Analytic double fibration transforms

Mikko Salo University of Jyväskylä

Joint with Marco Mazzucchelli (ENS Lyon) and Leo Tzou (Amsterdam)

IP and nonlinearity, Banff, 20 July 2023

European Research Council Established by the European Commission

Light ray transform

Minkowski light rays

Lorentzian light rays

Light ray transform

IP for waves/relativity lead to Lorentzian light ray transform

$$Rf(\gamma) = \int f(\gamma(t)) dt$$

where γ runs over the null geodesics for a Lorentzian metric g (light rays). It is invertible

- ▶ in Minkowski space \mathbb{R}^{n+1} [Stefanov 1989]
- ▶ for analytic g with a foliation condition [Stefanov 2017]
- for certain time-independent (stationary/static) g [Feizmohammadi-Ilmavirta-Oksanen 2021]

Invertibility is open for small perturbations of Minkowski space. Microlocal aspects: [Lassas-Oksanen-Stefanov-Uhlmann, Vasy, Wang, ...]

Bicharacteristic ray transform

[Oksanen-S-Stefanov-Uhlmann 2023]: for a real principal type¹ PDE, boundary measurements \rightsquigarrow null bicharacteristic ray transform of unknown coefficients. This transform is given by

$$Rf(\gamma) = \int f(x(t)) dt$$

where $\gamma(t) = (x(t), \xi(t))$ runs over all null bicharacteristics.

Examples. Geodesic/pseudo-Riemannian X-ray transform, light ray transform.

¹real principal symbol + no trapped null bicharacteristics

Null bicharacteristics

Wave operator $\partial_t^2 - \Delta$

Tricomi operator $x_2 \partial_{x_1}^2 + \partial_{x_2}^2$

Overview

Null bicharacteristic ray transforms fall under the microlocal double fibration approach to integral geometry [Guillemin 1975].

Under the Bolker condition ($\leftrightarrow \rightarrow$ no conjugate points), one can recover C^{∞} singularities (wave front set) of f from Rf. If coefficients are real-analytic, analytic microlocal analysis may yield local/global invertibility of R.

We make a systematic study of double fibration transforms (also for k-dim. submanifolds) and of the Bolker condition. We prove a theorem on the recovery of analytic singularities for Fourier integral operators (FIOs), and use this to invert R.

Overview

As consequences, we obtain inversion results for

- geodesic X-ray transform
- null bicharacteristic ray transform
- generalized Radon transform over codim. k submanifolds

A nonvanishing analytic weight can be included in all results. Our method uses analytic continuation and is not stable (cf. [Koch-Rüland-S 2021]). Stable inversion might still be possible.

Geodesic X-ray transform

Let (M, g) be a compact Riemannian manifold with strictly convex boundary. M is nontrapping if any geodesic reaches ∂M in finite time. The geodesic X-ray transform of f is

$$If(\gamma) = \int_{\gamma} f(\gamma(t)) \, dt$$

for geodesics γ . I is invertible if

- M has no conjugate points [Mukhometov 1977]
- ▶ dim(M) ≥ 3 and M is foliated by strictly convex manifolds [Uhlmann-Vasy 2016]

Conjecture

I is invertible on compact, strictly convex, nontrapping manifolds.

Geodesic X-ray transform

Theorem

Conjecture is true if $\dim(M) = 2$ and (M, g) is real-analytic.

Uses a local uniqueness result for analytic double fibration transforms [Stefanov-Uhlmann 2008, Mazzucchelli-S-Tzou 2023] combined with a strictly convex foliation when $\dim(M) = 2$ [Betelu-Gulliver-Littman 2002].

Null bicharacteristic ray transform

Let $p(x,\xi) \in C^{\infty}(T^*M)$ be real and homogeneous in ξ . Let

$$Rf(\gamma) = \int_{\gamma} f(x(t)) dt$$

where $\gamma(t) = (x(t), \xi(t))$ runs over all null bicharacteristics.

Theorem

Let p be analytic, and suppose that

$$abla_{\xi} p \neq 0, \quad \det(
abla_{\xi}^2 p) \neq 0 \qquad \text{ on } p^{-1}(0).$$

Suppose that supp(f) is foliated by strictly pseudoconvex "timelike" hypersurfaces Γ_t . If Rf = 0, then f = 0.

Null bicharacteristic ray transform

Proved for light ray transforms in [Stefanov 2017]. Conditions for the family of null bicharacteristic curves:

- $abla_{\xi} p \neq 0 \iff$ curves have no cusps
- "timelike" means that Γ_t has many tangential curves
- strictly pseudoconvex means that Γ_t has many short almost tangential curves
- $det(\nabla_{\xi}^2 p) \neq 0 \implies$ short curves have no conjugate points

Corollary

If P is analytic real principal type and above conditions hold, then the Cauchy data set of P + V determines $V \in C^{\infty}(M)$.

Double fibrations: motivation

Let $M = \mathbb{R}^2$ and $\mathcal{G} = \{$ lines in $\mathbb{R}^2 \}$. The Radon transform R and its adjoint R^* satisfy

$$Rf(L) = \int_{x \in L} f(x), \qquad R^*F(x) = \int_{L \ni x} F(L).$$

Let $Z = \{(L, x) : x \in L\} = \{(L, x) : L \ni x\} \subset \mathcal{G} \times M$ be the incidence relation (or line-point relation). Then

with $\pi_{\mathcal{G}}, \pi_{\mathcal{M}}$ submersions (=derivative surjective).

Double fibrations

Definition (Gel'fand-Graev-Shapiro 1969)

Let \mathcal{G} and M be manifolds. A submanifold Z of $\mathcal{G} \times M$ is a double fibration if $\pi_{\mathcal{G}}$ and π_{M} are submersions.

For any $z \in \mathcal{G}$, one has a smooth manifold

$$G_z = \pi_M(\pi_{\mathcal{G}}^{-1}(z)).$$

Double fibration transform encodes integrals over the G_z :

$$R: C^{\infty}_{c}(M^{\mathrm{int}})
ightarrow C^{\infty}(\mathcal{G}), \quad Rf(z) = \int_{\mathcal{G}_{z}} f \, d\omega_{\mathcal{G}_{z}}$$

General curve families [Mazzucchelli-S-Tzou 2023]

For any double fibration ray transform R, there is

- ▶ a fiber bundle *N* over *M*, and
- ► a vector field Y on N

so that R integrates over projections of integral curves of Y. The converse also holds under suitable conditions.

Examples:

•
$$N = SM$$
, $Y = X_g$ (geodesic X-ray transform)

• $N = p^{-1}(0)$, $Y = H_p$ (null bicharacteristic ray transform)

Other works for general curve families: [Mukhometov 1977, Frigyik-Stefanov-Uhlmann 2008, Zhou 2016, ...]

Microlocal approach

[Guillemin '75]: R is an FIO. If Bolker condition holds (π_L is an injective immersion), R^*R is an elliptic Ψ DO \implies recovery of C^{∞} singularities.

[Boman-Quinto '87, '93]: suggested to consider analytic case \implies recovery of analytic singularities \implies inversion of *R*.

Issue: clean intersection FIO calculus missing in analytic case. Alternative FBI transform method for specific transforms: [Stefanov-Uhlmann '08, Frigyik-Stefanov-Uhlmann '08, Krishnan-Stefanov '09, Stefanov '17, Homan-Zhou '17].

We prove recovery of analytic singularities for general double fibration transforms directly, via FBI transforms.

Main FIO result

Theorem If *R* is an analytic double fibration transform and Bolker condition holds at $(z, \zeta, x, \eta) \in C := (N^*Z \setminus 0)'$, i.e.

• (global part)
$$\pi_L^{-1}(z,\zeta) = \{(z,\zeta,x,\eta)\}$$

• (local part) $d\pi_L|_{(z,\zeta,x,\eta)}$ is injective

then

$$(z,\zeta) \notin WF_a(Rf) \implies (x,\eta) \notin WF_a(f).$$

We give geometric characterizations for the Bolker condition:

- global part ++++ no conjugate points
- ▶ local part $\leftrightarrow \Rightarrow$ enough variations of tangents/normals of G_z

Analytic wave front set

Let $\lambda > 0$, and consider Gaussian wave packet

$$\psi_{\lambda}(y; x, \xi) = e^{i\lambda(y-x)\cdot\xi}e^{-\lambda \frac{|y-x|^2}{2}}$$

The (Gaussian) FBI transform of $f \in L^2(\mathbb{R}^n)$ is

$$T_{\lambda}f(x,\xi) = (f,\psi_{\lambda}(\,\cdot\,;x,\xi))_{L^{2}(\mathbb{R}^{n})}$$

FBI transform gives a "phase space portait" of f.

Definition. f is analytic at (x_0, ξ_0) , or $(x_0, \xi_0) \notin WF_a(f)$,¹ if

$$\mathcal{T}_\lambda f(x,\xi) = \mathcal{O}(e^{-c\lambda})$$
 near (x_0,ξ_0) as $\lambda o \infty$.

¹Respectively, $(x_0, \xi_0) \notin WF(f)$ if $T_{\lambda}f = O(\lambda^{-\infty})$ near (x_0, ξ_0) .

Ideas of proof

- 1. Localize in space using global part of Bolker condition.
- 2. Locally $Z = \{x'' = \phi(z, x')\}$. Consider model FIO

$$Tf(z) = \iint e^{i(\phi(z,x')-x'')\cdot\eta}a(z,x)f(x)\,d\eta\,dx$$

Microlocalize in \mathcal{G} via FBI transform L_{λ} , i.e.

$$L_{\lambda}Tf(z,\zeta) = \int K_{\lambda}(z,\zeta,x)f(x) dx = O(e^{-c\lambda})$$

near $(\hat{z}, \hat{\zeta})$ since $(\hat{z}, \hat{\zeta}) \notin WF_a(Tf)$.

3. Simplify kernel K_{λ} by stationary phase, get

$$\int e^{i\lambda\psi(z,\zeta,x)}\hat{a}(z,\zeta,x;\lambda)f(x)\,dx=O(e^{-c\lambda}).$$

4. Show that LHS is a generalized FBI transform that detects $WF_a(f)$. Uses local Bolker condition.

Perspectives

- Inversion without analyticity? (Energy estimates/Uhlmann-Vasy approach)
- Violation of Bolker condition? [Monard-Stefanov-Uhlmann '15, Holman-Uhlmann '18, Felea-Gaburro-Greenleaf-Nolan '22, ...]
- 3. Systems, tensors, ... [Paternain-S-Uhlmann book '23]
- 4. Analytic FIO composition calculus?