+-), VseS' [elstcm)
> Hz (L§(SH,CMHY)) = H*(CP™) = (1,e,€%, €3, ...)
> f(ck):=inf{beR ’ ek=1 £ 0in H&L({W < b})}

» Apply Lusternik-Schnirelmann theory:

If ck = Chyn = C then e"|y # 0 for all U ¢ WYP(R/cZ, Y)
S-invariant neighborhood of the space of c-periodic Reeb
orbits
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(%) €"|y # 0 for all St-invariant neighborhood
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» With a bit of algebraic topology, () implies:

Every sufficiently small neighborhood W ¢ WYP(R/cZ,Y) of
the space of c-periodic Reeb orbits has non-zero cohomology
H2n+1( W) )

H2n+1(U) H2n+1(W) H2n+1(Ul)

Hgi(U) HEi(U)

U D W D U’ neighborhoods of the space of c-periodic Reeb orbits;

U, U’ are S'-invariant
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Proof that cx = ¢k, implies Besse

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an
arbitrarily small neighborhood W C WYP(R/cZ,Y) of the space
of c-periodic Reeb orbits with H*"*1(W) = 0.

Proof

» The Reeb orbits are geodesics of a suitable Riemannian metric
» Z C Y open neighborhood of fix(¢.)
> 17— WY(R/CZ,Y), z 1,

be(2) =z 1(t)

> W C WYb(R/cZ, Y) small tubular neighborhood of +(2)
> HZHH(W) = H2mH(Z) = 0. O
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Besse and Zoll Reeb flows in higher dimension

(Y2n+1 \) restricted contact type hypersurface of C"*1

n+1
y C

Ekeland-Hofer capacities ¢, = c(Y) = c(fll(Y)) € o(Y, )

aa<o<cag<..

Theorem (Ginzburg, Giirel, Mazzucchelli, 2019) If o(Y,\) is
discrete and cx(Y') = ck4n(Y) =: ¢ for some k > 1, then (Y, \) is
Besse and ¢ is a common period for its closed Reeb orbits.
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» apm,, Bm generators of H;”{(/\M, M) and Hg”{+2"72(/\l\/l, M)
im=mi(M)+ (m—1)(n—1)



Geodesic flows in higher dimension

M closed, simply connected, spin, CROSS
Qm, Bm generators of H_"s"{ (AM, M) and H;"{Jr2”_2(/\l\ﬂ7 M)
im=mi(M)+ (m—1)(n—1)



Geodesic flows in higher dimension

M closed, simply connected, spin, CROSS
Qm, Bm generators of H_"s"{ (AM, M) and H;"{Jr2”_2(/\l\ﬂ7 M)
im=mi(M)+ (m—1)(n—1)

Theorem (Ginzburg, Giirel, Mazzucchelli, 2019)
The following conditions are equivalent:

(1) e(ar) = c(P1)
(i) c(am) = c(Bm) forallm>1
(iii) (M, g) is Zoll



Geodesic flows in higher dimension

M closed, simply connected, spin, CROSS
Qm, Bm generators of H_"s"{ (AM, M) and H;"{Jr2”_2(/\l\ﬂ7 M)
im=mi(M)+ (m—1)(n—1)

Theorem (Ginzburg, Giirel, Mazzucchelli, 2019)
The following conditions are equivalent:

(i) c(on) = c(Br)
(i) c(am) = c(Bm) forallm>1
(iii) (M, g) is Zoll
If M = S" with n # 3, then (i) can be replaced by:
(i) c(am) = c(Bm) for some m >1



Thank you for your attention!



