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Light ray transform

IP for waves/relativity lead to Lorentzian light ray transform

Rf (γ) =

∫
f (γ(t)) dt

where γ runs over the null geodesics for a Lorentzian metric g
(light rays). It is invertible

▶ in Minkowski space Rn+1 [Stefanov 1989]

▶ for analytic g with a foliation condition [Stefanov 2017]

▶ for certain time-independent (stationary/static) g
[Feizmohammadi-Ilmavirta-Oksanen 2021]

Invertibility is open for small perturbations of Minkowski space.
Microlocal aspects: [Lassas-Oksanen-Stefanov-Uhlmann, Vasy, Wang, . . . ]



Bicharacteristic ray transform

[Oksanen-S-Stefanov-Uhlmann 2023]: for a real principal type1 PDE,
boundary measurements ⇝ null bicharacteristic ray transform
of unknown coefficients. This transform is given by

Rf (γ) =

∫
f (x(t)) dt

where γ(t) = (x(t), ξ(t)) runs over all null bicharacteristics.

Examples. Geodesic/pseudo-Riemannian X-ray transform,
light ray transform.

1real principal symbol + no trapped null bicharacteristics



Null bicharacteristics

Wave operator ∂2t −∆ Tricomi operator x2∂
2
x1
+ ∂2x2



Overview

Null bicharacteristic ray transforms fall under the microlocal
double fibration approach to integral geometry [Guillemin 1975].

Under the Bolker condition (↭ no conjugate points), one can
recover C∞ singularities (wave front set) of f from Rf . If
coefficients are real-analytic, analytic microlocal analysis may
yield local/global invertibility of R .

We make a systematic study of double fibration transforms
(also for k-dim. submanifolds) and of the Bolker condition.
We prove a theorem on the recovery of analytic singularities
for Fourier integral operators (FIOs), and use this to invert R .



Overview

As consequences, we obtain inversion results for

▶ geodesic X-ray transform

▶ null bicharacteristic ray transform

▶ generalized Radon transform over codim. k submanifolds

A nonvanishing analytic weight can be included in all results.
Our method uses analytic continuation and is not stable (cf.
[Koch-Rüland-S 2021]). Stable inversion might still be possible.



Geodesic X-ray transform

Let (M , g) be a compact Riemannian manifold with strictly
convex boundary. M is nontrapping if any geodesic reaches
∂M in finite time. The geodesic X-ray transform of f is

If (γ) =

∫
γ

f (γ(t)) dt

for geodesics γ. I is invertible if

▶ M has no conjugate points [Mukhometov 1977]

▶ dim(M) ≥ 3 and M is foliated by strictly convex
manifolds [Uhlmann-Vasy 2016]

Conjecture
I is invertible on compact, strictly convex, nontrapping manifolds.



Geodesic X-ray transform

Theorem
Conjecture is true if dim(M) = 2 and (M , g) is real-analytic.

Uses a local uniqueness result for analytic double fibration
transforms [Stefanov-Uhlmann 2008, Mazzucchelli-S-Tzou 2023]

combined with a strictly convex foliation when dim(M) = 2
[Betelu-Gulliver-Littman 2002].



Null bicharacteristic ray transform

Let p(x , ξ) ∈ C∞(T ∗M) be real and homogeneous in ξ. Let

Rf (γ) =

∫
γ

f (x(t)) dt

where γ(t) = (x(t), ξ(t)) runs over all null bicharacteristics.

Theorem
Let p be analytic, and suppose that

∇ξp ̸= 0, det(∇2
ξp) ̸= 0 on p−1(0).

Suppose that supp(f ) is foliated by strictly pseudoconvex
“timelike” hypersurfaces Γt . If Rf = 0, then f = 0.



Null bicharacteristic ray transform

Proved for light ray transforms in [Stefanov 2017].
Conditions for the family of null bicharacteristic curves:

▶ ∇ξp ̸= 0 ⇐⇒ curves have no cusps

▶ “timelike” means that Γt has many tangential curves

▶ strictly pseudoconvex means that Γt has many short
almost tangential curves

▶ det(∇2
ξp) ̸= 0 =⇒ short curves have no conjugate points

Corollary
If P is analytic real principal type and above conditions hold,
then the Cauchy data set of P + V determines V ∈ C∞(M).



Double fibrations: motivation

Let M = R2 and G = {lines in R2}. The Radon transform R
and its adjoint R∗ satisfy

Rf (L) =

∫
x∈L

f (x), R∗F (x) =

∫
L∋x

F (L).

Let Z = {(L, x) : x ∈ L} = {(L, x) : L ∋ x} ⊂ G ×M be the
incidence relation (or line-point relation). Then

Z

G M

πG πM

with πG, πM submersions (=derivative surjective).



Double fibrations

Definition (Gel’fand-Graev-Shapiro 1969)
Let G and M be manifolds. A submanifold Z of G ×M is a
double fibration if πG and πM are submersions.

For any z ∈ G, one has a smooth manifold

Gz = πM(π−1
G (z)).

Double fibration transform encodes integrals over the Gz :

R : C∞
c (M int) → C∞(G), Rf (z) =

∫
Gz

f dωGz



General curve families [Mazzucchelli-S-Tzou 2023]

For any double fibration ray transform R , there is

▶ a fiber bundle N over M , and

▶ a vector field Y on N

so that R integrates over projections of integral curves of Y .
The converse also holds under suitable conditions.

Examples:

▶ N = SM , Y = Xg (geodesic X-ray transform)

▶ N = p−1(0), Y = Hp (null bicharacteristic ray transform)

Other works for general curve families:
[Mukhometov 1977, Frigyik-Stefanov-Uhlmann 2008, Zhou 2016, . . . ]



Microlocal approach

[Guillemin ’75]: R is an FIO. If Bolker
condition holds (πL is an injective
immersion), R∗R is an elliptic ΨDO
=⇒ recovery of C∞ singularities.

N∗Z \ 0

T∗G \ 0 T∗M \ 0

πL πR

[Boman-Quinto ’87, ’93]: suggested to consider analytic case
=⇒ recovery of analytic singularities =⇒ inversion of R .

Issue: clean intersection FIO calculus missing in analytic case.
Alternative FBI transform method for specific transforms:
[Stefanov-Uhlmann ’08, Frigyik-Stefanov-Uhlmann ’08,

Krishnan-Stefanov ’09, Stefanov ’17, Homan-Zhou ’17].

We prove recovery of analytic singularities for general double
fibration transforms directly, via FBI transforms.



Main FIO result

Theorem
If R is an analytic double fibration transform and
Bolker condition holds at (z , ζ, x , η) ∈ C := (N∗Z \ 0)′, i.e.

▶ (global part) π−1
L (z , ζ) = {(z , ζ, x , η)}

▶ (local part) dπL|(z,ζ,x ,η) is injective
then

(z , ζ) /∈ WFa(Rf ) =⇒ (x , η) /∈ WFa(f ).

We give geometric characterizations for the Bolker condition:

▶ global part↭ no conjugate points

▶ local part↭ enough variations of tangents/normals of Gz



Analytic wave front set

Let λ > 0, and consider Gaussian wave packet

ψλ(y ; x , ξ) = e iλ(y−x)·ξe−λ
|y−x|2

2

The (Gaussian) FBI transform of f ∈ L2(Rn) is

Tλf (x , ξ) = (f , ψλ( · ; x , ξ))L2(Rn)

FBI transform gives a “phase space portait” of f .

Definition. f is analytic at (x0, ξ0), or (x0, ξ0) /∈ WFa(f ),
1 if

Tλf (x , ξ) = O(e−cλ) near (x0, ξ0) as λ→ ∞ .

1Respectively, (x0, ξ0) /∈ WF (f ) if Tλf = O(λ−∞) near (x0, ξ0).



Ideas of proof
1. Localize in space using global part of Bolker condition.

2. Locally Z = {x ′′ = ϕ(z , x ′)}. Consider model FIO

Tf (z) =

∫∫
e i(ϕ(z,x

′)−x ′′)·ηa(z , x)f (x) dη dx

Microlocalize in G via FBI transform Lλ, i.e.

LλTf (z , ζ) =

∫
Kλ(z , ζ, x)f (x) dx = O(e−cλ)

near (ẑ , ζ̂) since (ẑ , ζ̂) /∈ WFa(Tf ).

3. Simplify kernel Kλ by stationary phase, get∫
e iλψ(z,ζ,x)â(z , ζ, x ;λ)f (x) dx = O(e−cλ).

4. Show that LHS is a generalized FBI transform that
detects WFa(f ). Uses local Bolker condition.



Perspectives

1. Inversion without analyticity?
(Energy estimates/Uhlmann-Vasy approach)

2. Violation of Bolker condition?
[Monard-Stefanov-Uhlmann ’15, Holman-Uhlmann ’18,

Felea-Gaburro-Greenleaf-Nolan ’22, . . . ]

3. Systems, tensors, . . . [Paternain-S-Uhlmann book ’23]

4. Analytic FIO composition calculus?


