Existence of global surfaces of section for Kupka-Smale Reeb vector fields of 3-dimensional closed contact manifolds

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

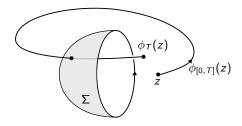
Joint work with Gonzalo Contreras

N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

A global surface of section is a compact immersed surface $\Sigma \hookrightarrow N$ such that:

- $int(\Sigma)$ is embedded and transverse to X,
- $\triangleright \partial \Sigma$ is tangent to X,
- ▶ for some T > 0, any orbit segment $φ_{[0,T]}(z)$ intersects Σ.



N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

 $\Sigma \, { \hookrightarrow \, } N \text{ global surface of section}$

N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

 $\Sigma \hookrightarrow N$ global surface of section

First return time:

 $\tau : \operatorname{int}(\Sigma) \to [0, T], \quad \tau(z) = \min\{t > 0 \mid \phi_t(z) \in \Sigma\}$

N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

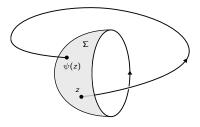
 $\Sigma \hookrightarrow N$ global surface of section

First return time:

 $\tau : \operatorname{int}(\Sigma) \to [0, T], \quad \tau(z) = \min\{t > 0 \mid \phi_t(z) \in \Sigma\}$

First return map:

 $\psi: \operatorname{int}(\Sigma) \to \operatorname{int}(\Sigma), \quad \psi(z) = \phi_{\tau(z)}(z)$



N closed 3-manifold, X nowhere vanishing vector field, $\phi_t: N \to N$ flow of X

 $\Sigma \hookrightarrow N$ global surface of section

 $au: \operatorname{int}(\Sigma) \to [0, T], \quad au(z) = \min\{t > 0 \mid \phi_t(z) \in \Sigma\}$

$$\psi : \operatorname{int}(\Sigma) \to \operatorname{int}(\Sigma), \quad \psi(z) = \phi_{\tau(z)}(z)$$

Remark. $\operatorname{Per}(\psi) \xleftarrow{1:1} \operatorname{Per}(X) \cap \operatorname{int}(\Sigma)$



 (N,λ) closed contact 3-manifold, X Reeb vector field

 $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$

 (N, λ) closed contact 3-manifold, X Reeb vector field

 $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ \ d\lambda(X, \cdot) \equiv 0$

Example. (M, g) Riemannian surface N = SM, $\lambda_{(x,v)}(w) = g(v, d\pi(x, v)w)$, X geodesic vector field

 (N, λ) closed contact 3-manifold, X Reeb vector field $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$ Example. (M, g) Riemannian surface N = SM, $\lambda_{(x,v)}(w) = g(v, d\pi(x, v)w),$ X geodesic vector field

 $\Sigma \hookrightarrow N$ global surface of section

 (N, λ) closed contact 3-manifold, X Reeb vector field $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$ Example. (M, g) Riemannian surface N = SM, $\lambda_{(x,v)}(w) = g(v, d\pi(x, v)w),$

X geodesic vector field

 $\Sigma \hookrightarrow N$ global surface of section

Remarks.

• $d\lambda|_{\Sigma}$ is an area form, and therefore $\partial\Sigma \neq \varnothing$

 (N, λ) closed contact 3-manifold, X Reeb vector field

 $\lambda \wedge d\lambda$ volume form $\lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0$

Example. (M, g) Riemannian surface N = SM, $\lambda_{(x,v)}(w) = g(v, d\pi(x, v)w)$, X geodesic vector field

 $\Sigma \hookrightarrow N$ global surface of section

Remarks.

- $d\lambda|_{\Sigma}$ is an area form, and therefore $\partial\Sigma \neq \varnothing$
- The first return map ψ : int(Σ) → int(Σ) preserves dλ, and indeed ψ^{*}λ = λ + dτ

Notion was introduced by Poincaré in celestial mechanics

- Notion was introduced by Poincaré in celestial mechanics
- ► (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces

- Notion was introduced by Poincaré in celestial mechanics
- ► (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces

 (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows

- Notion was introduced by Poincaré in celestial mechanics
- ► (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows
- (Hofer-Wysocky-Zehnder, 1998) Contact convex 3-spheres $S^3 \subset \mathbb{C}^2$ admit a global surface of section diffeomorphic to a disk for their Reeb flow

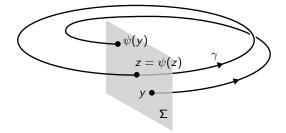
- Notion was introduced by Poincaré in celestial mechanics
- ► (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
 - Positively curved 2-spheres
 - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows
- (Hofer-Wysocky-Zehnder, 1998) Contact convex 3-spheres $S^3 \subset \mathbb{C}^2$ admit a global surface of section diffeomorphic to a disk for their Reeb flow

An application: any contact convex 3-spheres has either exactly two or infinitely many closed Reeb orbits

Closed Reeb orbits

 $\Sigma \subset N$ cross section at a closed Reeb orbit γ

 $\psi: \Sigma \to \Sigma, \ \psi(y) = \phi_{\tau(y)}(y)$ first-return map



The Floquet multipliers of γ are the eigenvalues of $d\psi(z)$:

$$\sigma(d\psi(z)) = \left\{\lambda, \lambda^{-1}\right\} \subset S^1 \cup \mathbb{R}.$$

Closed Reeb orbits

The closed Reeb orbit $\boldsymbol{\gamma}$ is

• elliptic when its Floquet multipliers are in $S^1 \subset \mathbb{C}$

• hyperbolic when its Floquet multipliers are in $\mathbb{R} \setminus \{1, -1\}$

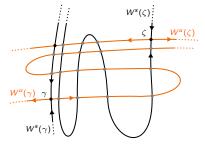
non-degenerate when its Floquet multipliers are not complex roots of 1.

The Reeb vector field X is Kupka-Smale when:

all its closed orbits are non-degenerate (elliptic or hyperbolic)

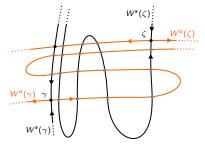
The Reeb vector field X is Kupka-Smale when:

- all its closed orbits are non-degenerate (elliptic or hyperbolic)
- $W^{s}(\gamma) \pitchfork W^{u}(\zeta)$ for all hyperbolic closed Reeb orbits γ, ζ



The Reeb vector field X is Kupka-Smale when:

- all its closed orbits are non-degenerate (elliptic or hyperbolic)
- $W^{s}(\gamma) \pitchfork W^{u}(\zeta)$ for all hyperbolic closed Reeb orbits γ, ζ

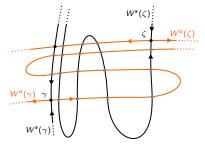


Remarks. Kupka-Smale holds for:

► (Robinson) the Reeb vector field of a C[∞] generic contact form on a closed 3-manifold;

The Reeb vector field X is Kupka-Smale when:

- all its closed orbits are non-degenerate (elliptic or hyperbolic)
- $W^{s}(\gamma) \pitchfork W^{u}(\zeta)$ for all hyperbolic closed Reeb orbits γ, ζ



Remarks. Kupka-Smale holds for:

- ► (Robinson) the Reeb vector field of a C[∞] generic contact form on a closed 3-manifold;
- ► (Contreras-Paternain) the geodesic vector field of a C[∞] generic Riemannian metric on a closed surface.

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Corollary.

- (i) The Reeb vector field of a C[∞]-generic contact form on a closed 3-manifold admits a global surface of section.
- (ii) The geodesic vector field of a C^{∞} -generic Riemannian metric on a closed surface admits a global surface of section.

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Corollary.

- (i) The Reeb vector field of a C[∞]-generic contact form on a closed 3-manifold admits a global surface of section.
- (ii) The geodesic vector field of a C[∞]-generic Riemannian metric on a closed surface admits a global surface of section.

Remarks.

Independently, Colin-Dehornoy-Hryniewicz-Rechtman proved the existence of a global surface of section for the Reeb vector field of a closed 3-manifold, provided there exists a suitable cohomology class integrating positively on a suitable collection of periodic orbits.

Together with Irie's equidistribution theorem, this gives an alternative argument for the above Corollary (i).

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Corollary.

- (i) The Reeb vector field of a C[∞]-generic contact form on a closed 3-manifold admits a global surface of section.
- (ii) The geodesic vector field of a C^{∞} -generic Riemannian metric on a closed surface admits a global surface of section.

Remarks.

The existence of a global surface of section with non-degenerate boundary is a C¹-open condition in the vector field (thus a C²-open condition in the contact form)

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Corollary.

- (i) The Reeb vector field of a C[∞]-generic contact form on a closed 3-manifold admits a global surface of section.
- (ii) The geodesic vector field of a C^{∞} -generic Riemannian metric on a closed surface admits a global surface of section.

Remarks.

- The existence of a global surface of section with non-degenerate boundary is a C¹-open condition in the vector field (thus a C²-open condition in the contact form)
- The Kupka-Smale condition in the above theorem is only required on a suitable finite collection of hyperbolic periodic orbits.

A broken book decomposition of (N^3, λ) is given by:

A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding
$$K = K_{rad} \cup K_{br} = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$$
, which is a finite link.

A broken book decomposition of (N^3, λ) is given by:

- A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.
- The binding $K = K_{rad} \cup K_{br} = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$, which is a finite link.

These data are required to satisfy:

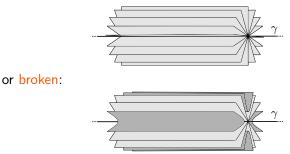
• The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.

A broken book decomposition of (N^3, λ) is given by:

- A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.
- The binding $K = K_{rad} \cup K_{br} = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$, which is a finite link.

These data are required to satisfy:

- The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.
- Any connected component $\gamma \subset K$ can be radial:



A broken book decomposition of (N^3, λ) is given by:

- A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.
- The binding $K = K_{rad} \cup K_{br} = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$, which is a finite link.

These data are required to satisfy:

- The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.
- Any connected component $\gamma \subset K$ can be radial or broken.

A broken book decomposition of (N^3, λ) is given by:

A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding $K = K_{rad} \cup K_{br} = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$, which is a finite link.

These data are required to satisfy:

- The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.
- Any connected component $\gamma \subset K$ can be radial or broken.
- There exists finitely many pages $\Sigma_1, ..., \Sigma_n$ such that:
 - Every Reeb orbit $t \mapsto \phi_t(z)$ intersects $\Sigma_1 \cup ... \cup \Sigma_n$.
 - If $\phi_{[0,\infty)}(z) \not\in \Sigma_1 \cup ... \cup \Sigma_n$, then $z \in W^s(\mathcal{K}_{\mathrm{br}})$.
 - If $\phi_{(-\infty,0]}(z) \not\in \Sigma_1 \cup ... \cup \Sigma_n$, then $z \in W^u(\mathcal{K}_{\mathrm{br}})$.

A broken book decomposition of (N^3, λ) is given by:

A family of pages *F*. Each page Σ ⊂ *F* is a (not necessarily global) surface of section for the Reeb flow.

• The binding $K = K_{rad} \cup K_{br} = \bigcup_{\Sigma \in \mathcal{F}} \partial \Sigma$, which is a finite link.

These data are required to satisfy:

- The family of interiors $int(\Sigma)$ of all $\Sigma \in \mathcal{F}$ foliates $N \setminus K$.
- Any connected component $\gamma \subset K$ can be radial or broken.
- There exists finitely many pages $\Sigma_1, ..., \Sigma_n$ such that:
 - Every Reeb orbit $t \mapsto \phi_t(z)$ intersects $\Sigma_1 \cup ... \cup \Sigma_n$.
 - If $\phi_{[0,\infty)}(z) \not\in \Sigma_1 \cup ... \cup \Sigma_n$, then $z \in W^s(\mathcal{K}_{\mathrm{br}})$.
 - If $\phi_{(-\infty,0]}(z) \not\in \Sigma_1 \cup ... \cup \Sigma_n$, then $z \in W^u(\mathcal{K}_{\mathrm{br}})$.

Remark. Broken book decompositions are a generalization of Hofer-Wysocky-Zehnder's finite energy foliations.

Broken book decompositions

Theorem (Colin-Dehornoy-Rechtman 2020) Every closed contact 3-manifold (N, λ) with a non-degenerate Reeb flow admits a broken book decomposition.

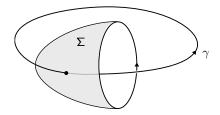
Theorem (Colin-Dehornoy-Rechtman 2020) Every closed contact 3-manifold (N, λ) with a non-degenerate Reeb flow admits a broken book decomposition.

The proof requires Hutchings' embedded contact homology, which provides surfaces of section through any given point of the contact manifold N as projections of suitable holomorphic curves in the symplectization $\mathbb{R} \times N$.

 (N,λ) non-degenerate, with a broken book $(\mathcal{F},\mathcal{K}=\mathcal{K}_{\mathrm{rad}}\cup\mathcal{K}_{\mathrm{br}})$

 (N, λ) non-degenerate, with a broken book $(\mathcal{F}, \mathcal{K} = \mathcal{K}_{\mathrm{rad}} \cup \mathcal{K}_{\mathrm{br}})$

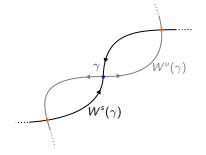
Lemma (Colin-Dehornoy-Rechtman) If there exists a surface of section Σ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $int(\Sigma)$ intersects some $\gamma \subset K_{br}$, then there exists a new broken book decomposition with broken binding $K_{br} \setminus {\gamma}$.



 (N,λ) non-degenerate, with a broken book $(\mathcal{F},\mathcal{K}=\mathcal{K}_{\mathrm{rad}}\cup\mathcal{K}_{\mathrm{br}})$

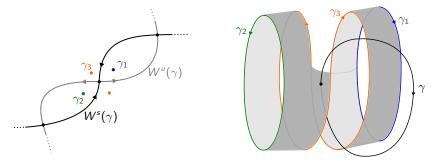
 (N, λ) non-degenerate, with a broken book $(\mathcal{F}, \mathcal{K} = \mathcal{K}_{\mathrm{rad}} \cup \mathcal{K}_{\mathrm{br}})$

Lemma (Fried, Colin-Dehornoy-Rechtman) If there exists $\gamma \subset K_{\rm br}$ having transverse homoclinics in all separatrices, then there exists a surface of section $\Sigma = S^2 \setminus (B_1 \cup B_2 \cup B_3)$ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $\operatorname{int}(\Sigma)$ intersects γ .



 (N, λ) non-degenerate, with a broken book $(\mathcal{F}, \mathcal{K} = \mathcal{K}_{\mathrm{rad}} \cup \mathcal{K}_{\mathrm{br}})$

Lemma (Fried, Colin-Dehornoy-Rechtman) If there exists $\gamma \subset K_{\rm br}$ having transverse homoclinics in all separatrices, then there exists a surface of section $\Sigma = S^2 \setminus (B_1 \cup B_2 \cup B_3)$ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $\operatorname{int}(\Sigma)$ intersects γ .



 (N, λ) non-degenerate, with a broken book $(\mathcal{F}, \mathcal{K} = \mathcal{K}_{\mathrm{rad}} \cup \mathcal{K}_{\mathrm{br}})$

Lemma (Colin-Dehornoy-Rechtman) If there exists a surface of section Σ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $int(\Sigma)$ intersects some $\gamma \subset K_{br}$, then there exists a new broken book decomposition with broken binding $K_{br} \setminus \{\gamma\}$.

Lemma (Fried, Colin-Dehornoy-Rechtman) If there exists $\gamma \subset K_{\rm br}$ having transverse homoclinics in all separatrices, then there exists a surface of section $\Sigma = S^2 \setminus (B_1 \cup B_2 \cup B_3)$ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $\operatorname{int}(\Sigma)$ intersects γ .

 (\textit{N},λ) non-degenerate, with a broken book $(\mathcal{F},\textit{K}=\textit{K}_{\mathrm{rad}}\cup\textit{K}_{\mathrm{br}})$

Lemma (Colin-Dehornoy-Rechtman) If there exists a surface of section Σ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $int(\Sigma)$ intersects some $\gamma \subset K_{br}$, then there exists a new broken book decomposition with broken binding $K_{br} \setminus \{\gamma\}$.

Lemma (Fried, Colin-Dehornoy-Rechtman) If there exists $\gamma \subset K_{\rm br}$ having transverse homoclinics in all separatrices, then there exists a surface of section $\Sigma = S^2 \setminus (B_1 \cup B_2 \cup B_3)$ such that $\partial \Sigma \cap K = \emptyset$ and whose interior $\operatorname{int}(\Sigma)$ intersects γ .

In order to find a surface of section, we have to show that there is always some broken binding component $\gamma \subset \mathcal{K}_{\mathrm{br}}$ with homoclinics in all separatrices.

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

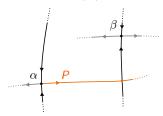
Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

Proof

• If $\gamma \subset K_{\rm br}$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.

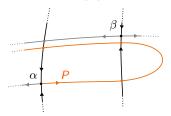
Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.



Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.



Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

- If $\gamma \subset \mathcal{K}_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.
- $\gamma \subset K_{
 m br}$, and consider heteroclinic sequences among closed orbits in $K_{
 m br}$

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.
- $\gamma \subset K_{
 m br}$, and consider heteroclinic sequences among closed orbits in $K_{
 m br}$

$$\gamma_{-1} \rightsquigarrow \stackrel{\mathbf{\gamma}}{\longrightarrow} \gamma_1$$

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.
- $\gamma \subset K_{
 m br}$, and consider heteroclinic sequences among closed orbits in $K_{
 m br}$

$$\gamma_{-2}
ightarrow \gamma_{-1}
ightarrow \gamma_{1}
ightarrow \gamma_{2}$$

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

Proof

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.
- $\gamma \subset K_{
 m br}$, and consider heteroclinic sequences among closed orbits in $K_{
 m br}$

 $\alpha \leadsto \dots \leadsto \alpha \leadsto \gamma_{-2} \leadsto \gamma_{-1} \leadsto \gamma \leadsto \gamma_1 \leadsto \gamma_2 \leadsto \dots \leadsto \beta \leadsto \dots \leadsto \beta$

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

Proof

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.
- $\gamma \subset K_{
 m br}$, and consider heteroclinic sequences among closed orbits in $K_{
 m br}$

 $\alpha \leadsto \dots \leadsto \alpha \leadsto \gamma_{-2} \leadsto \gamma_{-1} \leadsto \gamma \leadsto \gamma_1 \leadsto \gamma_2 \leadsto \dots \leadsto \beta \leadsto \dots \leadsto \beta$

Therefore $\beta \!
ightarrow \! lpha$ and $\gamma \!
ightarrow \! eta \!
ightarrow \! \gamma$

i.e. γ has homoclinics

Theorem (Contreras-Mazzucchelli) Let (N, λ) be a Kupka-Smale closed contact 3-manifold, with a broken book decomposition. Any broken binding component has homoclinics in all separatrices.

Proof

- If $\gamma \subset K_{\mathrm{br}}$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ K_{br} both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every α ⊂ K_{br}, every connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(K_{br}) ≠ Ø.
- $\gamma \subset K_{
 m br}$, and consider heteroclinic sequences among closed orbits in $K_{
 m br}$

 $\alpha \leadsto \dots \leadsto \alpha \leadsto \gamma_{-2} \leadsto \gamma_{-1} \leadsto \gamma \leadsto \gamma_1 \leadsto \gamma_2 \leadsto \dots \leadsto \beta \leadsto \dots \leadsto \beta$

Therefore $\beta \rightsquigarrow \alpha$ and $\gamma \rightsquigarrow \beta \rightsquigarrow \alpha \rightsquigarrow \gamma$

i.e. γ has homoclinics in every separatrix.

Using HWZ's finite energy foliations, Contreras-Oliveira established the following outstanding result, generalizing a (not entirely correct) claim by Poincaré:

Theorem (Contreras-Oliveira, 2004) A C^2 -generic Riemannian metric on S^2 has an elliptic closed geodesic.

Using HWZ's finite energy foliations, Contreras-Oliveira established the following outstanding result, generalizing a (not entirely correct) claim by Poincaré:

Theorem (Contreras-Oliveira, 2004) A C^2 -generic Riemannian metric on S^2 has an elliptic closed geodesic.

Using broken book decompositions:

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold with Reeb vector field X, such that:

- $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- $W^{u}(\alpha) \pitchfork W^{s}(\beta)$ for all $\alpha, \beta \subset Per(X)$.

Then X is Anosov.

- Theorem (Contreras-Oliveira, 2004) A C²-generic Riemannian metric on S² has an elliptic closed geodesic.
- Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold with Reeb vector field X, such that:
 - $\overline{\operatorname{Per}(X)}$ is hyperbolic,
 - $W^{u}(\alpha) \pitchfork W^{s}(\beta)$ for all $\alpha, \beta \subset Per(X)$.

Then X is Anosov.

- Theorem (Contreras-Oliveira, 2004) A C²-generic Riemannian metric on S² has an elliptic closed geodesic.
- Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold with Reeb vector field X, such that:
 - $\overline{\operatorname{Per}(X)}$ is hyperbolic,
 - $W^{u}(\alpha) \pitchfork W^{s}(\beta)$ for all $\alpha, \beta \subset Per(X)$.

Then X is Anosov.

Applying this theorem to geodesic flows:

Theorem (Contreras-Mazzucchelli) On any closed surface, there exists an C^2 -open dense subset \mathcal{U} of the space of Riemannian metrics such that any $g \in \mathcal{U}$ is Anosov or has an elliptic closed geodesic.

► Theorem (Contreras-Mazzucchelli) On any closed surface, there exists an C²-open dense subset U of the space of Riemannian metrics such that any g ∈ U is Anosov or has an elliptic closed geodesic.

- ► Theorem (Contreras-Mazzucchelli) On any closed surface, there exists an C²-open dense subset U of the space of Riemannian metrics such that any g ∈ U is Anosov or has an elliptic closed geodesic.
- This theorem provides a confirmation of the C²-stability conjecture for Riemannian geodesic flows:

Theorem (Contreras-Mazzucchelli) The geodesic flow of a closed Riemannian surface is C^2 -structurally stable if and only if it is Anosov.

Thank you for your attention!