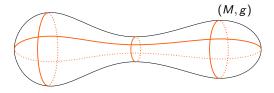
Spectral characterizations of Besse and Zoll Reeb flows

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

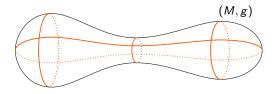
Joint work with:

- Stefan Suhr
- Daniel Cristofaro-Gardiner
- Viktor Ginzburg, Basak Gurel

The closed geodesics conjectures



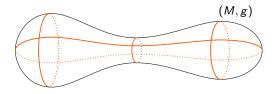
The closed geodesics conjectures



- ► Every closed Riemannian manifold (M, g) of dim(M) ≥ 2 has infinitely many closed geodesics.
- Every closed Finsler manifold (M, F) has at least dim(M) many closed geodesics.

Widely open for $M = S^n$ (except S^2)

The closed geodesics conjectures



- ► Every closed Riemannian manifold (M,g) of dim(M) ≥ 2 has infinitely many closed geodesics.
- Every closed Finsler manifold (M, F) has at least dim(M) many closed geodesics.

Widely open for $M = S^n$ (except S^2)

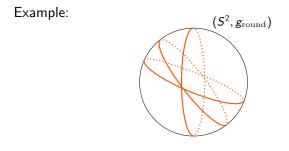
Subconjecture: Every closed (M, g) or (M, F) with dim(M) > 2 has at least two closed geodesics.

Open for $M = S^n$ (except $1 \le n \le 4$).

A closed Riemannian manifold (M,g) is Zoll if all its geodesics are closed and have the same length ℓ.

- A closed Riemannian manifold (M,g) is Zoll if all its geodesics are closed and have the same length ℓ.
- Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \text{length}(\gamma) \mid \gamma \text{ prime closed geodesic of } (M, g) \}$

- A closed Riemannian manifold (M,g) is Zoll if all its geodesics are closed and have the same length ℓ.
- ▶ Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ length(\gamma) | \gamma \text{ prime closed geodesic of } (M, g) \}$



$$\sigma_{\rm p}(S^2, g_{\rm round}) = \{2\pi\}.$$

- A closed Riemannian manifold (M,g) is Zoll if all its geodesics are closed and have the same length ℓ.
- ▶ Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \text{length}(\gamma) \mid \gamma \text{ closed geodesic of } (M, g) \}$

Conjecture: If $\sigma_p(M,g) = \{\ell\}$, then (M,g) is Zoll.

Remark: The conjecture implies that every (M,g) admits at least two closed geodesics.

- A closed Riemannian manifold (M,g) is Zoll if all its geodesics are closed and have the same length ℓ.
- ▶ Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \text{length}(\gamma) \mid \gamma \text{ closed geodesic of } (M, g) \}$

Conjecture: If $\sigma_p(M,g) = \{\ell\}$, then (M,g) is Zoll.

Remark: The conjecture implies that every (M,g) admits at least two closed geodesics.

Theorem (Mazzucchelli, Suhr, 2017; claimed by Lusternik, 1960s) The conjecture is true for (S^2, g) .

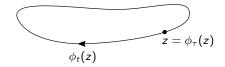
Indeed, slightly more is true: if every simply closed geodesic of (S^2,g) has length ℓ , then every geodesic of (S^2,g) is simply closed and has length ℓ .

▶ (Y^{2n+1}, λ) closed contact manifold, $\phi_t : Y \to Y$ Reeb flow

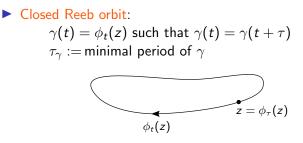
• (Y^{2n+1}, λ) closed contact manifold, $\phi_t : Y \to Y$ Reeb flow λ 1-form on $Y, \lambda \wedge d\lambda^n$ volume form R Reeb vector field on $Y, \lambda(R) \equiv 1, d\lambda(R, \cdot) \equiv 0$ ϕ_t flow of R

• (Y^{2n+1}, λ) closed contact manifold, $\phi_t : Y \to Y$ Reeb flow λ 1-form on $Y, \lambda \wedge d\lambda^n$ volume form R Reeb vector field on $Y, \lambda(R) \equiv 1, d\lambda(R, \cdot) \equiv 0$ ϕ_t flow of R

• Closed Reeb orbit: $\gamma(t) = \phi_t(z)$ such that $\gamma(t) = \gamma(t + \tau)$ $\tau_{\gamma} :=$ minimal period of γ



• (Y^{2n+1}, λ) closed contact manifold, $\phi_t : Y \to Y$ Reeb flow λ 1-form on $Y, \lambda \wedge d\lambda^n$ volume form R Reeb vector field on $Y, \lambda(R) \equiv 1, d\lambda(R, \cdot) \equiv 0$ ϕ_t flow of R

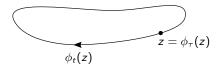


Action spectra:

 $\sigma_{p}(\mathbf{Y}, \lambda) = \left\{ \tau_{\gamma} \mid \gamma \text{ periodic Reeb orbit} \right\}$

• (Y^{2n+1}, λ) closed contact manifold, $\phi_t : Y \to Y$ Reeb flow λ 1-form on $Y, \lambda \wedge d\lambda^n$ volume form R Reeb vector field on $Y, \lambda(R) \equiv 1, d\lambda(R, \cdot) \equiv 0$ ϕ_t flow of R

• Closed Reeb orbit: $\gamma(t) = \phi_t(z)$ such that $\gamma(t) = \gamma(t + \tau)$ $\tau_{\gamma} :=$ minimal period of γ



Action spectra:

$$\begin{split} \sigma_{\mathrm{p}}(\boldsymbol{Y},\lambda) &= \big\{ \tau_{\gamma} \mid \gamma \text{ periodic Reeb orbit} \big\} \\ \sigma(\boldsymbol{Y},\lambda) &= \big\{ n \, \tau_{\gamma} \mid n \in \mathbb{N}, \ \gamma \text{ periodic Reeb orbit} \big\} \end{split}$$

▶ (Y^{2n+1}, λ) closed contact manifold, $\phi_t : Y \to Y$ Reeb flow

Closed Reeb orbit:

$$\gamma(t) = \phi_t(z)$$
 such that $\gamma(t) = \gamma(t + \tau)$
 $\tau_{\gamma} :=$ minimal period of γ

• Action spectra:

$$\sigma_{p}(Y, \lambda) = \{ \tau_{\gamma} \mid \gamma \text{ periodic Reeb orbit} \}$$

$$\sigma(Y, \lambda) = \{ n \tau_{\gamma} \mid n \in \mathbb{N}, \ \gamma \text{ periodic Reeb orbit} \}$$

Example: $Y = S^*M$ unit cotangent bundle of (M, F) or (M, g), λ Liouville form, ϕ_t geodesic flow

 (Y,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 (Y, λ) closed, X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow

• (Y, λ) is Besse when every Reeb orbit is periodic.

 (Y, λ) closed, X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow

• (Y, λ) is Besse when every Reeb orbit is periodic.

Wadsley's thm: If (Y, λ) Besse, then $\phi_{\tau} = id$ for some $\tau > 0$.

 (Y,λ) closed, X Reeb vector field, $\phi_t: Y \to Y$ Reeb flow

• (Y, λ) is Besse when every Reeb orbit is periodic.

Wadsley's thm: If (Y, λ) Besse, then $\phi_{\tau} = id$ for some $\tau > 0$.

 (Y, λ) is Zoll when every Reeb orbit is periodic with the same minimal period τ,

i.e. $\phi_{\tau} = \mathrm{id}$, $\mathrm{fix}(\phi_t) = \emptyset \quad \forall t \in (0, \tau)$.

- (Y, λ) , X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow
 - (Y, λ) is Besse when every Reeb orbit is periodic.
 - (Y, λ) is Zoll when every Reeb orbit is periodic with the same minimal period τ

- (Y, λ) , X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow
 - (Y, λ) is Besse when every Reeb orbit is periodic.
 - (Y, λ) is Zoll when every Reeb orbit is periodic with the same minimal period τ

Example: ellipsoid

$$Y = E(a, b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{|z_1|^2}{a} + \frac{|z_1|^2}{b} = \frac{1}{\pi} \right\} \quad a, b > 0$$
$$\lambda = \frac{i}{4} \sum_{j=1,2} \left(z_j \, d\overline{z}_j - \overline{z}_j \, dz_j \right)$$
$$\phi_t(z_1, z_2) = \left(e^{i2\pi t/a} z_1, e^{i2\pi t/b} z_2 \right)$$

- (Y, λ) , X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow
 - (Y, λ) is Besse when every Reeb orbit is periodic.
 - (Y, λ) is Zoll when every Reeb orbit is periodic with the same minimal period τ

Example: ellipsoid

$$Y = E(a, b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{|z_1|^2}{a} + \frac{|z_1|^2}{b} = \frac{1}{\pi} \right\} \quad a, b > 0$$
$$\lambda = \frac{i}{4} \sum_{j=1,2} \left(z_j \, d\overline{z}_j - \overline{z}_j \, dz_j \right)$$
$$\phi_t(z_1, z_2) = \left(e^{i2\pi t/a} z_1, e^{i2\pi t/b} z_2 \right)$$
$$If \ b/a \in \mathbb{Q} \text{ then } (Y, \lambda) \text{ is Besse}$$

 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

Theorem (Cristofaro-Gardiner, Hutchings, 2016) Every (Y^3 , λ) has at least two closed Reeb orbits.

 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

Theorem (Cristofaro-Gardiner, Hutchings, 2016) Every (Y^3 , λ) has at least two closed Reeb orbits.

Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)

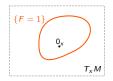
• (Y^3, λ) is Besse if and only if $\sigma(Y, \lambda) \subset r\mathbb{N}$ for some r > 0

- (Y^3, λ) closed, X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow
- Theorem (Cristofaro-Gardiner, Hutchings, 2016) Every (Y^3 , λ) has at least two closed Reeb orbits.

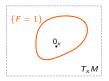
Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)

(Y³, λ) is Besse if and only if σ(Y, λ) ⊂ rN for some r > 0
 (Y³, λ) is Zoll if and only if σ_p(Y, λ) = {τ}

 (M^2, F) closed Finsler surface

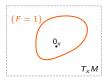


 (M^2, F) closed Finsler surface



Corollary. $\sigma(M^2, F) \subset r\mathbb{Z}$ for some r > 0 if and only if F is Besse and $M = S^2$ or $\mathbb{R}P^2$.

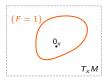
 (M^2, F) closed Finsler surface



Corollary. $\sigma(M^2, F) \subset r\mathbb{Z}$ for some r > 0 if and only if F is Besse and $M = S^2$ or $\mathbb{R}P^2$.

(M,g) closed Riemannian surface.

 (M^2, F) closed Finsler surface



Corollary. $\sigma(M^2, F) \subset r\mathbb{Z}$ for some r > 0 if and only if F is Besse and $M = S^2$ or $\mathbb{R}P^2$.

(M,g) closed Riemannian surface.

Corollary.

- If M is orientable, then σ(M,g) ⊂ rZ for some r > 0 if and only if M = S² and g Zoll.
- If M is non-orientable, then σ(M, g) ⊂ rZ for some r > 0 if and only if M = ℝP² and g has constant curvature.

(Hard) open questions

 (Y^{2n+1}, λ) closed contact manifold of dimension 2n + 1 > 3 $\sigma_{p}(Y, \lambda) =$ prime action spectrum $\sigma(Y, \lambda) =$ action spectrum

• (Weinstein's conjecture) Does (Y, λ) have closed Reeb orbits?

If yes, does it have more than one?

(Hard) open questions

 (Y^{2n+1}, λ) closed contact manifold of dimension 2n + 1 > 3 $\sigma_{\rm p}(Y, \lambda) =$ prime action spectrum $\sigma(Y, \lambda) =$ action spectrum

• (Weinstein's conjecture) Does (Y, λ) have closed Reeb orbits?

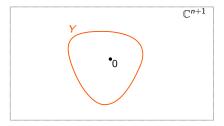
- If yes, does it have more than one?
- If yes, does $\sigma_p(Y, \lambda) = \{\tau\}$ implies that (Y, λ) is Zoll?
- If yes, does σ(Y, λ) ⊂ rN for some r > 0 implies that (Y, λ) is Besse?

 (Y^{2n+1}, λ) convex contact sphere

 (Y^{2n+1}, λ) convex contact sphere

 $Y \subset \mathbb{C}^{n+1}$ convex hypersurface enclosing 0

 $\lambda = \frac{i}{4}\sum_{j=1}^{n+1} \left(z_j \, d\overline{z}_j + \overline{z}_j \, dz_j \right)$ contact form on Y



 (Y^{2n+1}, λ) convex contact sphere

 (Y^{2n+1}, λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

 (Y^{2n+1}, λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

 $\min \sigma(Y, \lambda) = c_1 \leq c_2 \leq c_3 \leq \dots$

 (Y^{2n+1}, λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

 $\min \sigma(Y, \lambda) = c_1 \leq c_2 \leq c_3 \leq \dots$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

▶ $c_k = c_{k+n}$ for some k if and only if (Y, λ) is Besse.

 (Y^{2n+1}, λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

 $\min \sigma(Y,\lambda) = c_1 \leq c_2 \leq c_3 \leq \dots$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

•
$$c_k = c_{k+n}$$
 for some k if and only if (Y, λ) is Besse.

• $c_1 = c_{n+1}$ if and only if (Y, λ) is Zoll.

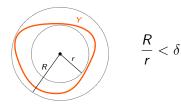
 (Y^{2n+1}, λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

 $\min \sigma(Y,\lambda) = c_1 \leq c_2 \leq c_3 \leq \dots$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

- $c_k = c_{k+n}$ for some k if and only if (Y, λ) is Besse.
- $c_1 = c_{n+1}$ if and only if (Y, λ) is Zoll.
- Assume Y is δ -pinched for some $\delta \in (1, \sqrt{2}]$. Then $\sigma(Y, \lambda) \cap (c_1, \delta^2 c_1) = \emptyset$ if and only if (Y, λ) is Zoll.

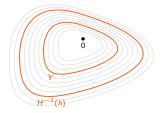


•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.

•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.

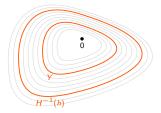


 $\gamma \ \tau\text{-periodic}$ Reeb orbit on $\textbf{\textit{Y}}$

$$\begin{split} \Gamma(t) &= h^{1/a} \gamma(\tau t) \text{ Hamiltonian} \\ \text{1-periodic orbit on } H^{-1}(h) \text{, for} \\ \text{some unique } h &= h(\tau) \end{split}$$

•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



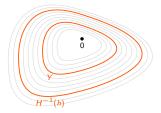
 $\gamma~\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t) = h^{1/a}\gamma(\tau t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique $h = h(\tau)$

▶ $H^* : \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H

•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



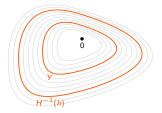
 $\gamma~\tau\text{-periodic}$ Reeb orbit on $\textbf{\textit{Y}}$

 $\Gamma(t) = h^{1/a}\gamma(\tau t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique $h = h(\tau)$

► $H^* : \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H $H(w) = \max_{z} (\langle w, z \rangle - H(z))$

•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



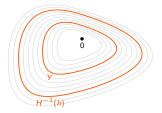
 $\gamma~\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t) = h^{1/a}\gamma(\tau t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique $h = h(\tau)$

- ► $H^* : \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H $H(w) = \max_{z} (\langle w, z \rangle - H(z))$
- Clarke action functional

•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



 $\gamma~\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t) = h^{1/a}\gamma(\tau t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique $h = h(\tau)$

• $H^* : \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H

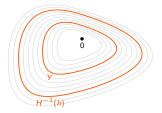
$$H(w) = \max_{z} \left(\langle w, z \rangle - H(z) \right)$$

Clarke action functional

$$\Psi: L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}, \quad \Psi(\dot{\Gamma}) = \int_{S^1} \left(\langle i\dot{\Gamma}, \Gamma \rangle - H^*(-i\dot{\Gamma}) \right) dt, \quad b = \frac{a}{a-1}$$

•
$$a \in (1,2)$$

 $H : \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



 $\gamma~\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t) = h^{1/a}\gamma(\tau t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique $h = h(\tau)$

• $H^*: \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H

$$H(w) = \max_{z} \left(\langle w, z \rangle - H(z) \right)$$

Clarke action functional

$$\begin{split} \Psi : L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}, \quad \Psi(\dot{\Gamma}) &= \int_{S^1} \left(\langle i\dot{\Gamma}, \Gamma \rangle - H^*(-i\dot{\Gamma}) \right) dt, \quad b = \frac{a}{a-1} \\ \blacktriangleright & \operatorname{Crit}(\Psi) \setminus \{0\} = \left\{ \dot{\Gamma} \mid \Gamma \text{ 1-periodic Hamiltonian orbits} \right\} \\ & \Psi(\dot{\Gamma}) &= f(\tau) := \frac{a}{2} \left(\frac{a-2}{2} \tau \right)^{(2-a)/a} \end{split}$$

► Clarke action functional $\Psi : L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1\text{-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$

► Clarke action functional $\Psi : L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1\text{-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$

► Ψ is S^1 -invariant $s \cdot \dot{\Gamma} = \dot{\Gamma}(s + \cdot), \qquad \forall s \in S^1, \ \dot{\Gamma} \in L^b_0(S^1, \mathbb{C}^{n+1})$

► Clarke action functional $\Psi : L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1\text{-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$

 $\Psi \text{ is } S^1 \text{-invariant}$ $s \cdot \dot{\Gamma} = \dot{\Gamma}(s + \cdot), \qquad \forall s \in S^1, \ \dot{\Gamma} \in L^b_0(S^1, \mathbb{C}^{n+1})$

$$\blacktriangleright H^*_{S^1}(L^b_0(S^1,\mathbb{C}^{n+1})) = H^*(\mathbb{C}P^\infty) = \langle 1, e, e^2, e^3, ... \rangle$$

► Clarke action functional $\Psi : L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1\text{-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$

♥ is S¹-invariant s · Γ = Γ(s + ·), ∀s ∈ S¹, Γ ∈ L₀^b(S¹, Cⁿ⁺¹)
H_{S¹}(L₀^b(S¹, Cⁿ⁺¹)) = H^{*}(CP[∞]) = ⟨1, e, e², e³, ...⟩
f(c_k) := inf {b ∈ ℝ | e^{k-1} ≠ 0 in H_{S¹}^{*}({Ψ < b})}

► Clarke action functional $\Psi : L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1\text{-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$

▶ Ψ is S¹-invariant
s · Γ = Γ(s + ·), ∀s ∈ S¹, Γ ∈ L^b₀(S¹, Cⁿ⁺¹)
▶ H^{*}_{c1}(L^b₀(S¹, Cⁿ⁺¹)) = H^{*}(CP[∞]) = (1, e, e², e³, ...)

•
$$f(\mathbf{c}_k) := \inf \left\{ b \in \mathbb{R} \mid e^{k-1} \neq 0 \text{ in } H^*_{S^1}(\{\Psi < b\}) \right\}$$

If $c_k = c_{k+n} = c$ then $e^n|_U \neq 0$ for all $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ S^1 -invariant neighborhood of the space of c-periodic Reeb orbits

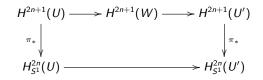
(*) $e^n|_U \neq 0$ for all S^1 -invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits

- (*) $e^n|_U \neq 0$ for all S¹-invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits
 - ▶ With a bit of algebraic topology, (★) implies:

Every sufficiently small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of *c*-periodic Reeb orbits has non-zero cohomology $H^{2n+1}(W)$.

- (*) $e^n|_U \neq 0$ for all S^1 -invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits
 - ▶ With a bit of algebraic topology, (★) implies:

Every sufficiently small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of *c*-periodic Reeb orbits has non-zero cohomology $H^{2n+1}(W)$.



 $U\supseteq W\supseteq U'$ neighborhoods of the space of c-periodic Reeb orbits; U, U' are S^1 -invariant

- (*) $e^n|_U \neq 0$ for all S¹-invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits
 - ▶ With a bit of algebraic topology, (★) implies:

Every sufficiently small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of *c*-periodic Reeb orbits has non-zero cohomology $H^{2n+1}(W)$.

► We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

Proof

> The Reeb orbits are geodesics of a suitable Riemannian metric

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)

We are left to show:

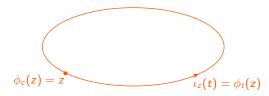
If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

- The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)
- $\blacktriangleright \iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), \ z \mapsto \iota_z$

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

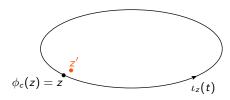
- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$, $z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

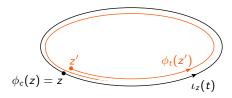
- The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$, $z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

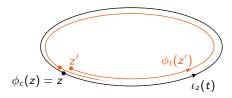
- > The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$, $z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

- > The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$, $z \mapsto \iota_z$

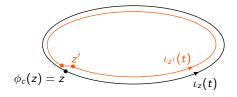


We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)

$$\blacktriangleright \iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), \ z \mapsto \iota_z$$



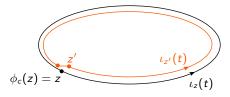
We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

Proof

- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)

$$\blacktriangleright \iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), \ z \mapsto \iota_z$$



• $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ small tubular neighborhood of $\iota(Z)$

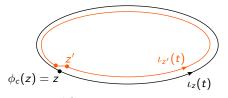
We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W) = 0$.

Proof

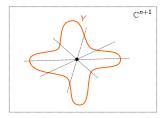
- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- $Z \subsetneq Y$ open neighborhood of fix (ϕ_c)

$$\blacktriangleright \iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), \ z \mapsto \iota_z$$

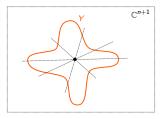


W ⊂ *W*^{1,b}(ℝ/*c*ℤ, *Y*) small tubular neighborhood of *ι*(*Z*)
 *H*²ⁿ⁺¹(*W*) ≃ *H*²ⁿ⁺¹(*Z*) = 0.

 (Y^{2n+1}, λ) restricted contact type hypersurface of \mathbb{C}^{n+1}

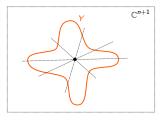


 (Y^{2n+1}, λ) restricted contact type hypersurface of \mathbb{C}^{n+1}



Ekeland-Hofer capacities $c_k = c_k(Y) = c_k(\text{fill}(Y)) \in \sigma(Y, \lambda)$

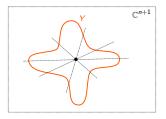
 (Y^{2n+1}, λ) restricted contact type hypersurface of \mathbb{C}^{n+1}



Ekeland-Hofer capacities $c_k = c_k(Y) = c_k(\text{fill}(Y)) \in \sigma(Y, \lambda)$

 $c_1 \leq c_2 \leq c_3 \leq \dots$

 (Y^{2n+1}, λ) restricted contact type hypersurface of \mathbb{C}^{n+1}



Ekeland-Hofer capacities $c_k = c_k(Y) = c_k(\text{fill}(Y)) \in \sigma(Y, \lambda)$

 $c_1 \leq c_2 \leq c_3 \leq \dots$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019) If $\sigma(Y, \lambda)$ is discrete and $c_k(Y) = c_{k+n}(Y) =: c$ for some $k \ge 1$, then (Y, λ) is Besse and c is a common period for its closed Reeb orbits.

• (M,g) closed Riemannian manifold

► (*M*, *g*) closed Riemannian manifold

Energy functional

$$E: \Lambda M = W^{1,2}(S^1, M) \rightarrow [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$$

► (M, g) closed Riemannian manifold

Energy functional

$$E: \Lambda M = W^{1,2}(S^1, M) \to [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$$

• Action selector associated to $\kappa \in H^*_{S^1}(\Lambda M, M)$, $\kappa \neq 0$ $c(\kappa) := \inf \left\{ \sqrt{b} \mid \kappa \neq 0 \text{ in } H^*_{S^1}(\{E < b\}, M) \right\} \in \sigma(M, g)$

▶ (*M*, *g*) closed Riemannian manifold

Energy functional

$$E: \Lambda M = W^{1,2}(S^1, M) \rightarrow [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$$

- Action selector associated to κ ∈ H^{*}_{S1}(ΛM, M), κ ≠ 0
 c(κ) := inf {√b | κ ≠ 0 in H^{*}_{S1}({E < b}, M)} ∈ σ(M, g)
- Assume *M* is a simply connected, spin, CROSS:
 M = Sⁿ, Cℙ^{n/2}, ℍℙ^{n/4}, or Caℙ² (*n* = 16) except Cℙ^{n/2} with *n*/2 even

▶ (*M*, *g*) closed Riemannian manifold

Energy functional

$$E: \Lambda M = W^{1,2}(S^1, M) \rightarrow [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$$

- Action selector associated to κ ∈ H^{*}_{S1}(ΛM, M), κ ≠ 0
 c(κ) := inf {√b | κ ≠ 0 in H^{*}_{S1}({E < b}, M)} ∈ σ(M, g)
- ▶ Assume *M* is a simply connected, spin, CROSS: $M = S^n$, $\mathbb{CP}^{n/2}$, $\mathbb{HP}^{n/4}$, or CaP^2 (n = 16) except $\mathbb{CP}^{n/2}$ with n/2 even

•
$$\alpha_m$$
, β_m generators of $H_{S^1}^{i_m}(\Lambda M, M)$ and $H_{S^1}^{i_m+2n-2}(\Lambda M, M)$
 $i_m = m i(M) + (m-1)(n-1)$

M closed, simply connected, spin, CROSS α_m , β_m generators of $H_{S^1}^{i_m}(\Lambda M, M)$ and $H_{S^1}^{i_m+2n-2}(\Lambda M, M)$ $i_m = m i(M) + (m-1)(n-1)$

M closed, simply connected, spin, CROSS α_m , β_m generators of $H_{S^1}^{i_m}(\Lambda M, M)$ and $H_{S^1}^{i_m+2n-2}(\Lambda M, M)$ $i_m = m i(M) + (m-1)(n-1)$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019) *The following conditions are equivalent:*

(i) $c(\alpha_1) = c(\beta_1)$ (ii) $c(\alpha_m) = c(\beta_m)$ for all $m \ge 1$ (iii) (M,g) is Zoll

M closed, simply connected, spin, CROSS α_m , β_m generators of $H_{S^1}^{i_m}(\Lambda M, M)$ and $H_{S^1}^{i_m+2n-2}(\Lambda M, M)$ $i_m = m i(M) + (m-1)(n-1)$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019) *The following conditions are equivalent:*

(i)
$$c(\alpha_1) = c(\beta_1)$$

(ii) $c(\alpha_m) = c(\beta_m)$ for all $m \ge 1$
(iii) (M, g) is Zoll
If $M = S^n$ with $n \ne 3$, then (i) can be replaced by:
(i') $c(\alpha_m) = c(\beta_m)$ for some $m \ge 1$

Thank you for your attention!