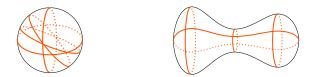
C^2 structurally stable Riemannian geodesic flows of closed surfaces are Anosov

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

Joint work with Gonzalo Contreras

Closed geodesics of Riemannian manifolds

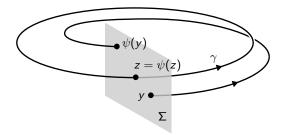


The closed geodesics of (M, g) are the periodic orbits of the geodesic flow

$$egin{array}{lll} \phi_t: \mathcal{SM} o \mathcal{SM}, \quad \phi_t(\gamma(0)) = \gamma(t) \ ext{where} \ \gamma = (x, \dot{x}), ext{ and } x: \mathbb{R} o \mathcal{M} ext{ is a geodesic with } \|\dot{x}\|_{g} = 1. \end{array}$$

Closed geodesics of Riemannian manifolds

 $\Sigma \subset SM$ cross section at a closed geodesic γ $\psi : \Sigma \rightarrow \Sigma, \ \psi(y) = \phi_{\tau(y)}(y)$ first-return map



The Floquet multipliers of γ are the eigenvalues of $d\psi(z)$.

Closed geodesics of Riemannian manifolds

A closed geodesic γ is

• elliptic when its Floquet multipliers are in $S^1 \subset \mathbb{C}$

• hyperbolic when its Floquet multipliers are in $\mathbb{R} \setminus \{1, -1\}$



• non-degenerate when its Floquet multipliers are in $\mathbb{C} \setminus \{1\}$.

(Poincaré's claim, 1905) Every convex 2-sphere S² ⊂ ℝ³ has an elliptic simple closed geodesic.

(Poincaré's claim, 1905) Every convex 2-sphere S² ⊂ ℝ³ has an elliptic simple closed geodesic.

 (Grjuntal, 1979) There exists a Riemannian S² all of whose simple closed geodesics are hyperbolic.

(Poincaré's claim, 1905) Every convex 2-sphere S² ⊂ ℝ³ has an elliptic simple closed geodesic.

 (Grjuntal, 1979) There exists a Riemannian S² all of whose simple closed geodesics are hyperbolic.

 (Herman, 2000) A C² generic positively-curved Riemannian metric on S² has an elliptic closed geodesic.

(Poincaré's claim, 1905) Every convex 2-sphere S² ⊂ ℝ³ has an elliptic simple closed geodesic.

 (Grjuntal, 1979) There exists a Riemannian S² all of whose simple closed geodesics are hyperbolic.

• (Herman, 2000) A C^2 generic positively-curved Riemannian metric on S^2 has an elliptic closed geodesic.

 (Contreras-Oliveira, 2004) A C² generic Riemannian metric on S² has an elliptic closed geodesic. Hyperbolicity

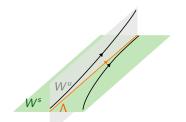
 $\phi_t: \mathbf{N} \to \mathbf{N}$ flow of a vector field \mathbf{X}

A compact invariant subset $\Lambda \subseteq N$ is hyperbolic when there exists a ϕ_t -invariant splitting

$$TN|_{\Lambda} = E^{s} \oplus E^{u} \oplus \operatorname{span}\{X\}$$

such that, for some b, c > 0,

$$\|d\phi_t \cdot v\| \le b e^{-ct} \|v\| \text{ for all } v \in E^s, t \ge 0, \\ \|d\phi_{-t} \cdot v\| \le b e^{-ct} \|v\| \text{ for all } v \in E^u, t \ge 0.$$



 $\phi_t: N \to N$ is Anosov when the whole N is hyperbolic.

Main result

Theorem (Contreras-Mazzucchelli) On any closed surface, there exists a C^2 -open and dense subset \mathcal{U} of smooth Riemannian metrics such that, for each $g \in \mathcal{U}$, the associated geodesic flow is Anosov or has an elliptic closed orbit.

Main result

Theorem (Contreras-Mazzucchelli) On any closed surface, there exists a C^2 -open and dense subset \mathcal{U} of smooth Riemannian metrics such that, for each $g \in \mathcal{U}$, the associated geodesic flow is Anosov or has an elliptic closed orbit.

Remark. For Finsler geodesic flows, the analogous theorem follows from a more general result of Newhouse.

Main result

Theorem (Contreras-Mazzucchelli) On any closed surface, there exists a C^2 -open and dense subset \mathcal{U} of smooth Riemannian metrics such that, for each $g \in \mathcal{U}$, the associated geodesic flow is Anosov or has an elliptic closed orbit.

Remark. For Finsler geodesic flows, the analogous theorem follows from a more general result of Newhouse.

Remark. Surfaces of genus ≤ 1 do not admit Anosov geodesic flows (Margulis). Therefore, for these surfaces, each $g \in U$ has an elliptic closed orbit.

A geodesic flow $\phi_t^{g_0}$ is C^2 -structurally stable when g_0 has a C^2 -open neighborhood \mathcal{V} and, for each $g_1 \in \mathcal{V}$, there is a homeohorphism

$$\kappa: S^{g_0}M \to S^{g_1}M$$

mapping orbits of $\phi_t^{g_0}$ to orbits of $\phi_t^{g_1}$.

A geodesic flow $\phi_t^{g_0}$ is C^2 -structurally stable when g_0 has a C^2 -open neighborhood \mathcal{V} and, for each $g_1 \in \mathcal{V}$, there is a homeohorphism

 $\kappa: S^{g_0}M \to S^{g_1}M$

mapping orbits of $\phi_t^{g_0}$ to orbits of $\phi_t^{g_1}$.

The theorem implies a version of Palis-Smale's stability conjecture for geodesic flows:

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

A geodesic flow $\phi_t^{g_0}$ is C^2 -structurally stable when g_0 has a C^2 -open neighborhood \mathcal{V} and, for each $g_1 \in \mathcal{V}$, there is a homeohorphism

 $\kappa: S^{g_0}M \to S^{g_1}M$

mapping orbits of $\phi_t^{g_0}$ to orbits of $\phi_t^{g_1}$.

The theorem implies a version of Palis-Smale's stability conjecture for geodesic flows:

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

Remark. Anosov himself showed that Anosov geodesic flows are C^2 -structurally stable.

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

Proof.

Assume that \(\phi_t^{g_0}\) is structurally stable within the neighborhood \(\mathcal{V}\) of \(g_0\).

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

- Assume that \(\phi_t^{g_0}\) is structurally stable within the neighborhood \(\mathcal{V}\) of \(g_0\).
- A geodesic flow with an elliptic periodic orbit is not C²-structurally stable. Therefore no g ∈ V has elliptic closed geodesics.

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

- Assume that \(\phi_t^{g_0}\) is structurally stable within the neighborhood \(\mathcal{V}\) of \(g_0\).
- A geodesic flow with an elliptic periodic orbit is not C²-structurally stable. Therefore no g ∈ V has elliptic closed geodesics.
- (Contreras-Paternain) $\overline{\operatorname{Per}(\phi_t^g)}$ is hyperbolic, for all $g \in \mathcal{V}$.

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

- Assume that \(\phi_t^{g_0}\) is structurally stable within the neighborhood \(\mathcal{V}\) of \(g_0\).
- A geodesic flow with an elliptic periodic orbit is not C²-structurally stable. Therefore no g ∈ V has elliptic closed geodesics.
- (Contreras-Paternain) $\overline{\operatorname{Per}(\phi_t^g)}$ is hyperbolic, for all $g \in \mathcal{V}$.
- ▶ By the theorem, there exists a dense subset $\mathcal{U} \subset \mathcal{V}$ such that any $g \in \mathcal{U}$ has Anosov geodesic flow ϕ_t^g . In particular $\overline{\operatorname{Per}(\phi_t^g)} = S^g M$.

Theorem (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

- Assume that \(\phi_t^{g_0}\) is structurally stable within the neighborhood \(\mathcal{V}\) of \(g_0\).
- A geodesic flow with an elliptic periodic orbit is not C²-structurally stable. Therefore no g ∈ V has elliptic closed geodesics.
- (Contreras-Paternain) $\overline{\operatorname{Per}(\phi_t^g)}$ is hyperbolic, for all $g \in \mathcal{V}$.
- ▶ By the theorem, there exists a dense subset $\mathcal{U} \subset \mathcal{V}$ such that any $g \in \mathcal{U}$ has Anosov geodesic flow ϕ_t^g . In particular $\overline{\operatorname{Per}(\phi_t^g)} = S^g M$.
- ▶ By the structural stability, $\overline{\operatorname{Per}(\phi_t^{g_0})} \cong \overline{\operatorname{Per}(\phi_t^g)} = S^g M$. Therefore $\phi_t^{g_0}$ is Anosov.

A geodesic flow $\phi_t^{g_0}$ is C^2 -stably ergodic when g_0 has a C^2 -open neighborhood \mathcal{W} and, for each $g_1 \in \mathcal{W}$, the geodesic flow $\phi_t^{g_1}$ is ergodic: its invariant subsets have either full measure or zero measure.

A geodesic flow $\phi_t^{g_0}$ is C^2 -stably ergodic when g_0 has a C^2 -open neighborhood \mathcal{W} and, for each $g_1 \in \mathcal{W}$, the geodesic flow $\phi_t^{g_1}$ is ergodic: its invariant subsets have either full measure or zero measure.

Theorem (Knieper, Schulz). A C^2 -stably ergodic geodesic flow of a closed surface must be Anosov.

Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n+1 λ 1-form on N such that $\lambda \wedge (d\lambda)^n$ is nowhere vanishing

Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n + 1 λ 1-form on N such that $\lambda \wedge (d\lambda)^n$ is nowhere vanishing

The Reeb vector field X of (N, λ) is defined by

$$d\lambda(X,\cdot)\equiv 0, \qquad \lambda(X)\equiv 1.$$

Its flow $\phi_t : N \to N$ preserves the contact form, i.e. $\phi_t^* \lambda = \lambda$.

Reeb flows

Closed contact manifold:

N closed manifold of odd dimension 2n + 1 λ 1-form on N such that $\lambda \wedge (d\lambda)^n$ is nowhere vanishing

The Reeb vector field X of (N, λ) is defined by

$$d\lambda(X,\cdot)\equiv 0, \qquad \lambda(X)\equiv 1.$$

Its flow $\phi_t : N \to N$ preserves the contact form, i.e. $\phi_t^* \lambda = \lambda$.

Geodesic flows of Riemannian manifolds (M, g) are examples of Reeb flows:

$$N = SM = \{(x, v) \in TM \mid \|v\|_g = 1\}$$

$$\lambda_{(x,v)} = g(v, d\pi(x, v) \cdot), \text{ where } \pi : SM \to M, \ \pi(x, v) = x.$$

A characterization of Anosov Reeb flows

 (N, λ) closed contact manifold of dimension 3. X Reeb vector field $\phi_t : N \to N$, $t \in \mathbb{R}$, Reeb flow

A characterization of Anosov Reeb flows

 (N, λ) closed contact manifold of dimension 3. X Reeb vector field $\phi_t : N \to N, \ t \in \mathbb{R}$, Reeb flow

$\operatorname{Per}(X) = \bigcup_{t>0} \operatorname{Fix}(\phi_t)$ subspace of closed Reeb orbits

A characterization of Anosov Reeb flows

 (N, λ) closed contact manifold of dimension 3. X Reeb vector field $\phi_t : N \to N, \ t \in \mathbb{R}$, Reeb flow

 $\operatorname{Per}(X) = \bigcup_{t>0} \operatorname{Fix}(\phi_t)$ subspace of closed Reeb orbits

Theorem (Contreras-Mazzucchelli). Assume that:

- ▶ Per(X) is hyperbolic,
- (Kupka-Smale condition) W^u(γ₁) h W^s(γ₂) for all closed Reeb orbits γ₁, γ₂ ⊂ Per(X).

Then the Reeb flow ϕ_t is Anosov.

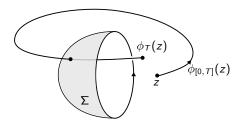
Surfaces of section

Long-standing open question. Does any closed contact 3-manifold (N, λ) admit a global surface of section for its Reeb flow ϕ_t ?

Surfaces of section

Long-standing open question. Does any closed contact 3-manifold (N, λ) admit a global surface of section for its Reeb flow ϕ_t ?

- i.e. an immersed compact surface $\Sigma \subset \textit{N}$ such that
 - int(Σ) is injectively immersed and transverse to the Reeb vector field X
 - $\partial \Sigma$ is a union of closed Reeb orbits
 - There exists T > 0 such that every segment of Reeb orbit φ_[0,T](z) intersects Σ.



Long-standing open question. Does any closed contact 3-manifold (N, λ) admit a global surface of section for its Reeb flow ϕ_t ?

Known answers:

- (Fried 1981) Yes if ϕ_t is Anosov.
- (Hofer-Wysocki-Zehnder 1998) Yes if (N, λ) is a convex 3-sphere.

A broken book decomposition of (N^3, λ) is given by:

A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding
$$K = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$$
.

A broken book decomposition of (N^3, λ) is given by:

A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding
$$K = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$$
.

These data are required to satisfy:

• The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.

A broken book decomposition of (N^3, λ) is given by:

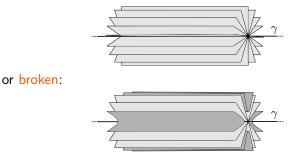
A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding
$$K = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$$
.

These data are required to satisfy:

• The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.

Any connected component $\gamma \subset K$ can be radial:



- A broken book decomposition of (N^3, λ) is given by:
 - A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding
$$K = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$$
.

These data are required to satisfy:

- The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.
- Any connected component $\gamma \subset K$ can be radial or broken.

Broken book decompositions (Colin-Dehornoy-Rechtman)

A broken book decomposition of (N^3, λ) is given by:

A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding
$$K = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$$
.

These data are required to satisfy:

- The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.
- Any connected component $\gamma \subset K$ can be radial or broken.
- There exists finitely many pages $\Sigma_1, ..., \Sigma_n$ such that:
 - Every Reeb orbit $t \mapsto \phi_t(z)$ intersects $\Sigma_1 \cup ... \cup \Sigma_n$.
 - ▶ If $\phi_{[0,\infty)}(z) \notin \Sigma_1 \cup ... \cup \Sigma_n$, then $z \in W^s(\gamma)$ for some $\gamma \subset K$.
 - ► If $\phi_{(-\infty,0]}(z) \notin \Sigma_1 \cup ... \cup \Sigma_n$, then $z \in W^u(\gamma)$ for some $\gamma \subset K$.

Broken book decompositions

Theorem (Colin-Dehornoy-Rechtman 2020) Every closed contact 3-manifold (N, λ) with a non-degenerate Reeb flow admits a broken book decomposition.

Theorem (Colin-Dehornoy-Rechtman 2020) Every closed contact 3-manifold (N, λ) with a non-degenerate Reeb flow admits a broken book decomposition.

The proof requires Hutchings' embedded contact homology, which provides surfaces of section through any given point of the contact manifold N as projections of suitable holomorphic curves in the symplectization $\mathbb{R} \times N$.

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Sketch of proof.

There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Sketch of proof.

There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

Smale's spectral decomposition:

$$\overline{\operatorname{Per}(X)} = \Lambda_1 \cup \ldots \cup \Lambda_n,$$

where each Λ_i is a basic set (compact, locally maximal, invariant subset containing a dense orbit and a dense subset of periodic orbits).

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Sketch of proof.

There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

Smale's spectral decomposition:

$$\overline{\operatorname{Per}(X)} = \Lambda_1 \cup \ldots \cup \Lambda_n,$$

where each Λ_i is a basic set (compact, locally maximal, invariant subset containing a dense orbit and a dense subset of periodic orbits).

• One such $\Lambda = \Lambda_i$ contains infinitely many closed Reeb orbits.

► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$ has measure zero (Poincaré recurrence)

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- W^s(Λ) ∪ W^u(Λ) has measure zero (Poincaré recurrence)

•
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$ has measure zero (Poincaré recurrence)

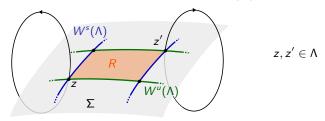
•
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

We consider a broken book decomposition of (N, λ), and a page Σ such that Λ ∩ int(Σ) ≠ Ø.

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- W^s(Λ) ∪ W^u(Λ) has measure zero (Poincaré recurrence)

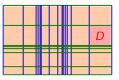
•
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

- We consider a broken book decomposition of (N, λ), and a page Σ such that Λ ∩ int(Σ) ≠ Ø.
- We fix a small heteroclinic rectangle $R \subset int(\Sigma)$:



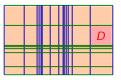
• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected

• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected

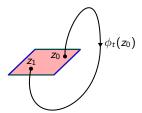


▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component

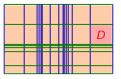
• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected



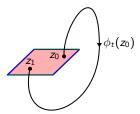
D ⊂ R \ (W^s(Λ) ∪ W^u(Λ)) connected component
(Poincaré recurrence) ∃z₀ ∈ D, t₀ > 0 such that z₁ := φ_{t₀}(z₀) ∈ D.



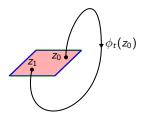
• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected



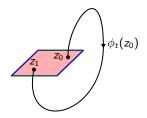
D ⊂ R \ (W^s(Λ) ∪ W^u(Λ)) connected component
(Poincaré recurrence) ∃z₀ ∈ D, t₀ > 0 such that z₁ := φ_{t₀}(z₀) ∈ D.



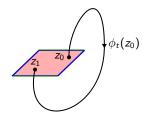
• We extend the map $z_0 \mapsto z_1$ to a smooth return map $\psi : U \to \Sigma$ on a maximal open subset $U \subseteq D$.



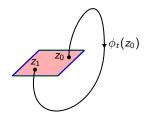
► $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : U \to \Sigma$ extending $z_{0} \mapsto z_{1}$.



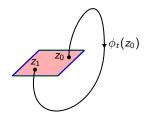
Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(U) ⊂ D.



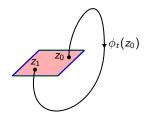
- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(U) ⊂ D.
- Using the broken book, we can show that U = D.



- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(U) ⊂ D.
- Using the broken book, we can show that U = D.
- $\psi: D \to D$ preserves the area form $d\lambda|_D$.



- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(U) ⊂ D.
- Using the broken book, we can show that U = D.
- $\psi: D \to D$ preserves the area form $d\lambda|_D$.
- (Brower translation theorem) ψ has a fixed point z.



- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(U) ⊂ D.
- Using the broken book, we can show that U = D.
- $\psi: D \to D$ preserves the area form $d\lambda|_D$.
- (Brower translation theorem) ψ has a fixed point z.
- ▶ Thus $z \in D \cap Per(X)$. But $D \cap Per(X) \subset D \cap \Lambda = \emptyset$.

Thank you for your attention!